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Univariate random variables 
 
Nowak, A.S., Collins K.R. Reliability of structures. 
McGraw-Hill Higher Education 2000 
 
Any random variable is defined by its cumulative distribution 
function (CDF),  ( )XF x .  
The probability density function ( )Xf x of a continuous random 
variable is the first derivative of ( )XF x .  
The most important continuous random variables used in structural 
reliability analysis are as follows: uniform, normal (Gaussian), 
lognormal, gamma, extreme type I (Gumbel), extreme type II 
(Frechet), extreme type III (Weibull).  
The binomial and Poisson distributions of discrete random variables 
are distinguished too.  
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Uniform distribution 
A uniform random variable or uniform distribution denotes a 
constant PDF function in the interval [a, b]. Thus all numbers in this 
interval are equally likely to appear.  
 
Mathematically the uniform PDF function is defined as follows: 
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a and b define the lower and upper bounds of the random variable.  
 
The cumulative distribution function (CDF) for a uniform random 
variable is 
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PDF and CDF of a uniform random variable 
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The mean and variance are as follows: 
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Normal (Gaussian) distribution 
The most important distribution is the normal distribution also 
called the Gaussian distribution.  
It is a two-parameter distribution defined by the density function  

( )
21 1exp

22X
xf x µ
σσ π

 − = −  
  

 

where µ and σ are equal to Xµ (expected value, and Xσ  (standard 
deviation), respectively.This distribution will be denoted ( ),N µ σ . 
The distribution function, is given by 
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21 1exp

22X
tF x dtµ
σσ π

∞
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∫  

This integral cannot be evaluated on a closed form.  
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The figure shows general shapes of both the PDF and CDF  
of a normal random variable. 
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Standard normal (Gaussian) variable 
General remarks: let X be an arbitrary random variable.  
The standard form of X, denoted by Z, is defined  

X

X

XZ µ
σ
−

=  

The mathematical expectation (mean value) of an arbitrary function, 
g(X), of the random variable X is defined 

( ) ( ) ( ) ( )Xg X E g X g x f x dxµ
∞

−∞
= =   ∫  

The formula above, with Z = g(X) and the variance property prove 
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Thus mean of any standard random variable is 0, its variance is 1. 
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Standard random variable – a “zero mean, unit variance” form. 
The distribution function of a normal variable 

( )
21 1exp

22X
tF x dtµ
σσ π
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Substituting ,ts dt dsµ σ
σ
−

= =
 
the equation (2.46) becomes 
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where XΦ is a standard normal distribution function defined by 
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The corresponding standard normal density function  is 
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The functions Xϕ  and XΦ  are shown in figure: 

 
 
Thus only a standard normal table is required.  
Spreadsheet packages include a standard normal CDF function. 
 
Values of ( )zΦ are listed in Table1 forz ranging from 0 to −8.9 (part 
of the table shown, after Nowak, Collins: Reliability of structures) 
 
Table 1. The CDF of the standard normal variable ( )zΦ . 
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Values ( )zΦ for 0z > can also be obtained from Table 1 by 
applying the symmetry property of the normal distribution: 
( ) ( )1z zΦ = −Φ −  

The probability information for the standard normal random 
variable allows for the CDF and PDF values for any  normal 
random variable by a simple coordinate transformation. 
Let X be anynormal random variable and Z be a standard form of X.  
We can show that 

X XX Zµ σ= +  

The definition of CDF implies 
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The relationship between the PDF of any normal random variable, 
( )Xf x , with the PDF of the standard normal variable, ( )xφ : 

( ) ( ) 1X X
X X

X X X

d d x xf x F x
dx dx

µ µφ
σ σ σ

   − −
= = Φ =   

   
 

Using above eqs. the distribution functions for an arbitrary normal 
random variable (given Xµ and Xσ ) may be derived, using 
information  in Table 1.  
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CDFs and PDFs for normal random variables are shown in Fig 
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Important properties of the PDF and CDF functions for normal 
random variables are summarized as follows: 
 
1. The PDF ( )Xf x  is symmetric about the mean Xµ  

( ) ( )X X X Xf x f xµ µ+ = −  

The illustration is shown in Figure 

 
2. The symmetry property of 1. yields ( ) ( ) 1X X X XF x F xµ µ+ + − =  
 
 



   

J. Górski, M. Skowronek   •  Gdansk University of Technology •   Reliability Based Optimization • Distributions  15 

Logarithmic normal distribution 
Let the random variable lnY X=  be normally distributed 
( ),Y YN µ σ . 

The random variable X follows the logarithmic normal distribution, 
with parameters Y Rµ ∈ , 0Yσ >  
The log-normal density function is stated, for 0x >  

( )
2

ln1 1 1exp
22

µ
σσ π

  −
= −  

   

Y
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YY

xf x
x

 

Let X be log-normally distributed with the parameters Yµ  and Yσ . 
Note that Yµ  and Yσ  are not equal to Xµ  and Xσ . 
It can be shown that 

( ) 21exp
2X Y Yxµ µ σ = + 

 
  

( )22 1Y
X X eσσ µ= −  
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( ) ( ) ln Y
X
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xF x P X x µ
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 
 

The log-normal density functions with the parameters 
( ) ( ), 0,1Y Yµ σ = and (1/2, 1) are presented in Fig.. 
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Example  
Let the compressive strength X for concrete be log-normally 
distributed with the parameters ( ) ( ), 3 MPa, 0.2MPaY Yµ σ = .  
Then 

1exp 3 0.04 20.49 MPa
2Xµ

 = + ⋅ = 
 

 

( )2 2 220.49 1.0408 1 17.14 (MPa)Xσ = − =  
4.14 MPaXσ =  

and 
( ) ( )( ) ( ) 410 MPa ln10 3 / 2 3.487 2.4 10P X −≤ = Φ − = Φ − = ⋅  

The PDF and CDF may be calculated using functions ( )zφ  
and ( )zΦ  for a standard normal random variable Z as follows: 

( ) ( ) ( ) ( ) ( )ln lnX YF x P X x P X x P Y y F y= ≤ = ≤ = ≤ =  
Since Y is normally distributed  standard normal functions  apply. 
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Specifically 

( ) ( ) Y
X Y

Y

yF x F y µ
σ

 −
= = Φ 

 
 

where ( )lny x= , ( )lnY Xµ µ=  = mean value of ( )ln X ,  
and ( )lnY Xσ σ=  = standard deviation of ( )ln X . 
These parameters are functions of Xµ , Xσ  and XV  
by the following formulas: 

( ) ( )ln
2 2ln 1X XVσ = + , ( ) ( ) ( )

2
ln ln

1ln
2XX Xµ µ σ= −  

If XV  is less than 0.2, the following approximations are valid: 

( )
2 2
ln XX Vσ ≈ ,   ( ) ( )ln ln XXµ µ≈  

For the PDF function Eq. 2.12 gives 
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   − −
= = Φ =      

   
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Example 
Let X be a lognormal random variable whose mean value is 250,  
standard deviation is 30. Find ( )200XF  and ( )200Xf . 

30 0.12
250

X
X

X

V σ
µ

= = =  

( ) ( )2 2
ln ln 1 0.0143XX Vσ = + = ,      ( )ln 0.01196Xσ =  

( ) ( ) ( ) ( ) ( )2
ln ln

1ln ln 250 0.5 0.0143 5.51
2XX Xµ µ σ= − = − =  

( )
( ) ( )

( )

( )ln

ln

ln ln 200 5.51
200 0.0384

0.1196
µ

σ

 − − 
= Φ = Φ =       

X
X

X

x
F  

( )
( )

( ) ( )

( )

( )
( )

ln

ln ln

ln 1.771 0.0833200 0.00384
200 0.1196 23.92

µ
φ

σ σ

 − Φ −
= = = =  

 

X
X

X X

x
f

x
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Distributions – Extreme 
Nowak, A.S., Collins K.R. Reliability of structures. 
McGraw-Hill Higher Education 2000 
 
Extreme type I (Gumbel distribution, Fisher-Tippett type I) 
Extreme value distributions depict well probabilistic nature of the 
extreme values (largest or smallest) of some phenomenon over time.  
 
Consider n time intervals, e.g. years.  
There is a maximum value of some phenomenon (e.g. wind speed) 
during each interval (year). 
 
Determine the random model for those largest annual wind speeds.  
Let 1W , ... , nW  be the largest wind speeds in n years.  
Then ( )1 2max , , ... , nX W W W=  is an extreme Type I random 
variable.  
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The CDF and PDF for this random variable are 
( )

( )
for

x ue
XF x e x

α− −−= −∞ ≤ ≤ ∞  

( )
( ) ( )x u x ue

Xf x e e
α αα

− − − −−=  
where u and a are distribution parameters.  
 

 
FIGURE. PDF of an extreme Type I random variable. 
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The mean and standard deviation for this variable may be obtained 
by the following approximations (Benjamin and Cornell, 1970): 
 

0.577
X uµ

α
≈ +    1.282

Xσ
α

≈  

 
Thus if the mean and standard deviation are known: 
 

1.282
X

α
σ

≈ ,   0.45X Xu µ σ≈ −  
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Extreme type II (Frechet distribution, Fisher-Tippett type II) 
 
Extreme Type II variable may model the maximum seismic load 
applied to a structure. The CDF and PDF are 

( )
( )/

for 0
ku xe

XF x e x
−−= ≤ ≤ ∞ , ( ) ( )

1
/ k

k
u x

X
k uf x e
u x

+
− =  

 
 

where u and k are distribution parameters.  
 

 
FIGURE. PDF for an extreme Type II random variable 
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The mean and standard deviation is given: 
11 for 1X u k
k

µ  = Γ − > 
 

 

2 2 22 11 1 for 2X u k
k k

σ     = Γ − −Γ − >        
 

The coefficient of variation, XV  is a function of k only.  
 
Graphs exist to calculate XV  for any k (see, for example, Ang and 
Tang, 1984) 
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Extreme Type III (Weibull Distribution) 
The extreme Type III distribution is defined by three parameters. 
Two variants, for the largest and the smallest values exist. 
The CDF of the largest values is defined by 

( ) for
kw x

w u
XF x e x w

− − − = ≤  
where w, u, and k are parameters.  
The mean and variance are 

( ) 11X w w u
k

µ  = − − Γ + 
 

 

( )22 22 11 1X w u
k k

σ     = − Γ − −Γ −        
 

The CDF of the smallest values is defined by 

( ) 1 for
kx

u
XF x e x

ε
ε ε

− − − = − ≥  
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where u, ε , and k are the parameters.  
The mean and variance of the smallest values may be calculated by 
the following formulas: 

( ) 11µ ε ε  = − − Γ + 
 

X u
k

 

( )22 22 11 1σ ε     = − Γ − −Γ −        
X u

k k
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Poisson distribution 
The Poisson variable of a discrete probability distribution may be 
used to determine the PMF (probability mass function)for the 
number of occurrences of an event in a time or space interval (0, t).  
 
Examples: the number of earthquakes within a certain time interval 
or the number of defects in a certain length of rod. 
 
The following assumptions behind the Poisson distribution must be 
checked prior to its use: 
• event occurrences  are independent, i.e. occurrence or 
nonoccurrence of an event in a prior time interval has no effect on 
the occurrence of this event in the time interval considered, 
 
• Two or more events cannot occur simultaneously. 
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Let a discrete random variable N represents the number of event 
occurrences within a prescribed time (or space) interval (0, t).  
Let v represent the mean occurrence rate of the event.  
This parameter is usually obtained from statistical data. 
 
The Poisson PMF function is defined  

( ) ( )in time 0,1,2, ... ,
!

n
vtvt

P N n t e n
n

−= = = ∞  

The mean and standard deviation of the random variable N are 
N vtµ =    N vtσ =  

Return period (or interval) τ also depicts a Poisson variable. 

It is simply the reciprocal of the mean occurrence rate v: 1
v

τ =  

Return period is a deterministic average time interval between 
occurrences of events. The actual time interval is random. 
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EXAMPLE 
The average occurrence rate of earthquakes (5 to 8 magnitudes) in a 
given region  is 2.14 earthquakes/year. Determine 
(a) The return period for earthquakes in this magnitude range. 
(b) The probability of exactly three earthquakes (magnitude 
between 5 and 8) in the next year. 
(c) The annual probability of an earthquake of 5 – 8 magnitude. 
 
Solution 
 
(a) The return period  

1 1 0.47 year
2.14v

τ = = =  

One earthquake of a given range occurs  approx. every six months. 
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(b) The probability of  three earthquakes precisely in the year after a 
given one is determined using with t = 1 and n = 3: 

( )
( )( ) ( )( )

3

2.14 1
2.14 1

3 in 1 year 0.192
3!

P N e−
 
 = = =  

 
(c) We derive the annual probability of at least one earthquake. 
Therefore P (at least one earthquake) = 1 −P(no earthquakes), so 

( ) ( )( ) ( )( ) ( )( )
0

2.14 1 2.14 12.14 1
1 1 1 0.88

0!
P N e e− −  ≥ = − = − =  

 


