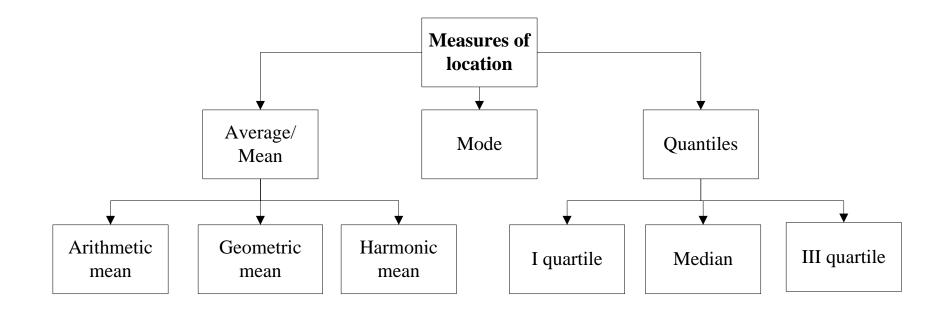


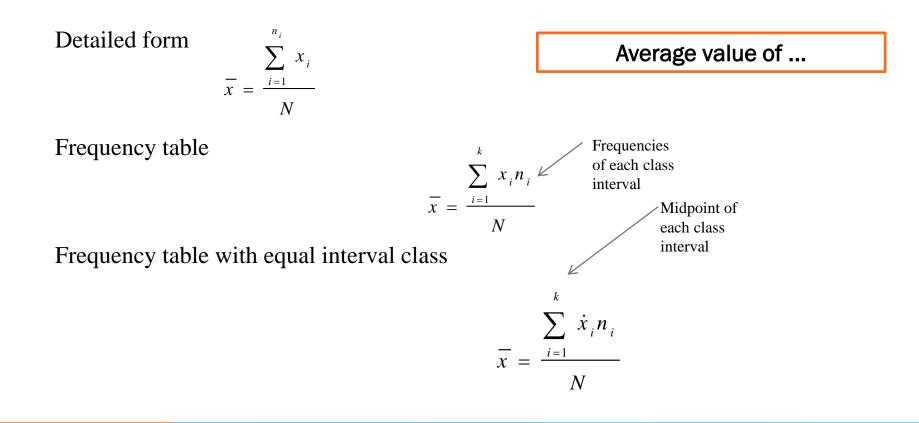
AGENDA

1. Measures of locations

1. Average

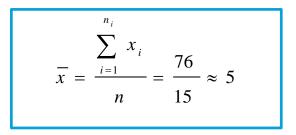

2.Mode

3. Quantiles


2. Practice

MEASURES OF LOCATION

ARHITMETIC MEAN



TASK 1. DETAILED FORM

15 students scored the points on the exam of Statististics:

1,2,3,4,4,5,5,5,6,6,6,6,7,8,8.

- a) mean,
- b) mode,
- c) median,
- d) I quartile,
- e) III quartile.

TASK 2. FREQUENCY TABLE

The number of hours (per week) which students spend on learning Statistics in 2014 is given in table.

- a) mean,
- b) mode,
- c) median.

X	n
Hours (per weak)	Frequency
0	25
1	54
2	11
3	9
4	1

$$\overline{x} = \frac{\sum_{i=1}^{k} x_i n_i}{N} = \frac{107}{100} = 1.07$$

HINT						
	x _i	п	$x_i n$	n _{cum}		
	0,00	25,00	0,00	25,00		
	1,00	54,00	54,00	79,00		
	2,00	11,00	22,00	90,00		
	3,00	9,00	27,00	99,00		
	4,00	1,00	4,00	100,00		
Summary		100,00	107,00	393,00		

TASK 3. FREQUENCY TABLE WITH EQUAL CLASS INTERVALS

Observations of consumer credit borrowers were collected at the Bank X in 2008.

Results were grouped in a series of observations given in the table below.

Find and interpret:

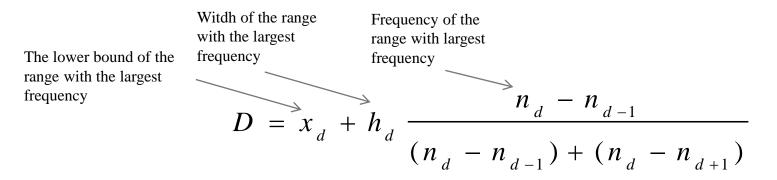
- a) mean,
- b) mode,

S

c) median.

Credit [zł]	Credit borrowers
Х	n
0-5	300
5-10	470
10-15	693
15-20	328
20-25	120
25-30	35

HINT							
	<i>x</i> _{<i>i</i>}	п	n _{cum}	ż	$\dot{x}_{i}n$		
	0-5	300,00	300,00	2,50	750,00		
	5-10	470,00	770,00	7,50	3525,00		
	10-15	693,00	1463,00	12,50	8662,50		
	15-20	328,00	1791,00	17,50	5740,00		
	20-25	120,00	1911,00	22,50	2700,00		
	25-30	35,00	1946,00	27,50	962,50		
Summary		1946,00	8181,00	90,00	22340,00		


$$\overline{x} = \frac{\sum_{i=1}^{k} \dot{x}_{i} n_{i}}{N} = \frac{22340}{1946} \approx 11.48$$

7

MODE

The value that occurs most often... The level of variable which occurs with the greatest frequency... The measurement that occurs most frequently in a data set ...

1. We have to put the values into ascending order

Frequency table with equal interval class

TASK 1. DETAILED FORM

15 students scored the points on the exam of Statististics:

1,2,3,4,4,5,5,5,6,6,6,6,7,8,8.

- a) mean,
- b) mode,
- c) median,
- d) I quartile,
- e) III quartile.

TASK 2. FREQUENCY TABLE

The number of hours (per week) which students spend on learning Statistics in 2014 is given in table.

- a) mean,
- b) mode,
- c) median.

X	n
Hours (per weak)	Frequency
0	25
1	54
2	11
3	9
4	1

HINT						
	x _i	п	$x_i n$	n _{cum}		
	0,00	25,00	0,00	25,00		
	1,00	54,00	54,00	79,00		
	2,00	11,00	22,00	90,00		
	3,00	9,00	27,00	99,00		
	4,00	1,00	4,00	100,00		
Summary		100,00	107,00	393,00		

TASK 3. FREQUENCY TABLE WITH EQUAL CLASS INTERVALS

Observations of consumer credit borrowers were collected at the Bank X in 2008.

Results were grouped in a series of observations given in the table below.

	Find a	nd interpret	Cre	dit [zł]	Credit borro	owers	
		F		X	n		
	a) me	ean,	0-5			300	
			5-10			470	
	b) mo	ode,	10-15			693	
	c) me	edian.	15-20			328	
	•)		20-25			120	$D = x_{1} + h_{1} - \frac{n_{d} - n_{d-1}}{2} =$
			25-30			35	
		H	IINT				$= 10 + 5 * \frac{693 - 470}{(693 - 470) + (693 - 328)} \approx$
							(693 - 470) + (693 - 328)
	x _i	n	n _{cum}	ż	$\dot{x}_i n$		≈ 11 .9
	0-5	300,00	300,00	2,50	750,00		
	5-10	470,00	770,00		3525,00		
	10-15	693,00	1463,00	12,50	8662,50		
	15-20	328,00	1791,00	17,50	5740,00		
	20-25	120,00	1911,00	22,50	2700,00		
	25-30	35,00	1946,00	27,50	962,50		(11)
Summary		1946,00	8181,00	90,00	22340,00		

S

MEDIAN

The median of a quantitative data set is the middle number when the measurements are arranged in ascending (or decsending) order...

The midpoint of the distribution- the number such as half of observations are smaller and half are larger

For a median, 50% of the data are less than it, and 50% of the data are bigger than it

$$PosMe = \frac{n}{2} \text{ N is even } PosMe = \frac{n+1}{2} \text{ N is odd}$$

$$Frequency table with equal class intervals$$
Lower bound of the median range
$$Me = x_{Me} + (PosMe - n_{cum, n-1}) \frac{h_{Me}}{n_{Me}} \text{ With of the median range}$$

$$He = x_{Me} + (PosMe - n_{cum, n-1}) \frac{h_{Me}}{n_{Me}} \text{ Frequency of the median range}$$

TASK 1. DETAILED FORM

15 students scored the points on the exam of Statististics:

1,2,3,4,4,5,5,5,6,6,6,6,7,8,8.

- a) mean,
- b) mode,
- c) median,
- d) I quartile,
- e) III quartile.

$$PosMe = \frac{n+1}{2} = \frac{15+1}{2} = 8 \rightarrow Me = 5$$

TASK 2. FREQUENCY TABLE

The number of hours (per week) which students spend on learning Statistics in 2014 is given in table.

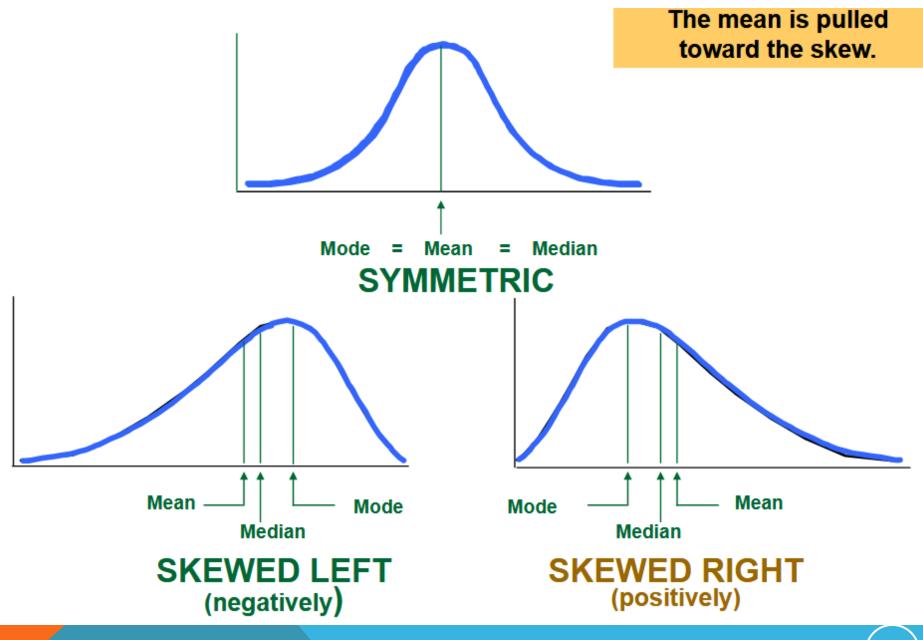
- a) mean,
- b) mode,
- c) median.

X	n
Hours (per weak)	Frequency
0	25
1	54
2	11
3	9
4	1

$$PosMe = \frac{n}{2} = \frac{100}{2} = 50 \rightarrow Me = 1$$

HINT						
	x _i	п	$x_i n$	n _{cum}		
	0,00	25,00	0,00	25,00		
	1,00	54,00	54,00	79,00		
	2,00	11,00	22,00	90,00		
	3,00	9,00	27,00	99,00		
	4,00	1,00	4,00	100,00		
Summary		100,00	107,00	393,00		

TASK 3. FREQUENCY TABLE WITH EQUAL CLASS INTERVALS


Observations of consumer credit borrowers were collected at the Bank X in 2008.

Results were grouped in a series of observations given in the table below.

Find and interpret.

Su

	Find a	nd interpret	Cred	it [zł]	Credit borrow	vers	
	a)		X	(n		
	a) me	ean,	0-5			300	
	b) mo	ode,	5-10			470	1046
		·	10-15			693	$PosMe = \frac{n}{-} = \frac{1946}{-} = 973$
	c) me	edian.	15-20			328	$\frac{1}{2} = \frac{1}{2} = \frac{1}$
			20-25			120	
			25-30			35	$Me = x_{Me} + (PosMe - n_{cum, n-1}) \frac{h_{Me}}{m}$
		н	INT				n_{Me}
	x _i	п	n _{cum}	ż	$\dot{x}_i n$		$= 10 + (973 - 770) \frac{5}{693} = 11.5$
	0-5	300,00	300,00	2,50	750,00		0,5
	5-10	470,00	770,00	7,50	3525,00		
	10-15	693,00	1463,00	12,50	8662,50		
	15-20	328,00	1791,00	17,50	5740,00		
	20-25	120,00	1911,00	22,50	2700,00		\sim
	25-30	35,00	1946,00	27,50	962,50		(15)
ummary		1946,00	8181,00	90,00	22340,00		

QUANTILES

Lower

The I quartile of a quantitative data set is the 1/4 number when the measurements are arranged in ascending (or decsending) order...

For a I Quartile, 25% of the data are less than it, and 75% of the data are bigger than it

$$PosQ_{1} = \frac{n}{4} \text{ N is even } PosQ_{1} = \frac{n+1}{4} \text{ N is odd}$$

$$Frequency table with equal class intervals$$
Lower bound of the quartile range before the quartile range before the quartile range
$$Q_{1} = x_{Q_{1}} + (PosQ_{1} - n_{cum_{n-1}}) \frac{h_{Q_{1}}}{n_{Q_{1}}} \longrightarrow With of the quartile range$$

$$PosQ_{1} = \frac{n+1}{4} \text{ N is odd}$$

$$Frequency table with equal class intervals$$

$$\frac{h_{Q_{1}}}{h_{Q_{1}}} \longrightarrow With of the quartile range$$

$$PosQ_{1} = \frac{n+1}{4} \text{ N is odd}$$

QUANTILES

The III quartile of a quantitative data set is the ³/₄ number when the measurements are arranged in ascending (or decsending) order...

For a III Quartile, 75% of the data are less than it, and 35% of the data are bigger than it

$$PosQ_{3} = \frac{3n}{4} \text{ N is even} \qquad PosQ_{3} = \frac{3(n+1)}{4} \text{ N is odd}$$

$$Frequency table with equal class intervals$$
Lower bound of the ange before the quartile range
$$Q_{3} = x_{Q_{3}} + (PosQ_{3} - n_{cum_{n-1}}) \frac{h_{Q_{3}}}{n_{Q_{3}}} \longrightarrow With of the quartile range$$
With of the quartile range Frequency of the quartile range

TASK 1. DETAILED FORM

15 students scored the points on the exam of Statististics:

1,2,3,4,4,5,5,5,6,6,6,6,7,8,8.

- a) mean,
- b) mode,
- c) median,
- d) I quartile,
- e) III quartile.

$$PosQ_{1} = \frac{n+1}{4} = \frac{15+1}{4} = 4 \rightarrow Q_{1} = 4$$
$$PosQ_{3} = \frac{3(n+1)}{4} = \frac{3(15+1)}{4} = 12 \rightarrow Q_{3} = 6$$

TASK 2. FREQUENCY TABLE

The number of hours (per week) which students spend on learning Statistics in 2014

is given in table.

a) mea

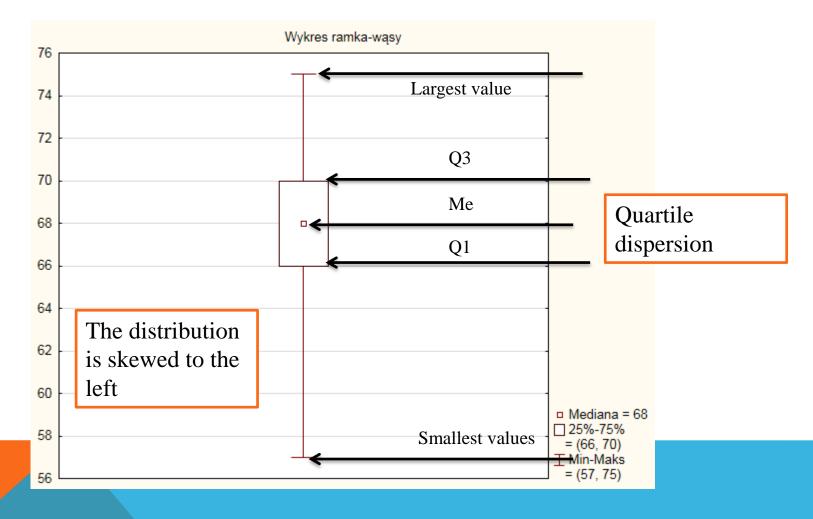
- b) mode,
- c) median,
- d) I quartile,
- e) III quartile.

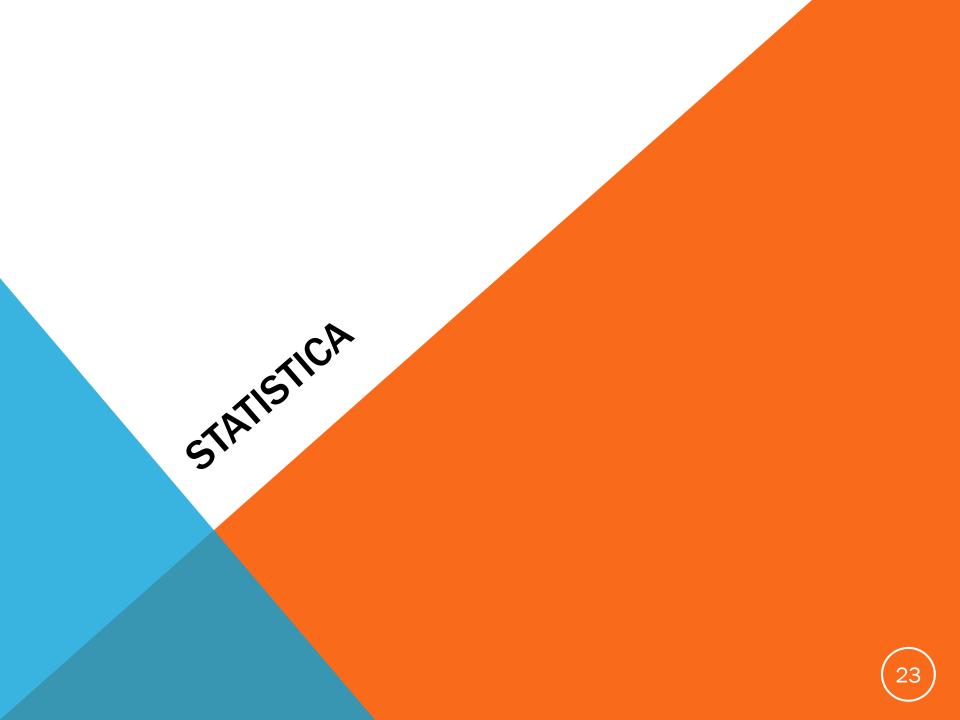
Х	n
Hours (per weak)	Frequency
0	25
1	54
2	11
3	9
4	1

$$PosQ_{1} = \frac{n}{4} = \frac{100}{4} = 75 \rightarrow Q_{1} = 0$$
$$PosQ_{3} = \frac{3n}{4} = \frac{3*100}{4} = 75 \rightarrow Q_{3} = 1$$

HINT						
	X _i	n	$x_i n$	n _{cum}		
	0,00	25,00	0,00	25,00		
	1,00	54,00	54,00	79,00		
	2,00	11,00	22,00	90,00		
	3,00	9,00	27,00	99,00		
	4,00	1,00	4,00	100,00		
Summary		100,00	107,00	393,00		

TASK 3. FREQUENCY TABLE WITH EQUAL CLASS INTERVALS


Observations of consumer credit borrowers were collected at the Bank X in 2008.


Results were grouped in a series of observations given in the table below.

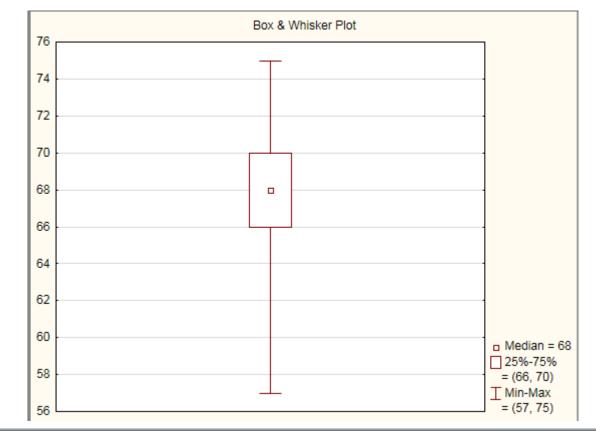
	Find a	nd internre	•				
	Find and interpret:a) mean,b) mode,c) median		C	redit [zł]	Credit bor	rowers	n 1046
	a) me	ean		Х	n		$PosQ_{1} = \frac{n}{4} = \frac{1946}{4} = 486 .5$
	u) IIK	ourr,	0-5			300	4 4
	b) mo	ode,	5-10			470	
	a) m	dian	10-15			693	h_{Q_1}
	c) me	edian	15-20			328	$Q_1 = x_{Q_1} + (PosQ_1 - n_{cum, n-1}) \frac{n_{Q_1}}{n} =$
	 c) median d) I quartile, e) III quartile. HINT		20-25		120		$n_{\mathcal{Q}_1}$
25-30						35	5
	e) III	quartite.					$= 5 + (486 .5 - 300) \frac{5}{} \approx 6.98$
		F	IINT				470
	x _i	n	n _{cum}	ż	$\dot{x}_i n$		$PosQ_{3} = \frac{3n}{2} = \frac{3*1946}{2} = 1459 .5$
	0-5	300,00	300,00	2,50	750,00		$PosQ_{3} = \frac{1}{4} = \frac{1}{4} = \frac{1}{4} = \frac{1}{4} = \frac{1}{5} = \frac{1}{5}$
	5-10	470,00	770,00	7,50	3525,00		
	10-15	693,00	1463,00	12,50	8662,50		$Q_{3} = x_{Q_{3}} + (PosQ_{3} - n_{cum_{n-1}})\frac{h_{Q_{3}}}{n_{Q_{3}}} =$
	15-20	328,00	1791,00	17,50	5740,00		n_{Q_3}
	20-25	120,00	1911,00	22,50	2700,00		
	25-30	35,00	1946,00	27,50	962,50		$= 10 + (1459 .5 - 770) - \frac{5}{2} \approx 14.97$
ummary		1946,00	8181,00	90,00	22340,00		693

Su

BOX WHISKER PLOTS

TASK 4.

Scientists examined height of randomly selected men from the city of Gdynia. On the basis of the data contained in the file CharacteristicsHeight.sta perform an analysis. Create a box whisker plot. Find and interpret:


- a) mean,
- b) mode,
- c) median,
- d) I quartile,
- e) III quartile,
- f) I decile.

Statistisc>Basic statistics/tables> Descriptive statistics

HI

HINT	Descriptive Statistics: Characteristics	? ×
	Quick Advanced Robust Normality Prob. & Scatterplots Categ. plots Options	Summary Cancel
	Summary: Statistics Statistics G1 Compute Location, valid N Variation, moments Percentiles, ranges Valid N Standard Deviation Minimum & maximum % valid obsvn. CI for Sample SD Numerval: 95,00 4% Mean Interval: 95,00 4% % Sum Coefficient of variation First: 10.00 4%	Doptions By Group
	Median Variance Mode Std. err. of mean Geom. mean Conf. limits for means Interval 95,00 🖆 % Skewness Std. err., Skewness Std. err., Kurtosis Std. err., Kurtosis	SHLECT CASES Wghtd momnts DF = W-1 N-1 MD deletion Casewise Pairwise
Descriptive Statistics: Characteristics Image: Im	Ptions Cancel Quick Advanced Robust Normality Prob. & Scatterplots Categ. plots Options Quick Advanced Robust Normality Prob. & Scatterplots Categ. plots Options Quick Advanced Robust Normality Prob. & Scatterplots Categ. plots Options Summary: Statistics: By Group Frequency tables Image: Plot for all variables Image: Plot for	Cancel Cancel Cancel Coptions By Group By Group Stiffs S Wight momnts DF = W-1 N-1 MD deletion Casewise Pairwise

HINT

	Descriptive Statistics (Characteristics)									
	Valid N	Mean	Median	Mode	Frequency	Lower	Upper	Percentile	Percentile	
Variable					of Mode	Quartile	Quartile	10,00000	90,00000	
Height (in)	100	67,89000	68,00000	69,00000	15	66,00000	70,00000	63,00000	73,00000	

PREPARATION FOR THE NEXT CLASSES

McClave, J. T., Benson, P. G., Sincich, T. (2008), *Statistics for Business & Economics*, Pearson Education Inc., New Jersey, p. 74-100;

Thank you for your attention

GDAŃSK UNIVERSITY OF TECHNOLOGY