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RETICULATED SHELL PROBABILISTIC CALCULATIONS 
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A typical example of a 
reticulated structure is analyzed.  
 
Tubular sections RO 647.8x20 
were designed for the structural 
elements.  
 
All elements were made of S355 
steel.  
 
The elements were connected 
by means of ball joints.  

 

 

Figure. Three dimensional 
truss structure  

(reticulated shell) 
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ONE-DIMENSIONAL RANDOM VARIABLES  

A simplest type of loading was assumed, i.e. a single force placed at the highest 
point of the structure – node no. 13 (Figure).  
Calculations were made using the MSC Nastran code (2001).  
The geometric and material nonlinearities were taken into account.  

 
Figure. The equilibrium path – the ideal structure 
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The limit load for the ideal structure was calculated R = 2612.3 kN   
The limit state function was defined as the value of the admissible limit load.  
Only geometric imperfections were considered.  
Several preliminary examples were made, proving that even small changes in 
the geometric description, i.e. the nodal vertical coordinates – resulted in 
considerable changes of the limit load.  
For example, displacement of the highest structure point (no. 13) only 0.10 m 
down led to a 14.3% drop of the limit load.  
It should be pointed out that the horizontal displacements do not influence 
visibly the results.  
Next the probabilistic analysis was performed.  
The geometric discrepancy – the vertical displacement – was assumed having 
following parameters mean value 0.0 mum =  and standard deviation 

0.08muσ = .  

The majority of the generated values of imperfections belong to the following 
interval (−0.13, 0.13) m.  
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The assumed range of imperfections fulfills the maximum limits of 
discrepancies which are allowed during the production of the tubular 
elements.  
The initial vertical displacements of the nodes 7 – 12 were calculated 
proportionally to the discrepancies of the node no. 13.  
The direct Monte Carlo method was applied.  
The calculations were performed for the generated 55 samples – vertical 
displacements of the node 13.  
The accuracy of the results depends on the number of the samples.  
To determine the minimal but sufficient number of field samples, a 
convergence analysis of the outcomes was performed.  
After each sample calculations, the improved expected values and standard 
deviations of the outcomes were estimated.  
The calculations were finished when the scatter of the estimated values 
reached the assumed low level.  
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Figure. The direct Monte Carlo method – expected value 
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Figure. The direct Monte Carlo method – standard deviations 
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Figure. The direct Monte Carlo method – skewness 
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According to these calculations the following values of the critical load are 
assumed as a reference load: mean value 2613.53 kNRµ = , standard deviation 

203.27 kNRσ =  and skewness 0.0686Rγ = .  
 

 
 

Figure. The direct Monte Carlo method – PDF and histogram of limit load 
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A significance reductions of the number of the random samples can be 
achieved using the Monte Carlo reduction methods.  
The method of stratified sampling was applied.  
The set of 55 random initial displacements identical to the case of the direct 
Monte Carlo method was used.  
The generated samples were classified and arranged according to the 
magnitude of the displacements.  
Two methods were applied: the whole space of the samples was divided into 
equal subsets or subsets of equal probability.  
From each subset only one sample was chosen for the analysis.  
The results of the calculations are presented in the next Figures and in Table. 
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Figure. Comparison of the Monte Carlo and stratified sampling  
– mean values 
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Figure. Comparison of the Monte Carlo and stratified sampling  
– standard deviations 

 
 
 



J. Górski, M. Skowronek, P. Sorn  •   Gdansk University of Technology  •  Reliability Based Optimization •  Example – Truss 3D 

Table. Results of limit load analysis of the reticulated shell  
– one dimensional case 

 

Method used 
Number of 

realizations n 

Mean value 

of limit load 

R [kN] 

Standard 

deviation of 

limit load R 

[kN] 

Direct Monte Carlo 59 2610.40 212.74 

Direct Monte Carlo 15 2604.08 245.38 

Stratified sampling – equal intervals 15 2632.22 405.12 

Stratified sampling – equal prob. 15 2623.79 236.43 

Direct Monte Carlo 10 2635.18 241.06 

Stratified sampling – equal intervals 10 2632.18 392.44 

Stratified sampling – equal prob. 10 2618.66 261.10 

Point Estimate Method 2 2605.12 239.26 
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A significant reduction of the samples was expected using the point estimate 

method.  

According to (6) two displacement and their weights are calculated: 
𝑥𝑥− = 𝑚𝑚𝑢𝑢 − 𝜎𝜎𝑢𝑢 = 0.0 − 0.08 = −0.08  𝑃𝑃_ = 0.5 

𝑥𝑥+ = 𝑚𝑚𝑢𝑢 + 𝜎𝜎𝑢𝑢 = 0.0 + 0.08 = 0.08  𝑃𝑃+ = 0.5 

Then the reticulated shell capacities related to x−  and x+  are calculated  

( ) 2844.38 kNy R x− −= =  

( ) 2362.86 kNy R x+ += =  

Substituting the above results to (8) the expected value and standard deviation 

were determined for the limit load: 
1 2844.38 0.5 2365.86 0.5 2605.12kNym E Y = ≈ ⋅ + ⋅ =   

2 2 2 2 2 2 22844.38 0.5 2365.86 0.5 2605.12 57245.35kNR yE Yσ µ = − = ⋅ + ⋅ − =   

57245.35 239.26 kNRσ = =  
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The results were compared with the Monte Carlo solution (Table).  

It should be stressed that using the point estimated method only two 

calculations performed by the finite element program allows estimating the 

mean value and standard deviation of the limit load of the reticulated shell. 

The errors of these values with the respect to the direct Monte Carlo methods 

are 0.2% and 12.5% respectively.  
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Two-dimensional random variables 
The next step of the analysis concerns two random variables – geometric and material 
parameters.  
The second parameter – Young’s modulus – was assumed Gaussian, its mean value 

210.0 GPaEm =  and standard deviation 4.0GPaEσ = . 

Two-dimensional image – the so called “ant hill” is presented in Figure. 

 
Figure. Monte Carlo method – distribution of two random variables 
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In the case of the Monte Carlo method 60 samples were generated.  
The following results were obtained: mean value 2653.21 kNRm = , standard deviation

232.54 kNRσ = and skewness 0.1004Rγ = .  
Similar calculation were performed for 36, 24, 16 and 9 samples (see Table).  

Table. Results of limit load analysis of a reticulated shell – two dimensional case 

Method used Number of 
realizations n 

Mean value of 
resistance R [kN] 

Standard deviation 
of resistance R 

[kN] 
Direct Monte Carlo 60 2653,21 232,54 
Direct Monte Carlo 36 2658,71 229,21 
Stratified sampling – equal intervals 6x6 36 2637,43 388,28 
Stratified sampling – equal probabilities 6x6 36 2604,47 255,01 
Direct Monte Carlo 25 2651,48 227,16 
Stratified sampling – equal intervals 5x5 25 2645,16 410,19 
Stratified sampling – equal probabilities 5x5 25 2630,21 237,22 
Direct Monte Carlo 16 2602,15 253,78 
Stratified sampling – equal intervals 4x4 16 2647,99 389,89 
Stratified sampling – equal probabilities 4x4 16 2614,67 299,57 
Direct Monte Carlo 9 2728,93 309,69 
Stratified sampling – equal intervals 3x3 9 2633,06 348,67 
Stratified sampling – equal probabilities 3x3 9 2656,06 328,89 
Point Estimate Method 4 2620,48 229,38 
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The results were compared with the stratified sampling method outcomes.  
The number of subsets was adjusted in order obtain the number of samples equal to the direct 
Monte Carlo method variant i.e. 6x6, 5x5, 4x4 and 3x3. 
Similarly to a single random variable case two versions of stratified sampling were applied: 
using equal intervals and equal probabilities.  
The results may be considered chaotic. It is difficult to decide which of the method is the 
most efficient and what the number of samples should produce satisfactory results.  
In the case of the point estimate method computation was made for four truss models only 
(Table).  
Relative errors, with respect to the direct Monte Carlo method are 1.2% and 1.4%, 
respectively.  
 

Tab. 3. The point estimate method – two random variables 
Point 𝑥𝑥1 [𝑚𝑚] 𝑥𝑥2 [𝐺𝐺𝑃𝑃𝐺𝐺] 𝑦𝑦 [𝑘𝑘𝑘𝑘] ,( )i jp x  ,( )i jyp x  2

,( )i jy p x  
1 𝑥𝑥1− = −0.08 𝑥𝑥2− = 206 2790.18 0.25 697.545 1946276 
2 𝑥𝑥1+ = 0.08 𝑥𝑥2+ = 214 2443.23 0.25 610.8075 1492343 
3 𝑥𝑥1− = −0.08 𝑥𝑥2+ = 214 2898.30 0.25 724.575 2100036 
4 𝑥𝑥1+ = 0.08 𝑥𝑥2− = 206 2350.19 0.25 587.548 1380848 

 =∑ 2620.475 =∑ 6919503 

𝐸𝐸[𝑅𝑅] = 2620.475𝑘𝑘𝑘𝑘 ,𝑉𝑉𝐺𝐺𝑉𝑉[𝑅𝑅] ≈ 6919503 − 2620.4752 = 52614.07𝑘𝑘𝑘𝑘2 ,𝜎𝜎𝑅𝑅 ≈ 229.38𝑘𝑘𝑘𝑘 
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Multidimensional random variables  
Next the truss model with three and four random variables was considered (Table).  

Table. The considered cases of multivariate random variables 

Set Variable 
dimension Variable type Mean value of 

random variable 
Standard deviation of 

random variable 
Set “a” 2 Initial displacement of node 7-13 

calculated proportionally to the 
displacement of node 13 

0.0 m 0.08 m 

  Young’s modulus 210.0 GPa 4.0 GPa 
Set “b” 2 Initial displacement of node 7-13 

calculated proportionally to the 
displacement of node 13 

0.0 m 0.08 m 

  Cross-sectional area 394.458 cm2 2.000 cm2 
Set “c” 2 Young’s modulus 210.0 GPa 4.0 GPa 

  Cross-sectional area 394.458 cm2 2.000 cm2 
Set “d” 3 Initial displacement of node 7-13 

calculated proportionally to the 
displacement of node 13 

0.0 m 0.08 m 

  Young’s modulus 210.0 GPa 4.0 GPa 
  Cross-sectional area 394.458 cm2 2.000 cm2 

Set “e” 4 Initial displacement of node 13 0.0 m 0.08 m 
  Initial displacement of node 7-12 

calculated proportionally to the 
displacement of node 12 

0.0 m 0.03 m 

  Young,s modulus 210.0 GPa 4.0 GPa 
  Cross-sectional area 394.458 cm2 2.000 cm2 
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The standard and Rosenblueth version of the point estimate method and the 
Hong method were applied.  
The results are presented in Table. 

Table. Results of limit load estimation of the space truss using PEM 

Set 

PEM – original method proposed 
by Rosenblueth 

PEM with reduction of 
evaluation   

point – Rosenblueth proposition 

PEM with reduction of 
evaluation  

 point –Hong proposition 

Number 
of 

realization 
n 

Mean 
value of 

limit 
load R 
[kN] 

Standard 
deviation 
of limit 

load 
R [kN] 

Number 
of 

realization 
n 

Mean 
value of 

limit 
load R 
[kN] 

Standard 
deviation 
of limit 

load 
R [kN] 

Number 
of 

realization 
n 

Mean 
value of 

limit 
load R 
[kN] 

Standard 
deviation 
of limit 

load 
R [kN] 

“a” 4 2620.49 229.38 5 2605,94 246,09 4 2620.70 228.94 
“b” 4 2620.24 223.64 5 2603,39 241,03 4 2620.69 223.85 
“c” 4 2614.52 51.63 5 2603,39 51,00 4 2613.94 51.78 
“d” 9 2620.58 265.34 7 2605,76 246,35 6 2606.38 245.94 
“e” 16 2628.49 363.36 9 2658,55 341,40 8 2628.09 363.64 

 
The mean values – results of various methods(see Table) are convergent.  
The dispersion described by standard deviations change when various set of random 
variables are analyzed.  
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Generally, a greater number random variables produces an increment of standard deviations 
of the results.  
Values of standard deviation in set “c” suggest that the specific random variables defined in 
this set do not act considerably upon the results.  
It is easy to notice that the Hong method in four sets gives almost the same estimators of the 
limit load and standard deviations as in the case of the direct Monte Carlo method.  
The former method seems to be the most efficient in real structure analysis.  
Note that a great number of random variables used makes the results diverge from the true 
solutions.  
That is because the values of random variables defined by Hong method are not the realistic.  
On the other hand the evaluation points calculated by the Rosenblueth method are always 
realistic.  
There is another advantage of the Rosenblueth method compare to the Hong method: an 
additional random variable n + 1 introduced leaves the remaining n results accessible.  
This is because the sample calculations are always performed at points defined by their mean 
values and standard deviations 𝑚𝑚𝑥𝑥𝑛𝑛 ± 𝜎𝜎𝑥𝑥𝑛𝑛.  
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Snow load – a reliability calculation 

The presented so far calculations concern space truss with simply load – a single force.  
The obtained results proved that the point estimate method can be implemented in realistic 
engineering analysis. Such an example – a reliability of the space truss with snow loading 
was investigated.  
To this end the snow load s [kN/m2] was described by PN-EN 1990-1-3 formula 

 

 i e t ks C C sµ=   

where 
sk – characteristic values of the snow load on the ground [kN/m2]  
μi – roof shape factor  
Ce – exposure coefficient (here Ce = 1.0 has been assumed)  
Ct – thermal coefficient (here Ct = 1.0 has been assumed)  
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Symmetric and asymmetric snow loads were analysed (see Figure). 

a) 

b) 
Figure. Symmetric (a) and asymmetric (b) snow loads 

The space truss was described using four and five random values.  
In the first case the following parameters were assumed as random: initial horizontal 
displacement of node 13, initial horizontal displacement of node 7-14, Young modulus and 
cross-section area.  
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The seven random values included: initial horizontal displacement for node 13 initial 
horizontal displacement for 7, node 7-12.  
In each case the random parameters were independent. They were described by the same 
values as in the case of single force load.  
The version of Hong point estimate method was applied.  
The details of the calculations performed for the symmetric load and four random variables 
are presented in Table.  

Table. Symmetric snow load – 4 random parameters – PEM (Hong method)   

Point 𝑥𝑥1 [𝑚𝑚] 𝑥𝑥2 [𝑚𝑚] 𝑥𝑥3 [𝐺𝐺𝑃𝑃𝐺𝐺] 𝑥𝑥4[𝑐𝑐𝑚𝑚2] 𝑦𝑦 [𝑘𝑘𝑘𝑘/𝑚𝑚2] 𝑝𝑝�𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘� 𝑦𝑦𝑝𝑝�𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘� 𝑦𝑦2𝑝𝑝�𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘� 

1 𝑥𝑥1− = −0.16 𝑥𝑥2,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 0.0 𝑥𝑥3,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 210 𝑥𝑥4,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 394.458 26.09 0.125 3.261 85.09 

2 𝑥𝑥1+ = 0.16 𝑥𝑥2,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 0.0 𝑥𝑥3,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 210 𝑥𝑥4,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 394.458 26.16 0.125 3.270 85.54 

3 𝑥𝑥1,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 0.0 𝑥𝑥2− = −0.06 𝑥𝑥3,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 210 𝑥𝑥4,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 394.458 13.41 0.125 1.676 22.48 

4 𝑥𝑥1,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 0.0 𝑥𝑥2+ = 0.06 𝑥𝑥3,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 210 𝑥𝑥4,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 394.458 14.69 0.125 1.836 26.97 
5 𝑥𝑥1,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 0.0 𝑥𝑥2,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 0.0 𝑥𝑥3− = 202 𝑥𝑥4,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 394.458 25.12 0.125 3.140 78.88 
6 𝑥𝑥1,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 0.0 𝑥𝑥2,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 0.0 𝑥𝑥3+ = 218 𝑥𝑥4,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 394.458 27.14 0.125 3.393 92.07 
7 𝑥𝑥1,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 0.0 𝑥𝑥2,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 0.0 𝑥𝑥3,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 210 𝑥𝑥4− = 354.458 23.45 0.125 2.931 68.74 
8 𝑥𝑥1,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 0.0 𝑥𝑥2,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 0.0 𝑥𝑥3,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 210 𝑥𝑥4+ = 434.458 28.79 0.125 3.599 103.61 

�  23.106 563.38 

𝐸𝐸[𝑅𝑅] = 2620.475𝑘𝑘𝑘𝑘 ,𝑉𝑉𝐺𝐺𝑉𝑉[𝑅𝑅] ≈ 563.38− 23.1062 = 29.49𝑘𝑘𝑘𝑘2 ,𝜎𝜎𝑅𝑅 ≈ 5.43𝑘𝑘𝑘𝑘 
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Similar results in the case of asymmetric snow load are given in Tab. 7.  
The results – limit loads of the space truss are presented in Tab. 8. 

Table. Asymmetric snow load – 4 random parameters – PEM (Hong method) 

Point 𝑥𝑥1 [𝑚𝑚] 𝑥𝑥2 [𝑚𝑚] 𝑥𝑥3 [𝐺𝐺𝑃𝑃𝐺𝐺] 𝑥𝑥4[𝑐𝑐𝑚𝑚2] 𝑦𝑦 [𝑘𝑘𝑘𝑘/𝑚𝑚2] 𝑝𝑝�𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘� 𝑦𝑦𝑝𝑝�𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘� 𝑦𝑦2𝑝𝑝�𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘� 

1 𝑥𝑥1− = −0.16 𝑥𝑥2,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 0.0 𝑥𝑥3,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 210 𝑥𝑥4,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 394.458 4.90 0.125 0.6125 3.001 

2 𝑥𝑥1+ = 0.16 𝑥𝑥2,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 0.0 𝑥𝑥3,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 210 𝑥𝑥4,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 394.458 5.01 0.125 0.6263 3.138 

3 𝑥𝑥1,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 0.0 𝑥𝑥2− = −0.06 𝑥𝑥3,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 210 𝑥𝑥4,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 394.458 3.62 0.125 0.4525 1.638 

4 𝑥𝑥1,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 0.0 𝑥𝑥2+ = 0.06 𝑥𝑥3,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 210 𝑥𝑥4,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 394.458 3.48 0.125 0.4350 1.514 
5 𝑥𝑥1,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 0.0 𝑥𝑥2,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 0.0 𝑥𝑥3− = 202 𝑥𝑥4,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 394.458 4.76 0.125 0.5950 2.832 
6 𝑥𝑥1,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 0.0 𝑥𝑥2,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 0.0 𝑥𝑥3+ = 218 𝑥𝑥4,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 394.458 5.15 0.125 0.6438 3.315 
7 𝑥𝑥1,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 0.0 𝑥𝑥2,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 0.0 𝑥𝑥3,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 210 𝑥𝑥4− = 354.458 4.44 0.125 0.5550 2.464 
8 𝑥𝑥1,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 0.0 𝑥𝑥2,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 0.0 𝑥𝑥3,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 210 𝑥𝑥4+ = 434.458 5.47 0.125 0.6838 3.740 

�  4.6039 21.642 

𝐸𝐸[𝑅𝑅] = 2620.475𝑘𝑘𝑘𝑘 ,𝑉𝑉𝐺𝐺𝑉𝑉[𝑅𝑅] ≈ 21.642− 4.60392 = 0.446𝑘𝑘𝑘𝑘2 ,𝜎𝜎𝑅𝑅 ≈ 0.668𝑘𝑘𝑘𝑘 
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Table. Results of limit load estimation  

Load type 
Variable 

dimension 
Variable type 

Number of 
realization n 

Mean value of 
resistance R 

[kN] 

Standard devia  
of resistance  

[kN] 
Snow symmetric load 4 Initial horizontal displacement of node 13 

Initial horizontal displacement of node 7-14  
Young modulus 
Cross-section area 

8 23,106 5,43 

Snow asymmetric load 4 Initial horizontal displacement of node 13 
Initial horizontal displacement of node 7-14  
Young modulus 
Cross-section area 

8 4,6039 0,668 

Snow symmetric load 7 Initial horizontal displacement for node 13 
Initial horizontal displacement for 7node 7-12 
(each independently) 

4 6,024 3,599 

It should be pointed out that the Hong method can give unrealistic results when many random 
variables, e.g. over 20, are taken into consideration.  
Although in such cases the efficiency of the direct Monte Carlo method could be similar to 
any version of the reduction methods.  
It is easy to noticed the difference between the results obtained for the single force and the 
realistic snow load. In the last case the initial geometric displacement of node 13 do not 
influences so visible the limit load value.  
But the truss is more sensitive when the nodes 7-12 change their positions.  
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To estimate the reliability of the truss the distribution of the snow load should be assumed.  
The Gumbel distribution was applied 

( )
( )

for
x ue

XF x e x
α− −−= −∞ ≤ ≤ ∞  

( )
( ) ( )x u x ue

Xf x e e
α αα

− − − −−=  

 
Figure. Approximation of the snow load using Gumbel distributions 
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Figure. Approximation of the snow load using Gumbel distributions 

The truss reliability was estimated accruing the following formula 

( ) ( )f R i Q i iP F q f q dq
∞

−∞

= ∫  
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To define the sensitivity of the reliability to the change of the cross section parameters.  

The distribution of real load and the dispersion of the truss resistance is presented in Figure. 

 

 
Figure. Distribution of the limit load and the truss resistance 
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It is possible to approximate the reliability by the following function 

 y xβα=   

The parameters α and β were calculated using standard regression analysis (Table) and 

the results are presented in Fig.  

Load type α Β Coef of determination 
Symmetric snow load 4,2965x1015 -7,5 0,9975 
Asymmetric snow load 4,5319x107 -3,4851 0,99 

 



J. Górski, M. Skowronek, P. Sorn  •   Gdansk University of Technology  •  Reliability Based Optimization •  Example – Truss 3D 

 
Figure. Approximation of the reliability calculation results  
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CONCLUSIONS 

The important advantage of the point estimate method is that probability density functions 
of particular random variables are not required in reliability analysis.  
Similarly to the FOSM method the first two probabilistic moments are required only, i.e. 
expected values and standard deviations of random variables.  
Unlike methods FOSM or SORM, it is not necessary to carry on laborious differentiations 
or iterations in PEM.  
This helps to avoid errors in the results, and greatly simplifies the analysis. In contrast to 
simulation methods, deterministic calculations are performed only several times. 
The investigation proved that probabilistic methods can be easily applied in standard 
engineering applications and the obtained results can substantially influence the design 
process. 
The point estimate method was shown to be an efficient tool applied for probabilistic 
calculations. In the case of greater numbers of structural random variables the PEM allows 
for a significant reduction of a sample space, not losing the accuracy of results. 
An important advantage of the point estimate method is neglecting probability density 
functions of particular random variables in reliability analysis. Thus the method can be used 
to analyze a variety of engineering problems.  
The investigation proved that probabilistic methods can be easily applied for the standard 
engineering problems. The results of random analysis may substantially influence the design 
process. 
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