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RANDOM VECTORS 
P. Thoft-Christensen, M. J. Baker  
Structural reliability theory and its applications, 1982 

The concept of a random variable is basically used in a one-
dimensional sense. 
 
A random variable is a real-valued function :X RΩ→   
mapping the sample space Ω  into the real line R.  
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It can easily be extended to a vector-valued random variable 
: nX RΩ→  called a random vector (random n-tuple),where 

...nR R R R= × × ×   
An n-dimensional random vector : nX RΩ→  is an ordered set 

( )1 2, ,..., nX X X X=  of one-dimensional random variables 
: , 1,...,iX R i nΩ→ = .  

All 1 2, ,..., nX X X are defined on the same sample space Ω . 

Let 1X  and 2X  be two random variables. The range of the random 
vector ( )1 2,X X X=  is then a subset of 2R  as shown in figure.  
The range of an n-dimensional random vector is a subset of nR . 
 
Consider again two random variables 1X  and 2X and their 
corresponding distribution functions 

1XF  and 
2XF .  

The latter give no information on the joint behaviour of 1X and 2X . 
Thus joint probability distribution function 
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1 2

2
, :X XF R R→  is defined: 

( ) ( ) ( )( )
1 2, 1 2 1 1 2 2,X XF x x P X x X x= ≤ ≤  

we use XF  for 
1 2,X XF , where ( )1 2,X X X=   

The definition can be generalized to the n-dimensional case 

( ) ( )
1

n

i iX
i

F x P X x
=

 = ≤ 
 


 

where ( )1,..., nX X X=  and ( )1,..., nx x x=  

Discrete or continuous random vectors exist, the latter of our 
concern only.  
 
Our analysis is restricted to two-dimensional random vectors only, 
to be generalized easily. 
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The joint probability density function for the random vector 
( )1 2,X X X=  is given 

( ) ( )
2

1 2
X Xf x F x

x x
∂

=
∂ ∂

 

The inverse formula is 

( ) ( )1 1

1 2 1 2,
x x

X XF x f x x dx dx
−∞ −∞

′ ′ ′ ′= ∫ ∫  

The following functions exist 

( ) ( )
1 1 1 2 2,X Xf x f x x dx

∞

−∞
= ∫  

( ) ( )
2 2 1 2 1,X Xf x f x x dx

∞

−∞
= ∫  

They are marginal density functions of a random vector X – one-
dimensional functions. 
Example 
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Let a 2-dimensional discrete random vector ( )1 2,X X X=   
be defined on Ω  by 
P(4, 3) = 0.1 
P(4, 4) = 0.1 
P(5, 3) = 0.3 
P(5, 4) = 0.2 
P(6, 3) = 0.2 
P(6, 4) = 0.1 
The joint mass function Xp , and the marginal mass functions 

1Xp
and 

2Xp  are illustrated in Figures below. 
 
Note that  
 

( ) ( ) ( )
1 21 2 1 2, ≠ X XXp x x p x p x  
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CONDITIONAL DISTRIBUTIONS 
Probability of occurrence of event 1E  conditional upon  
the occurrence of event 2E  was defined by 

( ) ( )
( )
1 2

1 2
2

P E E
P E E

P E
∩

=  

The conditional probability mass function for two jointly distributed 
discrete random variables 1X  and 2X  is defined  

( ) ( )
( )

1 2

1 2

2

, 1 2
1 2

2

,X X
X X

X

p x x
p x x

p x
=

joint density
marginaldensity

=  

Continuous cases define the conditional probability density function 

( ) ( )
( )

1 2

1 2

2

, 1 2
1 2

2

,X X
X X

X

f x x
f x x

f x
=  

where ( )
2 2 0Xf x >  and where 

2Xf  is a marginal PDF.  
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Mind  the discrete   continuous diversity:
1 2X Xp  is a conditional 

mass function, 
1 2X Xf  a conditional density function. 

Two random variables 1X  and 2X  are independent if 

( ) ( )
11 2 1 2 1XX Xf x x f x=  

Chich implies 

( ) ( ) ( )
1 21 2 1 2 1 2= X XX Xf x x f x f x  

Integrating with respect to 1x  gives conditional distribution function 

( ) ( ) ( )
1 21 21 1 2 2 2X xX XF x F x x f x dx

∞

−∞
= ∫  

similarly the x2 case. 
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Example  
Consider two jointly distributed discrete random variables 

1X  and 2X  again.  
 
Note that 

( ) ( ) ( )
1 2 1 2, 5,3 5 3X X X Xp p p=  

but for example 
( ) ( ) ( )

1 2 1 2, 6,4 6 4X X X Xp p p≠  

Therefore, 1X  and 2X are dependent. 
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EXAMPLE 
Consider a set of tests in which two quantities are measured: 
modulus of elasticity, 1X , and compressive strength, 2X .  
Since the values of these variables vary from test to test, as seen in 
Table, it is appropriate to treat them as random variables.  
 
 
 
 
 
 
 
 
 
TABLE  
Values of modulus of elasticity and compressive strength 
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Using the concept of histograms, we can get an idea of the general 
shape of the probability density function (PDF) for each individual 
variable and the joint probability density function and joint 
probability distribution function.  
For each individual variable, we define appropriate intervals of 
values and then count the number of observations within each 
interval.  
The resulting relative frequency histogram for each variable is 
shown in Figure  
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To consider the joint histogram, we need to define "two-
dimensional intervals”. 
 
For example, one "interval" would be for values of ( )1X E  between 

63.0 10×  psi and 63.25 10×  psi and values of ( )2 cX f ′  between 
62.5 10×  psi and 33.0 10×  psi.  

 
Looking at Table, we see that there are 15 samples that satisfy both 
requirements simultaneously; these samples are highlighted in the 
table.  
 
Therefore, we have 15 observations in this interval out of 100 total 
observations, and the relative frequency value is 15/100 = 0.15.  
 
This value is indicated as the shaded block in Figure, the relative 
frequency histogram.  
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FIGURE. Relative frequency histogram for both 1X  and 2X  
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A cumulative frequency histogram can also be constructed as shown 
in Figure.  
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For example, to find the cumulative value of the number of times 
that 1X  is less than or equal to 63.0 10×  psi and 2X  is less than or 
equal to 32.35 10×  psi, we add all the relative frequency values in  
 
Figure that satisfy this requirement.  
 
The result would be  
 
0 + 0.04 + 0.01 + 0 + 0.02 + 0.04 + 0.09 + 0.12 = 0.32. 
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Functions of random variables 
A continuous random variable Y which is a function ( )f X  of a 
continuous random variable X  is defined,  the density function Yf  
may determined given the density function Xf  as follows 

( ) ( )Y X
dxf y f x
dy

=  

where ( )1x f y−=   
Expanding the problem we have a random vector ( )1 1, ,..., nY Y Y Y=  - 
function ( )1 1, ,..., nf f f f=  of a random vector ( )1 2, ,..., nX X X X= , 
that is ( )1,...,i i nY f X X= , where i = 1, 2, ... ,n.  
 
Each function if  i = 1, 2, ... , n is a one-to-one mapping,  
so inverse relations exist:   

( )1,...,i i nX g Y Y=  
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It can then be shown that   ( ) ( )Y Xf y f x J=  
where ( )1 2, ,..., nx x x x=  and ( )1 2, ,..., ny y y y=  

1 1

1

1

...

... ... ...

...

n

n n

n

x x
y y

J
x x
y y

∂ ∂
∂ ∂

=
∂ ∂
∂ ∂

 is the Jacobian determinant. 

Let the random variable, Y be a function f of the random vector 
( )1 2, ,..., nX X X X=  

It can be shown that 

( ) ( ) ( ) 1... ... nXE Y f x f x dx dx
∞ ∞

−∞ −∞
= ∫ ∫  

where ( )1 2, ,..., nx x x x= and ( )Xf x is the probability density 
function for the random vector X . 
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CORRELATION 
Basic Definitions 
 
Let 1X  and 2X  be two random variables with means 

1Xµ  and 
2Xµ  

and standard deviations 
1Xσ  and 

2Xσ .  
The covariance of 1X  and 2X  is defined as 

[ ] ( )( )1 2

1 2 1 2

1 2 1 2

1 2 1 2

Cov , X X

X X X X

X X E X X

E X X X X

µ µ

µ µ µ µ

 = − − = 
 = − − + 

 

where E[ ] denotes expected value.  
Note that [ ] [ ]1 2 2 1Cov , Cov ,X X X X= .  
If X and Yare continuous random variables then this formula 
becomes 

( ) ( )( ) ( )
1 21 2 1 2CoV , ,X X XYX X x x f x y dxdyµ µ

∞ ∞

−∞ −∞
= − −∫ ∫  
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The coefficient of correlation (also called the correlation 
coefficient) between two random variables 1X  and 2X  is defined as 

[ ]
1 2

1 2

1 2Cov ,
=X X

X X

X X
ρ

σ σ
 

It can be proven that the coefficient of correlation is limited to 
values between −1 and 1 inclusive, that is 

1 2
1 1X Xρ− ≤ ≤   

The value of 
1 2X Xρ  indicates the degree of linear dependence 

between the two random variables X and Y.  
If 

1 2X Xρ  is close to 1, then X and Y are linearly correlated.  

If 
1 2X Xρ  is close to zero, then the two variables are not linearly 

related to each other.  
Note the emphasis on the word "linearly." 
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Two random variables 1X  and 2X  are uncorrelated if 
1 2

0X Xρ = . 
The following identity 

[ ] ( )( ) [ ] [ ] [ ]
1 21 2 1 2 1 2 1 2Cov , X XX X E X X E X X E X E Xµ µ = − − = ⋅ − 

is specified in the case of uncorrelated random variables 1X  and 2X  

[ ] [ ] [ ]1 2 1 2E X X E X E X⋅ =  

When 
1 2X Xρ  is close to zero, it does not mean that there is no 

dependence at all; there may be some nonlinear relationship 
between the two variables.  
Figure 2.36 illustrates the concept of correlation. 
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Examples of correlated and uncorrelated random variables. 
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It is interesting to note what happens when two variables are 
uncorrelated (i.e., 

1 2
0X Xρ = ).  

This implies that the covariance is equal to zero.  
When  

[ ]1 2CoV , =0X X  
( )

1 21 2 X XE X X µ µ=   
the expected value of the product 1 2X X  is the product of the 
expected values. 
 
It is important to emphasize that the terms "statistically 
independent" and ''uncorrelated" are not always synonymous.  
 
Statistically independent is a much stronger statement than 
uncorrelated.  
If two variables are statistically independent, then they must also be 
uncorrelated.  
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However, the converse is not, in general, true.  
If two variables are uncorrelated, they are not necessarily 
statistically independent. 
The foregoing comments on correlation pertain to two random 
variables.  
 
When dealing with a random vector, a covariance matrix is used to 
describe the correlation between all possible pairs of the random 
variables in the vector.  
For a random vector with n random variables, the covariance 
matrix, [C], is defined as 

[ ]

[ ] [ ] [ ]
[ ] [ ] [ ]

[ ] [ ] [ ]

1 1 1 2 1

2 1 2 2 2

1 2

Cov , Cov , ... Cov ,
Cov , Cov , ... Cov ,

... ... ... ...
Cov , Cov , ... Cov ,

n

n

n n n n

X X X X X X
X X X X X X

C

X X X X X X

 
 
 =
 
 
 
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Note that [ ] [ ]Cov , Vari i iX X X= .  
In some cases, it is more convenient to work with a matrix of 
coefficients of correlation [p] defined as 

[ ]

11 12 1

21 22 2

1 2

...

...
... ... ... ...

...

n

n

n n nn

p

ρ ρ ρ
ρ ρ ρ

ρ ρ ρ

 
 
 =
 
 
 

 

Note two things about the matrices [C] and [p].  
 
First, they are symmetric matrices.  
 
Second, the terms on the main diagonal of the [C] matrix can be 
simplified using the fact that ( ) ( ) 2Cov , Var

ii i i XX X X σ= = .  
 
The diagonal terms in [p] are equal to 1.  
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If all n random variables are uncorrelated, then the off-diagonal 
terms are equal to zero and the covariance matrix becomes a 
diagonal matrix of the form 

[ ]
1

2

2

2

2

0 ... 0
0 ... 0
... ... ... ...
0 0 ...

n

X

X

X

C

σ
σ

σ

 
 
 =
 
 
 

 

The matrix [p] becomes a diagonal matrix with 1's on the diagonal 
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Statistical Estimate of the Correlation Coefficient 
In practice we often do not know the underlying distributions of the 
variables we are observing, and thus we have to rely on test data and 
observations to estimate parameters.  
When we have observed data for two random variables X and Y, we 
can estimate the correlation coefficient as follows. 
Assume that there are n observations { }1 2, ,..., nx x x  of variable X and 
n observations { }1 2, ,..., ny y y  of variable Y.  
The correlation coefficient can be calculated using 

( )( )
1 11 1ˆ

1 1

n n

i i i i
i i

X Y X Y

x x y y x y nx y

n s s n s s
ρ = =

− − −
= =

− −

∑ ∑
 

where x  and y  are sample means and Xs  and ys sample standard 
deviations  
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MULTIVARIATE DISTRIBUTIONS 
Animportant joint density function of two continuous random 
variables 1X  and 2X is the bivariate normal density function 

( ) ( )1 2

2

1 1
, 1 2 22

11 2

2

1 1 2 2 2 2

1 2 2

1 1, exp
2 12 1

2

X X
xf x x

x x x

µ
σρπσ σ ρ

µ µ µρ
σ σ σ

  − −
=   −−   

    − − −
− +           

 

where 1x−∞ ≤ ≤ ∞ ,   2x−∞ ≤ ≤ ∞ , and 1µ , 2µ  are the means 1σ , 2σ  
the standard deviations and ρ  the coefficient of 1X , 2X . 
The multivariate normal density function is defined  

( )
( )

( ) ( )2 1 2
, 1

1 1 1exp
22

µ µ
π =

 
= − − − 

 
∑

n

i j ij j iX n
i j

f x x M x
C

 

( )1 2, ,..., nx x x x= , 1−=M C , and where C  is the covariance matrix. 


