RANDOM VECTORS

P. Thoft-Christensen, M. J. Baker Structural reliability theory and its applications, 1982
The concept of a random variable is basically used in a onedimensional sense.

A random variable is a real-valued function $X: \Omega \rightarrow R$ mapping the sample space Ω into the real line R.

It can easily be extended to a vector-valued random variable $\bar{X}: \Omega \rightarrow R^{n}$ called a random vector (random n-tuple), where $R^{n}=R \times R \times \ldots \times R$
An n-dimensional random vector $\bar{X}: \Omega \rightarrow R^{n}$ is an ordered set $\bar{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ of one-dimensional random variables $X_{i}: \Omega \rightarrow R, i=1, \ldots, n$.

All $X_{1}, X_{2}, \ldots, X_{n}$ are defined on the same sample space Ω.
Let X_{1} and X_{2} be two random variables. The range of the random vector $\bar{X}=\left(X_{1}, X_{2}\right)$ is then a subset of R^{2} as shown in figure. The range of an n-dimensional random vector is a subset of R^{n}.

Consider again two random variables X_{1} and X_{2} and their corresponding distribution functions $F_{X_{1}}$ and $F_{X_{2}}$.
The latter give no information on the joint behaviour of X_{1} and X_{2}. Thus joint probability distribution function
$F_{X_{1}, X_{2}}: R^{2} \rightarrow R$ is defined:
$F_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=P\left(\left(X_{1} \leq x_{1}\right) \cap\left(X_{2} \leq x_{2}\right)\right)$
we use $F_{\bar{X}}$ for $F_{X_{1}, X_{2}}$, where $\bar{X}=\left(X_{1}, X_{2}\right)$
The definition can be generalized to the n-dimensional case
$F_{\bar{X}}(\bar{x})=P\left(\bigcap_{i=1}^{n}\left(X_{i} \leq x_{i}\right)\right)$
where $\bar{X}=\left(X_{1}, \ldots, X_{n}\right)$ and $\bar{X}=\left(\bar{x}_{1}, \ldots, \bar{X}_{n}\right)$
Discrete or continuous random vectors exist, the latter of our concern only.

Our analysis is restricted to two-dimensional random vectors only, to be generalized easily.

The joint probability density function for the random vector $\bar{X}=\left(X_{1}, X_{2}\right)$ is given

$$
f_{\bar{X}}(\bar{x})=\frac{\partial^{2}}{\partial x_{1} \partial x_{2}} F_{\bar{X}}(\bar{x})
$$

The inverse formula is

$$
F_{\bar{x}}(\bar{x})=\int_{-\infty}^{x_{1}} \int_{-\infty}^{x_{1}} f_{\bar{x}}\left(x_{1}^{\prime}, x_{2}^{\prime}\right) d x_{1}^{\prime} d x_{2}^{\prime}
$$

The following functions exist

$$
\begin{aligned}
& f_{X_{1}}\left(x_{1}\right)=\int_{-\infty}^{\infty} f_{\bar{x}}\left(x_{1}, x_{2}\right) d x_{2} \\
& f_{X_{2}}\left(x_{2}\right)=\int_{-\infty}^{\infty} f_{\bar{X}}\left(x_{1}, x_{2}\right) d x_{1}
\end{aligned}
$$

They are marginal density functions of a random vector X - onedimensional functions.

Example

Let a 2-dimensional discrete random vector $\bar{X}=\left(X_{1}, X_{2}\right)$
be defined on Ω by
$\mathrm{P}(4,3)=0.1$
$\mathrm{P}(4,4)=0.1$
$\mathrm{P}(5,3)=0.3$
$\mathrm{P}(5,4)=0.2$
$\mathrm{P}(6,3)=0.2$
$\mathrm{P}(6,4)=0.1$
The joint mass function $p_{\bar{X}}$, and the marginal mass functions $p_{X_{1}}$ and $p_{X_{2}}$ are illustrated in Figures below.

Note that

$$
p_{\bar{X}}\left(x_{1}, x_{2}\right) \neq p_{X_{1}}\left(x_{1}\right) p_{X_{2}}\left(x_{2}\right)
$$

CONDITIONAL DISTRIBUTIONS

Probability of occurrence of event E_{1} conditional upon the occurrence of event E_{2} was defined by

$$
P\left(E_{1} \mid E_{2}\right)=\frac{P\left(E_{1} \cap E_{2}\right)}{P\left(E_{2}\right)}
$$

The conditional probability mass function for two jointly distributed discrete random variables X_{1} and X_{2} is defined

$$
p_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right)=\frac{p_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)}{p_{x_{2}}\left(x_{2}\right)}=\frac{\text { joint density }}{\text { marginal density }}
$$

Continuous cases define the conditional probability density function

$$
f_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right)=\frac{f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)}{f_{X_{2}}\left(x_{2}\right)}
$$

where $f_{X_{2}}\left(x_{2}\right)>0$ and where $f_{X_{2}}$ is a marginal PDF.

Mind the discrete \mid continuous diversity: $p_{X_{1} \mid X_{2}}$ is a conditional mass function, $f_{X_{1} \mid X_{2}}$ a conditional density function.
Two random variables X_{1} and X_{2} are independent if

$$
f_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right)=f_{X_{1}}\left(x_{1}\right)
$$

Chich implies
$f_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right)=f_{X_{1}}\left(x_{1}\right) f_{X_{2}}\left(x_{2}\right)$
Integrating with respect to x_{1} gives conditional distribution function
$F_{X_{1}}\left(x_{1}\right)=\int_{-\infty}^{\infty} F_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right) f_{x_{2}}\left(x_{2}\right) d x_{2}$
similarly the x_{2} case.

Example

Consider two jointly distributed discrete random variables X_{1} and X_{2} again.

Note that
$p_{X_{1}, X_{2}}(5,3)=p_{X_{1}}(5) p_{X_{2}}(3)$
but for example
$p_{X_{1}, X_{2}}(6,4) \neq p_{X_{1}}(6) p_{X_{2}}(4)$
Therefore, X_{1} and X_{2} are dependent.

EXAMPLE

Consider a set of tests in which two quantities are measured: modulus of elasticity, X_{1}, and compressive strength, X_{2}. Since the values of these variables vary from test to test, as seen in Table, it is appropriate to treat them as random variables.

[^0]| Sample number | $\begin{aligned} & f_{c}^{\prime}, \\ & \text { psi } \end{aligned}$ | $\begin{aligned} & \text { E, } \\ & \text { psi } \end{aligned}$ | Sample number | $\begin{aligned} & f_{f}^{\prime}, \\ & \text { psi } \end{aligned}$ | $\begin{aligned} & \mathbf{E}, \\ & \text { psi } \end{aligned}$ | Sample number | $\begin{aligned} & f_{c}^{\prime}, \\ & \text { psi } \end{aligned}$ | $\begin{aligned} & \mathbf{E}, \\ & \text { psi } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 3,059 | 3,335,000 | 34 | 2,266 | | | | |
| 2 | 3,397 | 3,280,000 | 35 | 3,414 | 3,087,000 | 68 | 2,309 | 2,725,000 |
| 3 | 2.375 | 3,117,000 | 36 | 3273 | 3,122,000 | 69 | 3,062 | 3,317,000 |
| 4 | 3,803 | 3,271,000 | 37 | 2,397 | 2,933,000 | 70 | 2,336 | 2,995,000 |
| 5 | 2887 | 3,201000 | 38 | 3,629 | 3,522,000 | 71 | 2,325 | 2,512,000 |
| 6 | 12.77 | 3.067,000 | 39 | 2.797 | 3,042,000 | 72 | 2,600 | 2,840,000 |
| 7 | 3,187 | 3,252,000 | 40 | 3,164 | 2,890,000 | 73 | 2,197 | 2,636,000 |
| 8 | 2,804 | 2,814,000 | 41 | 2,063 | 2,421.000 | 74 | 3,635 | 3,304,000 |
| 9 | 1,563 | 2,354,000 | 42 | 2.521 | 3,074,000 | 75 | 1,938 | 2,483,000 |
| 10 | 2,258 | 2,606,000 | 43 | 2,643 | 2,962,000 | 76 | 2,557 | 2,618,000 |
| 11 | 2,733 | 3,233,000 | 44 | 4,072 | 3,814,000 | 77 | 3,566 | 3,990,000 |
| 12 | 2,156 | 2,854,000 | 45 | 2,249 | 2,920,000 | 78 | 2,432 | 3,112,000 |
| 13 | 2,752 | 3,020,000 | 46 | 3,107 | 3,485,000 | 79 | 2,90 | 3,408,000 |
| 14 | 2,933 | 3,080,000 | 47 | 3,009 | 2,942,000 | 80 | 2,776 | 2,963,000 |
| 15 | 2,821 | 3,455,000 | 48 | 2,452 | 2,901,000 | 81 | 3,239 | 3,497,000 |
| 16 | 2,209 | 2,464,000 | 49 | 2,361 | 2,917,000 | 82 | 2,393 | 2,960,000 |
| 17 | 2,774 | 2,853,000 | 50 | 2780 | 3,010,000 | 83 | 3,459 | 3,545,000 |
| 18 | 2,391 | 2,685,000 | 51 | 3,113 | 3,454,000 | 84 | 2,423 | 3,097,000 |
| 19 | 3,251 | 2,931,000 | 52 | 3,071 | 3,182,000 | 85 | 2,330 | 2,697,000 |
| 20 | 2,933 | 2,841,000 | 53 | 2,577 | 2,962,000 | 86 | 3,199 | 3,318,000 |
| 21 | 3,049 | 3,034,000 | 54 | 2,421 | 2,803,000 | 87 | 3,101 | 3,188,000 |
| 22 | 2,079 | 2,473,000 | 55 | 1,878 | 2,534,000 | 88 | 2,509 | 2,516,000 |
| 23 | 3,615 | 3,895,000 | 56 | 3,470 | 3,377,000 | 89 | 3,306 | 2,823,000 |
| 24 | 2,724 | 2,937,000 | 57 | 2,977 | 3,342,000 | 90 | 2,402 | 2,935,000 |
| 25 | 2,690 | 2,999,000 | 58 | 2,140 | 2,635,000 | 91 | 2,524 | 2,856,000 |
| 26 | 2,722 | 2,880,000 | 59 | 2,087 | 2,208,000 | 92 | 2.318 | 2,214,000 |
| 27 | 2,170 | 2,985,000 | 60 | 2,551 | $2,810,0000 \quad 93 \quad 3,884 \quad 3,089,000$ | | | |
| 28 | 2,509 | 2,790,000 | 61 | 4,025 | | | | |
| 29 | 2.172 | 2,663,000 | 62 | 2,303 | 2,362,000 | 95 | 2,983 | 3,308,000 |
| 30 | 3.450 | 3,236,000 | 63 | 1,650 | 2,335,000 | 96 | 2,877 | 2,965,000 |
| 31 | 3,729 | 3,201,000 | 64 | 2,683 | 2,823,000 | 97 | 2.192 | 2,553.000 |
| 32 | 1,807 | 2,344,000 | 65 | 3,280 | 3,214,000 | 98 | 2,631 | 3,179,000 |
| 33 | 2,438 | 3,144,000 | 66 | 3,801 | 3,060,000 | 99 | 2.456 | 2,904,000 |
| | | | | | | 100 | 2,725 | 3,150,000 |

Using the concept of histograms, we can get an idea of the general shape of the probability density function (PDF) for each individual variable and the joint probability density function and joint probability distribution function.
For each individual variable, we define appropriate intervals of values and then count the number of observations within each interval.
The resulting relative frequency histogram for each variable is shown in Figure

To consider the joint histogram, we need to define "twodimensional intervals".

For example, one "interval" would be for values of $X_{1}(E)$ between 3.0×10^{6} psi and 3.25×10^{6} psi and values of $X_{2}\left(f_{c}^{\prime}\right)$ between $2.5 \times 10^{6} \mathrm{psi}$ and $3.0 \times 10^{3} \mathrm{psi}$.

Looking at Table, we see that there are 15 samples that satisfy both requirements simultaneously; these samples are highlighted in the table.

Therefore, we have 15 observations in this interval out of 100 total observations, and the relative frequency value is $15 / 100=0.15$.

This value is indicated as the shaded block in Figure, the relative frequency histogram.

FIGURE. Relative frequency histogram for both X_{1} and X_{2}

A cumulative frequency histogram can also be constructed as shown

 in Figure.

For example, to find the cumulative value of the number of times that X_{1} is less than or equal to $3.0 \times 10^{6} \mathrm{psi}$ and X_{2} is less than or equal to 2.35×10^{3} psi, we add all the relative frequency values in

Figure that satisfy this requirement.
The result would be
$0+0.04+0.01+0+0.02+0.04+0.09+0.12=0.32$.

Functions of random variables

A continuous random variable Y which is a function $f(X)$ of a continuous random variable X is defined, the density function f_{Y} may determined given the density function f_{X} as follows
$f_{Y}(y)=f_{X}(x)\left|\frac{d x}{d y}\right|$
where $x=f^{-1}(y)$
Expanding the problem we have a random vector $\bar{Y}=\left(Y_{1}, Y_{1}, \ldots, Y_{n}\right)$ function $\bar{f}=\left(f_{1}, f_{1}, \ldots, f_{n}\right)$ of a random vector $\bar{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$, that is $Y_{i}=f_{i}\left(X_{1}, \ldots, X_{n}\right)$, where $i=1,2, \ldots, n$.

Each function $f_{i} i=1,2, \ldots, n$ is a one-to-one mapping, so inverse relations exist:
$X_{i}=g_{i}\left(Y_{1}, \ldots, Y_{n}\right)$

It can then be shown that $f_{\bar{Y}}(\bar{y})=f_{\bar{X}}(\bar{x})|J|$ where $\bar{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $\bar{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$

$$
J=\left|\begin{array}{ccc}
\frac{\partial x_{1}}{\partial y_{1}} & \ldots & \frac{\partial x_{1}}{\partial y_{n}} \\
\ldots & \ldots & \ldots \\
\frac{\partial x_{n}}{\partial y_{1}} & \ldots & \frac{\partial x_{n}}{\partial y_{n}}
\end{array}\right|
$$

is the Jacobian determinant.

Let the random variable, Y be a function f of the random vector $\bar{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$
It can be shown that
$E(Y)=\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} f(\bar{x}) f_{\bar{x}}(\bar{x}) d x_{1} \ldots d x_{n}$
where $\bar{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $f_{\bar{x}}(\bar{x})$ is the probability density function for the random vector \bar{X}.

CORRELATION

Basic Definitions

Let X_{1} and X_{2} be two random variables with means $\mu_{X_{1}}$ and $\mu_{X_{2}}$ and standard deviations $\sigma_{X_{1}}$ and $\sigma_{X_{2}}$.
The covariance of X_{1} and X_{2} is defined as

$$
\begin{aligned}
\operatorname{Cov}\left[X_{1}, X_{2}\right] & =E\left[\left(X_{1}-\mu_{X_{1}}\right)\left(X_{2}-\mu_{X_{2}}\right)\right]= \\
& =E\left[X_{1} X_{2}-X_{1} \mu_{X_{1}}-X_{2} \mu_{X_{2}}+\mu_{X_{1}} \mu_{X_{2}}\right]
\end{aligned}
$$

where $E[$] denotes expected value. Note that $\operatorname{Cov}\left[X_{1}, X_{2}\right]=\operatorname{Cov}\left[X_{2}, X_{1}\right]$.
If X and Yare continuous random variables then this formula becomes
$\operatorname{CoV}\left(X_{1}, X_{2}\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(x_{1}-\mu_{X_{1}}\right)\left(x_{2}-\mu_{X_{2}}\right) f_{X Y}(x, y) d x d y$

The coefficient of correlation (also called the correlation coefficient) between two random variables X_{1} and X_{2} is defined as
$\rho_{X_{1} X_{2}}=\frac{\operatorname{Cov}\left[X_{1}, X_{2}\right]}{\sigma_{X_{1}} \sigma_{X_{2}}}$
It can be proven that the coefficient of correlation is limited to values between -1 and 1 inclusive, that is
$-1 \leq \rho_{X_{1} X_{2}} \leq 1$
The value of $\rho_{X_{1} X_{2}}$ indicates the degree of linear dependence between the two random variables X and Y.

If $\rho_{X_{1} X_{2}}$ is close to 1 , then X and Y are linearly correlated.
If $\rho_{X_{1} X_{2}}$ is close to zero, then the two variables are not linearly related to each other.
Note the emphasis on the word "linearly."

Two random variables X_{1} and X_{2} are uncorrelated if $\rho_{X_{1} X_{2}}=0$. The following identity
$\operatorname{Cov}\left[X_{1}, X_{2}\right]=E\left[\left(X_{1}-\mu_{X_{1}}\right)\left(X_{2}-\mu_{X_{2}}\right)\right]=E\left[X_{1} \cdot X_{2}\right]-E\left[X_{1}\right] E\left[X_{2}\right]$ is specified in the case of uncorrelated random variables X_{1} and X_{2}
$E\left[X_{1} \cdot X_{2}\right]=E\left[X_{1}\right] E\left[X_{2}\right]$
When $\rho_{X_{1} X_{2}}$ is close to zero, it does not mean that there is no dependence at all; there may be some nonlinear relationship between the two variables.
Figure 2.36 illustrates the concept of correlation.

Uncorrelated random variables

Linearly correlated random variables, $\rho<0$

Linearly correlated random variables, $\rho>0$

Linearly perfectly correlated random variables, $\rho=1$

Linearly correlated random variables, $\rho=-1$

Nonlinearly correlated random variables

Examples of correlated and uncorrelated random variables.

It is interesting to note what happens when two variables are uncorrelated (i.e., $\rho_{X_{1} X_{2}}=0$).
This implies that the covariance is equal to zero.
When
$\operatorname{CoV}\left[X_{1}, X_{2}\right]=0$
$E\left(X_{1} X_{2}\right)=\mu_{X_{1}} \mu_{X_{2}}$
the expected value of the product $X_{1} X_{2}$ is the product of the expected values.

It is important to emphasize that the terms "statistically independent" and "uncorrelated" are not always synonymous.

Statistically independent is a much stronger statement than uncorrelated.
If two variables are statistically independent, then they must also be uncorrelated.

However, the converse is not, in general, true. If two variables are uncorrelated, they are not necessarily statistically independent.
The foregoing comments on correlation pertain to two random variables.

When dealing with a random vector, a covariance matrix is used to describe the correlation between all possible pairs of the random variables in the vector.
For a random vector with n random variables, the covariance matrix, [C], is defined as

$$
[C]=\left[\begin{array}{cccc}
\operatorname{Cov}\left[X_{1}, X_{1}\right] & \operatorname{Cov}\left[X_{1}, X_{2}\right] & \ldots & \operatorname{Cov}\left[X_{1}, X_{n}\right] \\
\operatorname{Cov}\left[X_{2}, X_{1}\right] & \operatorname{Cov}\left[X_{2}, X_{2}\right] & \ldots & \operatorname{Cov}\left[X_{2}, X_{n}\right] \\
\ldots & \ldots & \ldots & \ldots \\
\operatorname{Cov}\left[X_{n}, X_{1}\right] & \operatorname{Cov}\left[X_{n}, X_{2}\right] & \ldots & \operatorname{Cov}\left[X_{n}, X_{n}\right]
\end{array}\right]
$$

Note that $\operatorname{Cov}\left[X_{i}, X_{i}\right]=\operatorname{Var}\left[X_{i}\right]$.
In some cases, it is more convenient to work with a matrix of coefficients of correlation [p] defined as
$[p]=\left[\begin{array}{cccc}\rho_{11} & \rho_{12} & \cdots & \rho_{1 n} \\ \rho_{21} & \rho_{22} & \cdots & \rho_{2 n} \\ \cdots & \cdots & \cdots & \cdots \\ \rho_{n 1} & \rho_{n 2} & \cdots & \rho_{n n}\end{array}\right]$
Note two things about the matrices [C] and [p].
First, they are symmetric matrices.
Second, the terms on the main diagonal of the [C] matrix can be simplified using the fact that $\operatorname{Cov}\left(X_{i}, X_{i}\right)=\operatorname{Var}\left(X_{i}\right)=\sigma_{X_{i}}^{2}$.

The diagonal terms in $[p]$ are equal to 1 .

If all n random variables are uncorrelated, then the off-diagonal

 terms are equal to zero and the covariance matrix becomes a diagonal matrix of the form$[C]=\left[\begin{array}{cccc}\sigma_{X_{1}}^{2} & 0 & \ldots & 0 \\ 0 & \sigma_{X_{2}}^{2} & \ldots & 0 \\ \ldots & \ldots & \ldots & \ldots \\ 0 & 0 & \ldots & \sigma_{X_{n}}^{2}\end{array}\right]$
The matrix $[\mathrm{p}]$ becomes a diagonal matrix with 1's on the diagonal

Statistical Estimate of the Correlation Coefficient

In practice we often do not know the underlying distributions of the variables we are observing, and thus we have to rely on test data and observations to estimate parameters.
When we have observed data for two random variables X and Y, we can estimate the correlation coefficient as follows. Assume that there are n observations $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ of variable X and n observations $\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ of variable Y.
The correlation coefficient can be calculated using
$\hat{\rho}=\frac{1}{n-1} \frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{s_{X} s_{Y}}=\frac{1}{n-1} \frac{\sum_{i=1}^{n} x_{i} y_{i}-n \bar{x} \bar{y}}{s_{X} s_{Y}}$
where \bar{x} and \bar{y} are sample means and s_{X} and s_{y} sample standard deviations

MULTIVARIATE DISTRIBUTIONS

Animportant joint density function of two continuous random variables X_{1} and X_{2} is the bivariate normal density function

$$
\begin{aligned}
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)= & \frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}} \exp \left[\frac { - 1 } { 2 (1 - \rho ^ { 2 }) } \left(\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)^{2}\right.\right. \\
& \left.\left.-2 \rho\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)\left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)+\left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)^{2}\right)\right]
\end{aligned}
$$

where $-\infty \leq x_{1} \leq \infty,-\infty \leq x_{2} \leq \infty$, and μ_{1}, μ_{2} are the means σ_{1}, σ_{2} the standard deviations and ρ the coefficient of X_{1}, X_{2}.
The multivariate normal density function is defined
$f_{\bar{x}}(\bar{x})=\frac{1}{(2 \pi)^{n / 2}} \frac{1}{C^{1 / 2}} \exp \left[-\frac{1}{2} \sum_{i, j=1}^{n}\left(x_{i}-\mu_{j}\right) M_{i j}\left(x_{j}-\mu_{i}\right)\right]$
$\bar{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right), M=C^{-1}$, and where C is the covariance matrix.

[^0]: TABLE
 Values of modulus of elasticity and compressive strength

