Introduction to Laboratory 4

Laboratory 4 concerns the implementation of the False-Position method and of the Secant method to find the root of a function $f(x)$. Both methods use a linear function to calculate a new approximation to the root, but contrary to the Newton-Raphson method they do not require the derivative of the function $\left(f^{\prime}(x)\right)$.

The False-Position method works in a similar way as the Bisection method, but instead of calculating the new approximation of the root from the middle of the interval $x_{M}=$ $\left(x_{L}+x_{R}\right) / 2$ (see Laboratory 1), we estimate a new value from the straight line passing through the points $\left(x_{L}, f\left(x_{L}\right)\right)$ and ($x_{R}, f\left(x_{R}\right)$) (see Laboratory 4 and Figure 1). The new approximation of the root is calculated from:

$$
x_{0}=\frac{x_{L} f\left(x_{R}\right)-x_{R} f\left(x_{L}\right)}{f\left(x_{R}\right)-f\left(x_{L}\right)}
$$

Figure 1: Example illustrating the False-Position method for two iterations (i.e. calculation of x_{0} and x_{1}). In the first step the interval is $\left[x_{L}, x_{R}\right]$, in the second step the interval is $\left[x_{0}, x_{R}\right]$.

The Secant method resembles the Newton-Raphson method, the differences are that (i) we need to start from two initial values x_{0} and x_{1} (instead of one initial value with NewtonRaphson) and, (ii) the derivative the function at the point x_{i} is approximated by $f^{\prime}\left(x_{i}\right) \approx$ $\left(f\left(x_{i}\right)-f\left(x_{i-1}\right)\right) /\left(x_{i}-x_{i-1}\right)$. Then, using the Newton-Raphson formula (see Laboratory 2), the new approximation of the root is calculated from:

$$
x_{i+1}=x_{i}-f\left(x_{i}\right) \frac{x_{i}-x_{i-1}}{f\left(x_{i}\right)-f\left(x_{i-1}\right)}=\frac{x_{i-1} f\left(x_{i}\right)-x_{i} f\left(x_{i-1}\right)}{f\left(x_{i}\right)-f\left(x_{i-1}\right)}
$$

Equivalently, this means that the new approximation of the root is obtained from the straight line passing through the points $\left(x_{i-1}, f\left(x_{i-1}\right)\right)$ and $\left(x_{i}, f\left(x_{i}\right)\right)$ (see Figure 2).

Figure 2: Example illustrating the Secant method for two iterations (i.e. calculation of x_{2} and x_{3}).

Solutions:

The root of the function $f(x)=\cos x-x$ is equal to 0.73908513 .

1) With the False-Position method, starting with $x_{L}=0, x_{R}=1$ and Tolerance $=10^{-8}$, the program required 8 iterations.
2) With the Secant method, starting with $x_{0}=0, x_{1}=0.2$ and Tolerance $=10^{-8}$, the program required 6 iterations.
