EXAMPLE – MC, PEM RSM and other methods

Geotech Geol Eng https://doi.org/10.1007/s10706-020-01384-5

ORIGINAL PAPER

Karol Winkelmann (b) · Lesław Zabuski (b) · Jarosław Przewłócki (b) · Jarosław Górski (b)

Received: 19 June 2019/Accepted: 21 May 2020 © The Author(s) 2020

Abstract The study presents a probabilistic stability analysis of a Baltic cliff in Jastrzębia Góra, Poland. Progressive slope erosion is a threat to adjacent buildings, so safety assessment of the slope is essential. The cliff shows a compound, multi-layered geological structure, which makes the analysis of its reliability a complex multivariate problem. A simple, successfully applied in geotechnical computations characterized by dispersion and uncertainty of soil data as well as a relatively high damage probability.

Keywords Probabilistic sensitivity · Reliability · Cliff stability · Monte Carlo method · Response Surface Method · Point Estimate Method

J. Górski, M. Skowronek, K. Winkelmann • Gdansk University of Technology • Reliability Based Optimization • Example

K. Winkelmann, J. Górski, Faculty of Civil and Environmental Engineering,L. Zabuski, Institute of Hydro-Engineering, Polish Academy of SciencesJ. Przewłócki, Faculty of Architecture, Gdan'sk University of Technology

Jastrzębia Góra cliff landslide 2002

The average rate of the cliff regression landwards:

- in the 70s of 20th century 0.3 m/year
- in the 80s 1.6 m/year
- 2002: a series of several landslides developed 8-10 m landwards

Historical data and results of long-term measurements

Bibliography:

- Subotowicz W. (1995), Transformation of the cliff coast in Poland, Journal of Coastal Research 22, 57–62.
- Tejchman, A., Gwizdała, K., Brzozowski, T., Krasiński A., Świdziński, W. (1995), Stability and protection of Polish coastal cliffs, Gdańsk University of Technology Publishing House, Gdańsk, (in Polish)
- Sawicki A.,Szmytkiewicz M., Świdziński W., Pruszak Z. (2002), Nature and the art of engineering on the example of a cliff in Jastrzębia Góra, Marine and Geotechnical Engineering, 23, 5 (in Polish).
- Sikora Z., Subotowicz W., Wyroślak M., Ossowski R. (2015), Emergency condition of the cliff shore in Jastrzębia Góra, XXVII Scientific and Technical Conference "Construction Failures 2015", Miedzyzdroje, 449-460 (in Polish).
- Zabuski L., Korzec A. (2017), Stability assessment of a cliff in Jastrzębia Góra, at the 133.650 133.750 km, Institute of Hydro-Engineering of Polish Academy of Sciences, Gdańsk (internal report, in Polish).

Geological cross-sections

5

Data

Layer	Soil	Bulk density	Co	hesion c_i [k]	Pa]	Internal friction angle ϕ_i [°]			
		$\rho_i [\text{g/cm}^3]$	designation	mean value	stan. dev.	designation	mean value	stan. dev.	
L1	silty loam	2.05	$x_1 [c L1]$	$\mu_1 = 40.0$	$\sigma_1 = 12.0$	<i>x</i> ₂ [<i>ø</i> L1]	$\mu_2 = 15.0$	$\sigma_2 = 1.5$	
L2	sandy loam	1.80	$x_{3} [c L2]$	$\mu_3 = 15.0$	$\sigma_3 = 4.5$	$x_4 \ [\phi L2]$	$\mu_4 = 29.0$	σ_4 = 2.9	
L3	clay	2.05	<i>x</i> ₅ [<i>c</i> L3]	$\mu_{5} = 45.0$	$\sigma_5 = 13.5$	$x_6 [\phi L3]$	$\mu_6 = 10.0$	$\sigma_6 = 1.0$	
L4a	fine sand	1.80		0	0	<i>x</i> ₇ [<i>ø</i> L4a]	$\mu_7 = 33.0$	$\sigma_7 = 3.3$	
L4b	fine sand	1.80	-	0	0	$x_{_8} \left[\phi \text{ L4b} \right]$	$\mu_8 = 35.0$	$\sigma_8 = 3.5$	
L5	silty loam	2.05	<i>x</i> ₉ [<i>c</i> L5]	$\mu_{9} = 58.0$	$\sigma_{_{9}} = 17.4$	$x_{10} \ [\phi \ L5]$	$\mu_{10} = 19.0$	$\sigma_{\scriptscriptstyle 10}$ = 1.9	
L6	loamy sand	2.18	<i>x</i> ₁₁ [<i>c</i> L6]	$\mu_{11} = 21.8$	$\sigma_{11} = 6.54$	$x_{12} [\phi L6]$	$\mu_{12} = 27.0$	$\sigma_{_{12}} = 2.7$	
L7	clay	2.15	<i>x</i> ₁₃ [<i>c</i> L7]	$\mu_{13} = 50.0$	$\sigma_{13} = 15.0$	<i>x</i> ₁₄ [<i>ø</i> L7]	$\mu_{14} = 17.0$	$\sigma_{14} = 1.7$	

•

6

Deterministic calculations – undrained and drained state

Itasca FLAC (FLAC 4.0, 2000)

- •Finite Difference (FD) Method
- •the Mohr-Coulomb failure criterion

•trial factor F (to reduce the cohesion c, friction angle f, and tensile strength s_{t}

J. Górski, M. Skowronek, K. Winkelmann • Gdansk University of Technology • Reliability Based Optimization • Example

Location of the potential slip zone natural (undrained) state $F_{undr} = 1.06055$ Hypothetical drained state

8

Deterministic calculations – Location of the potential slip zone Building locations: 7, 10, 12, 14 m

Stability assessment of a cliff in Jastrzębia Góra

The aim of the work:

The standard cliff analysis should be broadened by a random approach which will take into consideration the strength parameters variation assessed on the basis of the laboratory tests **to check the safety margin and the reliability of the slope**

Sensitivity and probabilistic analysis

Combined Response Surface Method (CRSM):

- Monte Carlo Method (MC)
- Point Estimate Method (PEM)
- Response Surface Method (RSM)

Response Surface Method (RSM)

approximation function of the actual structural response

$$\overline{y} \equiv \overline{y}(\mathbf{x}) = f(x_1; x_2; x_3; ...; x_n) + \varepsilon$$

First order model FORM

$$\overline{y}(\mathbf{x}) = b_0 + \sum_{i=1}^n b_i x_i + \varepsilon$$

Second-order model SORM

The response surface should minimize the least-squares lack-of-fit ratio

$$\varepsilon_{RSM} = \sum_{i=1}^{NS} \left[y_i(\mathbf{x}) - \overline{y}_i(\mathbf{x}) \right]^2$$

The design point \mathbf{X}^* is found by iteratively solving the set of equations:

$$\overline{y}(\mathbf{x}^*) = \overline{y}\left(x_1^*; x_2^*; x_3^*; \dots; x_n^*\right) = 0$$
$$x_1^* = -\beta \left(\frac{\partial \overline{y}(\mathbf{x})}{\partial x_i}\right)_{x_i^*} \left(\sum_{i=1}^n \left(\frac{\partial \overline{y}(\mathbf{x})}{\partial x_i}\right)_{x_i^*}^2\right)^{-1/2}$$

All parameters are described by a normal distribution mean values – measured in situ standard deviations – according to literature coefficients of variation

- 0.3 for cohesion
- 0.1 for the internal friction angle

Layer	Soil	Bulk density	Со	hesion c_i [k]	Pa]	Internal friction angle ϕ_i [°]			
		$\rho_i [\mathrm{g/cm}^3]$	designation	mean value	stan. dev.	designation	mean value	stan. dev.	
L1	silty loam	2.05	$x_1 [c L1]$	$\mu_1 = 40.0$	$\sigma_1 = 12.0$	$x_2 [\phi L1]$	$\mu_2 = 15.0$	$\sigma_2 = 1.5$	
L2	sandy loam	1.80	$x_{3} [c L2]$	$\mu_3 = 15.0$	$\sigma_3 = 4.5$	$x_4 \ [\phi L2]$	$\mu_4 = 29.0$	$\sigma_{4} = 2.9$	
L3	clay	2.05	<i>x</i> ₅ [<i>c</i> L3]	$\mu_{5} = 45.0$	$\sigma_{5} = 13.5$	$x_6 \ [\phi \ L3]$	$\mu_6 = 10.0$	$\sigma_6 = 1.0$	
L4a	fine sand	1.80	-	0	0	$x_7 [\phi L4a]$	$\mu_7 = 33.0$	$\sigma_7 = 3.3$	
L4b	fine sand	1.80	<u></u>	0	0	$x_{_8} \left[\phi \text{ L4b} \right]$	$\mu_8 = 35.0$	$\sigma_8 = 3.5$	
L5	silty loam	2.05	$x_9 [c L5]$	$\mu_{9} = 58.0$	$\sigma_9 = 17.4$	$x_{10} \ [\phi \ L5]$	$\mu_{10} = 19.0$	$\sigma_{_{10}} = 1.9$	
L6	loamy sand	2.18	<i>x</i> ₁₁ [<i>c</i> L6]	$\mu_{11} = 21.8$	$\sigma_{11} = 6.54$	<i>x</i> ₁₂ [<i>ø</i> L6]	$\mu_{12} = 27.0$	$\sigma_{12} = 2.7$	
L7	clay	2.15	<i>x</i> ₁₃ [<i>c</i> L7]	$\mu_{13} = 50.0$	$\sigma_{13} = 15.0$	<i>x</i> ₁₄ [<i>φ</i> L7]	$\mu_{14} = 17.0$	$\sigma_{14} = 1.7$	

The high diversity of soil cohesion and friction angles is intended to produce a high dispersion of the cliff's response results.

Parameter sensitivity analysis - PEM samples undrained state

J. Górski, M. Skowronek, K. Winkelmann • Gdansk University of Technology • Reliability Based Optimization • Example

16

Drained state

On the basis of the **sensitivity analysis**:

- a basic prediction of the structural response surface curvature (linear or non-linear) may be estimated,
- a proper order of an RS approximation model may be made,
- variables with small impact on the structural response may be eliminated.

The impact of each random parameter on the value of the safety factor

$$\delta_{i} = \frac{1}{2} \cdot \left(\left| \frac{F_{\max,i}}{\overline{F}} - 1 \right| + \left| \frac{F_{\min,i}}{\overline{F}} - 1 \right| \right) \cdot 100\%$$

Undrained state – 7 random variables Drained state – 5 random variables

PEM – 14 variables, 28 samples $\Delta F = F_{\text{max}} - F_{\text{min}} = 1.09180 - 0.99414 = 0.09766$ $P_{f PEM-14} = 0.402$ $\beta_{PEM-14} = 0.25$

Variable	Designation	Parameter	Prese	ent state	Drained state		
v al la ole	Designation	Tatalieter	Impact	Significant?	Impact	Significant?	
x_1	c L1	cohesion of L1 silty loams	0.18 %	NO (13)	0.43 %	NO (8)	
x_2	¢ L1	angle of friction of L1 silty loams	0.18 %	NO (14)	0.15 %	NO (10)	
<i>x</i> ₃	<i>c</i> L2	cohesion of L2 sandy loams	0.55 %	NO (9)	0.60 %	NO (7)	
<i>x</i> ₄	φ L2	angle of friction of L2 sandy loams	0.55 %	NO (10)	0.75 %	NO (6)	
<i>x</i> ₅	c L3	cohesion of L3 clays	2.76 %	YES (3)	8.14 %	YES (1)	
<i>x</i> ₆	φ L3	angle of friction of L3 clays	0.74 %	NO (8)	2.87 %	YES (2)	
<i>x</i> ₇	φ L4a	angle of friction of L4a fine sands	0.55 %	NO (11)	1.21 %	YES (5)	
<i>x</i> ₈	∮ L4b	angle of friction of L4b fine sands	3.13 %	YES (2)	1.66 %	YES (4)	
<i>x</i> ₉	c L5	cohesion of L5 silty loams	2.03 %	YES (6)	0.15 %	NO (11)	
<i>x</i> ₁₀	φ L5	angle of friction of L5 silty loams	0.37 %	NO (12)	0.00 %	NO (14)	
<i>x</i> ₁₁	<i>c</i> L6	cohesion of L6 loamy sands	2.58 %	YES (4)	0.15 %	NO (12)	
<i>x</i> ₁₂	<i>ø</i> L6	angle of friction of L6 loamy sands	2.58 %	YES (5)	0.30 %	NO (9)	
<i>x</i> ₁₃	c L7	cohesion of L7 clays	3.13 %	YES (1)	2.11 %	YES (3)	
<i>x</i> ₁₄	φ L7	angle of friction of L7 clays	1.11 %	YES (7)	0.15 %	NO (13)	

Probabilistic calculations - natural (undrained) state -14 variables Monte Carlo approach, NS = 100 samples were calculated - reference value

Monte Carlo approach, NS = 100 samples were calculated

J. Górski, M. Skowronek, K. Winkelmann • Gdansk University of Technology • Reliability Based Optimization • Example

Sprawdzenie poprawności rozwiązania – Student's t-distribution

Monte Carlo approach, NS = 100 samples were calculated $\overline{F} = 1.00131$ $\sigma_F = 0.08338$ $\gamma_F = 0.32272$

$$\frac{(\overline{F}-F)\sqrt{NS}}{\sigma_F}$$

 $t_{\alpha/2,NS-1}$

Student's t-distribution

$$\overline{F} - \frac{\sigma_F}{\sqrt{NS}} t_{\alpha/2, NS-1} < F < \overline{F} + \frac{\sigma_F}{\sqrt{NS}} t_{\alpha/2, NS-1}$$
Assuming a 99% confidence interval
 $\alpha = 0.01$
 $t_{0.005, 99} = 2.5674$

0.9798 < F < 1.0228

Probabilistic calculations - natural (undrained) state Monte Carlo approach, NS = 100 samples were calculated Selected variants of the slip surface and the shape of the slipping mass

Combined Response Surface Method (CRSM) - natural (undrained) state 129 samples used in direct calculations (one central sample as the starting point of the analysis, 2×14 PEM samples and 100 MC samples)

54 samples in total (29 from PEM and 25 from $\beta_{CRSM} = 0.15$ $P_{f CRSM} = 0.44$ Reference value (100) – $\beta_{MC} = 0.16$ $P_{f MC} = 0.44$

Combined Response Surface Method (CRSM) - drained state

- 5 variables, two parallel computational
- direct MC
- RSM based on 41 samples: 11 PEM and 30 MC
- 111 samples: one central sample, 2×5 PEM points and 100 MC points

$$\beta_{MC,41} = 1.657$$

 $\beta_{CRSM,41} = 1.567$
 $\beta_{CRSM,111} = 1.569$

$$(p_{f,MC,41} = 0.049)$$

 $p_{f,CRSM,41} = 0.059$
 $p_{f,CRSM,111} = 0.058.$

error: 4.73%

This is not a simple or easy task!

The values of the slope's reliability index calculated using the RSM approach

	RSM-C+PEM [15]/[29]			RSM-C+MC [101]			RSM-CS [115]/[129]			
	SIM	FORM	SORM	SIM	FORM	SORM	SIM	FORM	SORM	
$\mathbf{VAD} = 7$	0.638	0.635	N/A	0.124	0.122	N/A	0.250	0.247	N/A	1 order
VAR = /	0.112	0.243	0.078	0.340	0.877	0.550	-0.487	-0.401	-0.483	2 order
VAR =	0.639	0.638	N/A	0.397	0.396	N/A	0.397	0.396	N/A	1 order
14	-1.743	-1.619	-1.780	-0.040	-0.279	-0.001	0.123	0.221	0.150	2 order

undrained state

Drained state

	RSM-C+PEM [11]/[29]			RSM-C+MC [41]			RSM-CS [51]/[69]			
	SIM	FORM	SORM	SIM	FORM	SORM	SIM	FORM	SORM	
	4.753	5.115	N/A	1.703	1.705	N/A	1.750	1.753	N/A	1 order
VAR	2.406	2.408	N/A	2.198	2.204	N/A	2.220	2.226	N/A	
= 5	1.694	1.537	1.705	1.574	1.900	1.689	1.571	1.900	1.689	2 order
	4.465	4.424	4.461	1.538	1.730	1.587	1.521	1.725	1.569	
VAR = 14	3.019	3.030	N/A	1.027	1.025	N/A	1.458	1.458	N/A	1 order
	0.185	0.801	0.519	0.001	0.094	0.006	0.547	0.561	0.544	2 order

Conclusions and remarks - from the probabilistic standpoint

- PEM-analogous sampling makes it possible to perform a simple sensitivity analysis
- The result of the MC method is used as a reference value for all results obtained
- Without introducing new samples, a CRSM approximation may be performed on a combined set of PEM and MC samples
- The parallel MC and RSM calculations are stopped once the convergence has been achieved
- The analysis proves that PEM calculations alone fail to produce correct results
- The calculations have shown that the proposed method of improving the cliff's stability is correct because the probability of stability loss decreases from 45% to 5% as a result of changes in soil parameters induced by drainage.
- A preliminary sensitivity analysis can identify the strata that contribute the most to the stability of the slope.