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MONTE CARLO METHODS 
Melchers R.E., Structural reliability analysis and prediction. John Wiley & 
Sons 2001 
 
The Monte Carlo method has for long been recognized as the most exact 
method for all the calculations that require the knowledge of the probability 
distribution of response of uncertain systems to uncertain inputs.  
A general idea of the Monte Carlo method can be summarized as follows. 
Suppose that the following integral is evaluated 

( )
D

I g dx= ∫ x  (5.1) 

where D is a region in high-dimensional space and ( )g x  is the target function 
of interest. If independent and identically distributed random samples 

1,..., mx x , uniformly simulated from D, an approximation of I can be obtained 
as 

( ) ( )1
1ˆ ...m mI g g
m

= + +  x x  (5.2) 
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According to the law of large numbers the average of many independent 
random variables with common mean and finite variances tends to stabilize at 
their common mean 

ˆlim , with probability 1mm
I I

→∞
=  (5.3) 

Its convergence rate can be assessed by the central limit theorem 

( ) ( )2ˆ 0,mm I I N σ− →  (5.4) 

where 2 var[ ( )]gσ = x .  
Hence, the error term of the Monte Carlo approximation is 1/2( )O m− , 
regardless of the dimensionality of x.  
In the case of structural reliability analysis, this means, that each random 
variable vector ix  is randomly generated to obtain sample value ˆ ix , and then 
the limit state function ˆ( ) 0iG =x  is checked.  
If the limit state is violated, i.e. ˆ( ) 0iG ≤x , the structure or structural element 
has “failed”.  
The experiment is repeated many times.  
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If N trials are conducted, the probability of failure is given approximately by  

( )( )ˆ 0i
f

n G
p

N
≤

=
x

 (5.5) 

where ˆ( ( ) 0)in G ≤x  denotes the number of trials n for which ˆ( ) 0iG ≤x . The 
number N of trials is related to the accuracy for fp  estimation. 
To apply the Monte Carlo techniques to structural reliability it is necessary 
(Melchers 1999): 
1) to develop simulation technique for numerical sampling of the basic 
variables ˆ ix , 
2) to consider the effect of the complexity of calculating the limit state 
function ˆ( )iG x  and the number of basic variables on the simulation 
techniques used, 
3) to determine the amount of sampling required to obtain a reasonable 
estimate of the structure probability of failure fp . 
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Direct Monte Carlo method 
The direct sampling or Simple Random Sampling is the simplest Monte Carlo 
approach in solving reliability problems. It can be graphically presented as so-
called ant-hill (see Fig 1). It does not apply any reduction method to the 
generated set of variates, which allows for the statistical description of the 
structural behaviour without scarifying the description quality. Thus, this 
method can be fast enough for the reliability analysis of structures with a 
reduced number of degree of freedom but it is too costly for any large 
structure analysis.  

 
Fig. 1. Simple random sampling 
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In this case the probability of structure failure  

( ) ( )
( ) 0

0 ...f
G

p P G f dx
≤

= ≤ =   ∫ ∫ X
X

X x  (5.6) 

may be expressed as (Melchers 1999)  

( ) ( )... 0fp J I G f d= = ≤  ∫ ∫ XX x x  (5.7) 

where [ ]I ⋅  is an indicator function which equals 1 if [ ]⋅  is “true” and 0 if [ ]⋅  
is “false”. Thus, the indicator function identifies the integration domain.  
The unbiased estimator of the expected value J and the estimator of standard 
deviation can be calculated as follows: 

( )1
1

1 ˆ 0
N

f i
i

p J I G
N =

≈ = ≤  ∑ x  (5.8) 

( )
1

2
( 0)2

2
1

1 var 0
N

I G
J

i
I G

N N
σ

σ ≤

=

= ≤ =  ∑  (5.9) 

where ˆ ix  represents the i-th vector of random observations from ( ).f ⋅X   
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The standard deviation of 1J  and hence of the Monte Carlo estimate fp  (5.8) 
varies inversely with 1/2N  (see also Eq. (5.4)) These observations are 
important in determining the number of simulations required for a particular 
level of confidence.  
On the basis of the central limit theorem, the following confidence statement 
can be made concerning the number of 1J  trails in which failure are possible 
(see Melchers 1999) 

( )1P k J k Cσ µ σ− < − < + =  (5.10) 

where µ  is the expected value of 1J  given by Eq. (5.8) and σ  is standard 
deviation expressed by (5.9).  
The number N of simulations for a given confidence level C in the failure 
probability fp  can also be obtained from (see Melchers 1999)  

( )ln 1

f

C
N

p
− −

>  (5.11) 

Using Eq. (5.11) for a 95% confidence level and 310fp −=  the required 
number of simulations is more than 3000. 



    

J. Górski, M. Skowronek   •   Gdansk University of Technology  •  Reliability Based Optimization •  Monte Carlo methods 7 

It is not convenient to apply the above theoretical rules to the accuracy 
analysis in any particular Monte Carlo calculations. According to Melchers 
(1999) a useful tool for this purpose is to plot progressive results of the 
estimate of fp  and variance 

1

2
Jσ  (Eqs. (5.8) and (5.9) respectively). Such 

plots (see Fig. 2) will show that these measures decline when the number of 
samples rises and that a degree of stability is reached at a sufficiently high 
number of samples.  
 

 
Fig. 2. Convergence of probability estimate with increasing sample size 
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The results may also be represented as a cumulative distribution function 

( )GF g  (see Fig 3). The estimate of fp  in Eq. (5.8) may be improved by 
fitting an appropriate distribution function through the points for which 

( ) 0G ⋅ ≤ , i.e. the left-hand tail in Fig. 3 (Melchers, 1999).  
 

 
Fig. 3. Use of fitted cumulative distribution function to estimate 1D  
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Stratified sampling and Latin Hypercube Sampling 
The Stratified Sampling and Latin Hypercube Sampling techniques have been 
proposed to reduce the Monte Carlo calculation.  
In the case of the Stratified Sampling method the whole space of the variable 
is divided into subsets of equal probability. The acquired data are generated 
from each subset and an analysis is performed with corresponding sets of 
points (Fig. 4). A sample from inside the subset is taken either from the 
middle or randomly.  

 
Fig. 4. Stratified Sampling 
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It should be stressed that the Direct Monte Carlo and the Stratified Sampling 
Method can also be applied to those cases in which the limit state function 

( )G X  is not known.  
The Latin Hypercube Sampling method combines at random each subset 
number from each random variable with other subset numbers of the 
remaining variables only once (see Fig. 5).  
 

 
Fig. 5. Latin Hypercube Sampling 
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Importance sampling and search techniques 
The integral (5.6) can be written using the indicator function [ ]I ⋅  as 
(Melchers 1999) 

( ) ( )
( ) ( )... 0

f
J I G h d

h
= ≤  ∫ ∫ X

V
V

x
X x x

x
 (5.12) 

where ( )hV x  is termed the “importance-sampling” probability density 
function.  
An unbiased estimate of J is given by (cf. (5.8)) 

( ) ( )
( )2

1

ˆ1 ˆ 0
ˆ

N
i

f i
i i

f
p J I G

N h=

  ≈ = ≤   
  

∑ X

V

v
v

v
 (5.13) 

where ˆ iv  is a vector of sample values taken from the importance sampling 
function ( )hV v . 
For a given level of confidence, far fewer sample points of ( )hV v  are required 
than in the direct Monte Carlo method with ( )fX x  as sampling distribution. 
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The derivation of optimal ( )hV v  functions is difficult and they are often 
selected on a priori grounds.  
Sometimes it is possible to estimate the point *x , known as the point of 
“maximum likelihood” or the “design point”, with ( )fX x  having the largest 
influence on the limit state function (see Fig. 6).  
The point *x  may be found by a direct application of the numerical 
maximization techniques or the search algorithms. Once *x  is identified, the 
most common approach of choosing ( )hV v  is to use the distribution ( )fX x  
shifted so that its mean is at *.x   

 
Fig. 6. Importance sampling function [ ]IV  in x space. 
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Adaptive sampling techniques apply modification of ( )hV v , depending on the 
information being obtained from the search process (see Melchers 1999).  
First the initial location of ( )hV v , described by a mean vector and a 
covariance matrix is assumed.  
A limited amount of sampling is then carried out. The samples which fall into 
the failure domain are used to relocate and change the form of ( )hV v .  
In general, it requires good physical understanding of the problem being 
solved.  
The importance sampling method makes allowance for the estimation of the 
sensitivity of failure probability to changes in random variables.  
Generally, if the effect of changing one or more variables on the failure 
probability is required to be evaluated, two Monte Carlo calculations, with or 
without a change should be performed.  
Such an analysis is unlikely to be very helpful. If the limit state function is 
analytical, then the differentials / iG X∂ ∂  will give the sensitivity of ( )G X  to 
a change in iX .  



    

J. Górski, M. Skowronek   •   Gdansk University of Technology  •  Reliability Based Optimization •  Monte Carlo methods 14 

In the case of the importance sampling the probability estimate for the 
modified problem with a changed random variable ix  is given by (Melchers, 
1999) 

( ) ( )
( )1

ˆ1 ˆ
ˆ

i

i

N
X j

f i X j
j jD

f
p p f d I

N h
+∆

+∆
=

 + ∆ = ≈  ∑∫ X
X

X

x
x x x

x
 (5.14) 

and the sensitivity can be estimated as follows 

( )i f i i iS p p p x = + ∆ − ∆   (5.15) 
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Simulation methods – the Monte Carlo method 
 
Szczepan Woliński, Krystyna Wróbel  
Reliability of engineering structures (in Polish) 
Publishers of Rzeszów University of Technology 2001  
 
Structural reliability assessment by means of the Monte Carlo 
simulation method (MCS): 

• generate a sequence of random numbers / random fields due to 
every random involved in the reliability analysis, 

• state a reliability measure, being an outcome of physical 
experiments,  

• classify the results to the zones of reliable or failed states,  
• performing a sufficiently great population of realizations (N) 

compute the ratio of failed cases NI to the total population N, 
• the ratio q = NI /N is a structural unreliability measure, 

reliability 1Q q= − ). 
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Sufficient accuracy in reliability estimation requires a high 
population 1(25 100)N q−≥ ÷ , e.g. 10000 (q – anticipated failure 
probability) 
Satisfactory results for practical problems may be achieved by 
means of a relatively low number of realizations, e.g. 10-30. 
 
The Monte Carlo method is convenient for any structures, including 
those of nonlinear vector of structural performance, producing gross 
errors while linearized statistically. 
 
The advanced Monte Carlo techniques require a more 
comprehensive data on structural performance, including the failure 
regions. These methods improve significantly the result 
convergence. Examples are: importance sampling, directional, 
stratified, adaptive sampling, Latin Hypercube sampling. 
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The MCS was applied in a straightforward way to assess the 
structural reliability within the TERECO project (coordinator: prof. 
Pavel Marek, software: Milan Guštar - Prague, Polish participants: 
prof. Szczepan Woliński, prof. Ryszard Kowalczyk) 
 
The assumptions prior to software making: 
• all random variables: basic (material and geometric parameters, 

imperfections, structural actions), compound (multidimensional, 
correlated, action effects, limit parameters, etc.) and the results 
(reliability / safety, durability, serviceability measures, economic 
measures) are represented by bar histograms (Fig. 4.7), 

• reliability check is the comparison of computed probability of 
failure / exceeding the limit values (ratio of the failed cases to the 
whole population) with the allowable probabilities. 

 
The concept is illustrated in Fig. 4.7. (fundamental reliability case – 
two random variables: load effect S and resistance R). 
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Fig. 4.7. Monte Carlo simulation in a two-dimensional space of S and R 

variables 



    

J. Górski, M. Skowronek   •   Gdansk University of Technology  •  Reliability Based Optimization •  Monte Carlo methods 19 

The MCS package created by P. Marek and M. Guštar includes five 
procedures: 
 

• LoadCom – load combination analysis, design loads due to 
various standards, 
 

• M-Star – solver for a large family of algebraic, logarithmic, 
exponential and trigonometric equations composed of 
maximum 30 random variables expressed by bar histograms.  
It is a tool to analyze problems of load-carrying capacity 
assessment of elements and structures, load effect 
combinations (e.g. cross-sectional forces), failure probability, 
damage accumulation and serviceability criteria, 
 

• AntHill – two- and multi-dimensional random variable 
analysis, e.g. reliability assessment, cross-sectional forces  due 
to complex actions,  
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• DamAc – the impact of load duration to fatigue resistance of 
structures and reliability assessment incorporating rheological 
material phenomena, 

 
• ResCom – structural load analysis. 
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Example 
Apply the Monte Carlo method to compute the bending moment at a 
critical section α α−  of a beam, shown in Fig. 4.8  
whose probability of exceedance is 410q −= . 

 
Fig. 4.8. Static model of a beam 

The maximum, midspan bending moment is given: 
2 ( )max

8 3
I S

sd
ql Q Q LM Mα α−

+
= = +  (16) 
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Loads and the beam length are random variables –products of their 
nominal (design) values and the random factor, derived experi-
mentally and represented by bar histograms, shown in Fig. 4.9. 
– dead load: g = 10.8*Gvar , Gvar = Dead1 
– long-lasting (sustained) live load: QI = 22.5*QI,var  
                                                                       QI,var = Long1 
– short-lasting (transient) live load: QS = 15.75*QS,var  
                                                                      QS,var = Short1 
The span: L = 6.0*Lvar        Lvar = U1-05 
 
The M-Star software was used for solution. 
Msd = g*L^2/8+(QI +QS) *L/3 
g = 10.8*Gvar 
QI = 22.5 * QI,var 
QSh = 15.75*Os,var 
L = 6.0*Lvar 
The basic variables were assumed according to Fig. 4.9. 
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Fig. 4.9. Bar histograms (a1, b1, c1, d1), empirical CDFs (a1, b1, c1, d1), 
time duration curves (a3, b3, c3, d3) of basic random variables: Dead 1(a). 

Long 1 (b), Short 1 (c), U1-05 (d). 
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The results of 50 000 realizations are shown in Fig. 4.10.  

 
Fig. 4.10. The M-Star output of an example  

Histogram in Fig. 4.10 represents a random variable Msd – bending 
moment at the critical section of a beam, due to loads g, QI i Qs 
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being uncorrelated random variables whose distributions are known, 
considering randomly variable beam length L. The result may be 
also a CDF or a time duration curve of Msd. 
The value Msd = 122.03 kNm may be exceeded with the probability 

410q −= . 
 
The second solution variant uses the ResCom software. Nominal 
(design) load values were taken from the previous case. 
The main difference is a deterministic beam length. 
 
Critical bending moment is the sum  
Msd = Msd(g) + Msd(OI) + Msd(Os), the components are: 
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The result is shown in Fig. 4.11. 

 

Fig. 4.11. The ResCom output of an example 

The result is the value Msd = 117.07 kNm  
to be exceeded with a probability 410q −= .  
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A lower Msd value occurs, referring to the same 410q −= . It yields 
from a deterministic beam length assumption of the second variant. 
The AntHill output 
 

 
Fig. 4.13. The AntHill output of an example 
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