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SIMULATION OF DISCRETE RANDOM FIELDS  
Theoretical background 
A continuous, second-order, real-valued, vector random field ( , )ωX r  is 
specified by the expected (mean) value function 

( ) ( )( ),E ω=X r X r  (0.1) 

and the correlation tensor function 

( ) ( ) ( )( ) ( ) ( )( )( )1 2 1 1 2 2, , ,x E ω ω= − ⊗ −K r r X r X r X r X r  (0.2) 

where ( )E ⋅  is the expectation operator, ω ∈Ω  denotes an elementary event, 
the sign ⊗  denotes the tensor product, and 3

1 2, , ∈ℜr r r . If ( ) const=X r  and  

( ) ( )1 2 1 2,x x= −K r r K r r  (0.3) 
then the field is called homogeneous, i.e. stationary in space (Adler 1981). 
Using discrete methods of simulation and analysis, it is necessary to consider 
the random fields in the form of multidimensional random variables X 
defined on regular or irregular meshes.  
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Thus, the role of covariance function 1 2( , )xK r r  takes on the covariance matrix 
K, always symmetric and positively definite: 

( )( ) ( )( )( )TE ω ω= − −K X X X X  (0.4) 
where ( )ωX  describes the discrete, second-order, real-valued random field 
and X  stands for the expected value vector  

( )( )E ω=X X  (0.5) 

It is also useful to define the degenerated field by the condition for the global 
covariance matrix K: 

det 0=K  (0.6) 
The probabilistic foundation for the generation of arbitrary vector random 
variables has been formulated in the rejection theorem by Devroye (1986) and 
von Neumann (see Brandt 1998).  
The main theoretical assumption of the simulation method is that the 
probability density function f of an m-dimensional random vector X is defined 
on a compact domain in mℜ  and obeys the condition ( )f < +∞X .  
This assumption makes sense in structural mechanics.  
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A random point Π  uniformly distributed in 1m+ℜ  can be generated in the 
following way: 

( ) ( )
( )( )

( )1 max

,  
 
i i i i i

i

x a u b a
u

u u c f

ω
ω

ω+

= + −Π = = 
=

x  (0.7) 

where ( ,  )i ia b , i = 1, 2,..., m are the given intervals of the reals and 
1( ),  ( ) [0,1]i iu u Uω ω+ ∈  are the values of independent, uniform random 

variables.  
If AΠ ∈  (i.e. Π  is not rejected), where 

{( , ) : ,    0 ( )}mA u u cf= ∈ℜ ≤ ≤x x X and c > 0, then the generated random 
variable ( 1,2,..., )iX i m=  is 

( )i i i i iX a u b a= + −  (0.8) 
The direct rejection method to generate vectors X introduces a new 
dimension: a uniform, independent random variable.  

In this extended 1m+ℜ  space, the joint probability density defined on a suitable 
set, is uniform (Devroye 1986). 
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Fig. 3.1 presents an interpretation of the proof in the case of m = 1. 
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Fig. 3.1. An interpretation of Devroye theorem for m = 1 

The random point Π  is not rejected if it falls below the curve ( )cf x  
(Fig. 3.1). The probability of this event for the random variable uniformly 
distributed in the rectangle max ( )cf b a−  becomes: 

( )
( )
( ) ( )max max

1
b

a
cf x dx

P A
cf b a f b a

Π ∈ = =
− −

∫  (0.9) 
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On the other hand, the probability for the point Π  to fall below the curve 
( )cf x  (Fig. 3.1) in the interval ( ,  )α β  is equal  

max

( )

( )

f x dx

f b a

β

α

−
∫  (0.10) 

It follows that the ratio 

( )
( )

( )
( )

( )

( ) ( )( )max

max

,  1

f x dx

P D f b a
f x dx P x

P A
f b a

β

α

β

α
α β

Π ∈ −
= = = ∈

Π ∈
−

∫

∫  (0.11) 

gives the required result. 
However, the method is not effective (time inefficiency) for large values of m.  
For that reason a method of a sequential type, by applying a propagation 
scheme and conditional probability distributions has been proposed.  
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 Simulation algorithm 
As the proposed algorithm concerns discretized random problems, the random 
fields are described by the multidimensional random variables defined at the 
mesh nodes.  
The covariance function is represented by the symmetric and positively 
defined covariance matrix ( )m m×K .  

The random variable vector ( 1)m ×X  is divided into two blocks consisting of 
the unknown ( 1)u n ×X  and the known ( 1)k p ×X  elements ( )n p m+ =  

u

k

n

p

 
=  

 

X
X

X
 (0.12) 

described by a joint normal probability density ( )f X  

( ) ( ) ( ) ( ) ( )
1

12 2
1det 2 exp
2

m Tf π− − − = − − − 
 

X K X X K X X . (0.13) 

where the covariance matrix ( )m m×K  and the expected values vector 
( 1)m ×X  are also appropriately divided: 
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11 12

21 22

,           u

k

n n

p p

n p

  
= =   

   

K K X
K X

K K X  (0.14) 

The unknown vector uX  can be estimated from the following conditional 
distribution 

( ) ( )
( )u k

k

f
f

f
=

X
X X

X
 (0.15) 

where ( )kf X  is a normal probability density function of the known variables 
kX  

( ) ( ) ( ) ( ) ( )
1

12 2
22 22

1det 2 exp
2

p T
k k k k kf π− − − = − − − 

 
X K X X K X X  (0.16) 

Substituting (3.13) and (3.16) into formula (3.15) yields  
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( ) ( )
1
2

2

22

1 1
11 12

21 22 22

det 2
det

1exp
2

n

u k

T

u uu u

k kk k

f π
−

−

− −

 
=  

 
                ⋅ − − − −                             

KX X
K

X XK K 0 0X X
X XK K 0 KX X

 (0.17) 

where 0 is a null matrix. 
After simplification formula (3.17) can be rewritten in the following way 

( ) ( ) ( ) ( )
1 T 12 2

1( ) det 2 exp
2

m

u k c u c c u cf π− − − = × − − − 
 

X X K X X K X X  (0.18) 

where cK  and cX , described as conditional covariance matrix and 
conditional expected value vector, can be calculated as follows: 

1
11 12 22 21c

−= −K K K K K  (0.19) 

( )1
12 22c u k k

−= + −X X K K X X  (0.20) 
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In the case of engineering applications the random variables are usually 
bounded by their upper and lower limits.  
For example, Young’s modulus E can be estimated only by nonnegative 
values ( 0E ≥ ), and no geometric discrepancies of any structures should cross 
a threshold set by relevant engineering codes.  
To fulfil this requirement a formula describing the Gaussian truncated 
distribution is introduced 

( )( )t
f x

f x
P

=  (0.21) 

where ( )f x  is a Gaussian density function of one-dimensional random 
variable X , with standard deviation σ  and mean value x  

( )
2

1( ) exp
22
x x

f x
σσ π
− 

= − 
 

 (0.22) 

and P  is the area of the Gaussian density function described by the truncation 
parameter s  

( )
2

1 exp
22

x s

x s

x x
P dx

σ

σ σσ π

−

−

− 
= − 

 
∫  (0.23) 
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Putting ( ) /z x x σ= −  into formula (3.23) it is easy to obtain  

( )2erfP s=  (0.24) 
where erf ( )s is the error function 

( )
2

0

1erf exp ,    s 0
2 2

s xs dx
π

 
= − ≥ 

 
∫  (0.25) 

A variance of the random variable X  of the Gaussian truncated distribution 
represents the following formula  

( ) ( )22
x s

t t
x s

x x f x dx
σ

σ

σ
−

−

= −∫  (0.26) 

Substituting relations (3.21) and (3.24), and performing the required 
integration yields 

( )2 2 1t tσ σ= −  (0.27) 
where 

2exp( 2)
2   ( )

s st
erf sπ

⋅ −
=  (0.28) 
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It is easy to notice that the assumption of the truncation parameter 5s = , 
usually used in the engineering applications, determines  that 0t ≈ .  
Making use of the above formulas the truncated joint normal conditional 
distribution can be derived 

( ) ( ) ( ) ( ) ( ) ( )
1
22 T 12

1( ) 1 det 2 exp
2 1

m
m

t u k c u c c u cf t
t

π
−−

− − 
= − − − − − 

X X K X X K X X

   (0.29) 
The numerical analysis of the simulation method based on the conditional 
distributions (see, for example, Bielewicz et al. 1994b) has proved that the 
algorithm is efficient for meshes consisting of as many as 500 random values. 
To improve the numerical capability of the simulation algorithm some 
modifications are proposed.  
The changes make it possible to generate a field with a much larger number of 
random points. 
To generate a discrete scalar random field use is made of a base scheme with 
random values. The scheme is placed at the nodal points of a mesh in such a 
way that it covers all the nodes i, 1 i MN≤ ≤ , MN M N= ×  (Fig. 3.2).  



    

J. Górski,M. Skowronek   •   Gdansk University of Technology  •  Reliability Based Optimization •  Random fields 12 

1

3

2

Mc

N

d

b)a)

c) d)

4

r

r

1

2

known values
simulated value

known values not included in
the base scheme calculations

the next step of the base 
scheme shifting

unknown values simulated
in one base scheme step

 
Fig. 3.2. Coverage of the field points with moving propagation scheme 
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The simulation process is divided into three stages.  
First, the four-corner random values are generated (see Fig. 3.2a).  
Next, a propagation scheme with a growing number of points covers a defined 
base scheme of the field mesh.  
In the example shown in Fig. 3.2b the dimension of the base scheme equals 

5 5 20c d× = × =  random values (mesh points).  
In the third stage the base scheme is appropriately shifted, and the next group 
of unknown random values is simulated (see Fig. 3.2c and d).  
The base scheme is translated so as to cover all the field nodes. 
Values of the random variables at the first four points of the mesh (i = 1,..., 4) 
are generated using the direct rejection method (see Eq. (3.7)).  
Substituting p = 0, and m = n = 4 into Eqs. (3.12) and (3.14), the following 
random vector of unknown variables, its expected values, and the appropriate 
covariance matrix are obtained: 

=X Xu ,               11,u= =X X K K  (0.30) 
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The truncated density function of X  is used in the generation 

( ) ( ) ( ) ( ) ( ) ( ) ( )
12 2 12

11 det 2 exp
2 1

π− − − − 
= − − − −  − 

X K X X K X X
T

tf t
t

 (0.31) 

where t is the assumed truncated parameter whose value is assumed according 
to the generated field properties. 
 
The generation process consists of the following steps: 
1. Generation of random vector (4 1)u ×X  with the components: 

( ) ,   1,...,4i i i i iX a b a u i= + − = , (0.32) 
where iu  are the random variables uniformly distributed in the interval 
[0,1], and ( ,  )i ia b , 1, 2, ... ,i m=  are intervals of the reals.  

2. Generation of random variable u from the interval [0,1] and definition of 
the value 

( ) ( ) ( )2 1/2 2
max ,             1 det 2f u t π− −= Φ Φ = − K  (0.33) 
where K(4×4) is the local covariance matrix and Φ bounds the conditional 
density function.  
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3. Calculation of the density function ( )uf X  

( ) ( ) ( )1exp
2 1u uf J

t
 

= Φ − − 
X X  (0.34) 

where 
( ) ( ) ( )1T

u u u u uJ −= − −X X X K X X   (0.35) 
4. Checking the condition 

( )max uf f≤ X    (0.36) 

If this condition holds, vector (4 1)u ×X  is accepted and if not, the calculations 
are repeated.  
For any point of the base mesh "i", 5 ( )i c d≤ ≤ × , where ( )c d×  denotes the 
dimension of the base scheme (see Fig. 3.2a) the only unknown random value 
is iX , whereas other random variables 1 1iX X −÷  are known. 
In the calculations it is necessary to make the following substitutions in 
formulas (3.12) and (3.14): m = i, n = 1, p = i − 1. It is easy to notice that the 
problem is reduced to one-dimensional ( c cK≡K , c cX≡X ).  
It makes the generation easier and relatively fast. 
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The calculations include the following operations: 
 

1. Determination of the local covariance matrix ( )i i×K , and determination 
of the known part of the random vector (( 1) 1)k i − ×X , as well as the 
expected values vector ( 1)i ×X , according to formulas (3.12) and (3.14), 
respectively.  

2. Calculation of the conditional variance cK  and the mean cX  on the basis 
of equations (3.19) and (3.20):  

1
11 12 22 21cK K −= − K K K  (0.37) 

( )1
12 22c u k kX X −= + −K K X X  (0.38) 

3. Generation of random variable iX : 

( )i i i i iX a b a u= + −  (0.39) 
4. Generation of the independent random variable u from interval [0,1] and 

definition of the value  

( ) ( ) 1 2( 1)/2
max ,             1 2i

cf u t Kπ −− −= Φ Φ = −  (0.40) 
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5. Calculation of the density function ( )if X  

( ) ( ) ( )1exp
2 1i if X J X

t
 

= Φ − − 
 (0.41) 

where 

( ) ( )2
i c

i
c

X X
J X

K
−

=  (0.42) 

6. Checking the condition 

( )max if f X≤  (0.43) 
If this condition holds, the random value iX  is accepted and if not, the 
calculation returns to point three.  
Intervals ( , )i ia b  are fixed for every node. The assumed standard deviation iσ  
at the node i is connected with the interval by equation  

( ) ( )( )1 2
2i

i

b

i i i i ia
x x f x dx σ− =∫  (0.44) 
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The proposed method of covering the random field with the defined base 
schemes makes it possible to analyse the meshes with a large number of 
points. The maximum dimension of the covariance matrix K is defined by the 
base scheme size.  
The numerical analysis leads to the conclusion that 400 mesh points are an 
optimal base dimension.  
The symmetry of the matrix K (see Eq. (3.14)) significantly reduces the 
calculations.  
It should be pointed out that according to the proposed algorithm the single 
random value is calculated on the assumption that the random values only in 
the close neighbourhood (the base mesh) are known.  
The specific way of covering the random field has a significant effect on the 
accuracy of the calculations.  
In strongly correlated fields the convergence of the simulation process can 
lead to considerable discrepancies.  
This procedure can be used for simulation of arbitrary planes or three-
dimensional random fields. The meshes can also be irregular.  
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Accuracy analysis of simulated random fields 
To examine the correctness of the proposed method the following scalar, 
zero-mean value correlation functions have been considered in numerical 
examples: 
– —White noise field ( , )N ωr  

( )2
1 2 1 2( , )NK σ δ= −r r r r  (0.45) 

– —the Wiener field (non-homogeneous) ( , )W ωr  

( ) ( ) ( ) ( )2
1 2 1 2 1 2 1 2, min , min , min ,W x x y y z zK r r r r r rα= × ×r r  (0.46) 

– —the Brown field (locally non-deterministic) 
( ) ( )2

1 2 1 2 1 2, 0.5BK β= + − −r r r r r r  (0.47) 
– —Homogeneous (Shinozuka) field ( , )S ωr  (Shinozuka 1987a). 

( ) ( )( ( ) ( ) )22 22 2 2 2
1 2 0 1 1 2 2 1 2 3 1 2, expS x x y y z zK r r r r r rα α α α= − − − − − −r r  (0.48) 

where 2
+∈ℜr  is the position vector (Fig. 3.2a) and 0 1 2 3, , , , , ,α β α α α α ρ  are 

arbitrary positive constants, ⋅  denotes the standard Euclidean norm 
(distance) and δ  stands for the Dirac delta. 
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It should be mentioned that the developed computer program can be applied 
to generate any plane or spatial fields. 
Statistical formulas give the estimators of the mean value ŵ  and the global 
covariance matrix K̂  of the generated set of realizations: 

1

T

1

1ˆ

1ˆ ˆ ˆ( )( )
1

NR

i
i

NR

i i
i

NR

NR

=

=

=

= − −
−

∑

∑

w w

K w w w w
 (0.49) 

where wi is the random vector and NR is the number of realizations in the set.  
The following definition of the global error erG  allows to compare the 
estimator of the covariance matrix K̂  with the theoretical one K: 

( )
( )

ˆ
100%erG

−
= ×

K K

K
 (0.50) 

where 2( )tr=K K  is the Euclidean norm.  
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The error of variances erV  and the local error erL  of a single element of 
covariance matrix can also be used: 

( ) ( )
1

ˆ ˆmax
100%, 100%

MN ii ii ij ij
er er

i ii ii jj

k k k k
V L

k k k=

− −
= × = ×∑  (0.51) 

where ijk  and îjk  denote the element of the theoretical covariance matrix and 
its estimator respectively. 
The mesh dimensions of the simulated fields described by Equations (3.45)
 ÷ (3.48) are the same as the size of the engineering examples calculated in 
the next sections.  
In this way the correctness analysis is strictly related to the problems which 
are solved in the present work.  
Two different meshes for the generation of the random fields have been 
selected. 
First, a plane square 11 × 11 mesh (121 nodes) is chosen. In all cases 

, 1.0, 11.0x yr r ∈< >  (Fig. 3.2).  
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The values of the positive constant (see formula (3.45) ÷ (3.48)) are assumed 
to be: 1.0α =  (the Wiener field), 1.0β =  (the Brown field), 2

0 1.0α = , 
1 2 0.25α α= =  (homogeneous field), and the parameter s (see the formula 

(3.28)) equals s = 5.  
For these 11 × 11 meshes the generation processes can be performed using a 
single base scheme (see Fig. 3.2 a and b).  
To check if the errors of the fields generations decrease with the number of 
calculated realizations the following tests are performed.  
For each field (3.45) ÷ (3.48) one hundred independent trials (NT = 100) are 
carried out.  
Ten thousand realizations (NR = 10000) are generated in a single trial.  
The expected value of global errors of covariance matrix ( )erE G  (Eq. (3.50)), 
error of variances ( )erE V , and single element error ( )erE L  (Eqs (3.51)) are 
calculated every 100th realizations using the following formulas: 
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( ) ( )

( ) ( )

( ) ( )

1

1

1

1

1

1

NT

er er i
i

NT

er er i
i
NT

er er i
i

E G G
NT

E V V
NT

E L L
NT

=

=

=

=

=

=

∑

∑

∑

 (0.52) 

Also the variances of these errors are introduced: 

( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )( )

22

1

22

1

22

1

1
1

1
1

1
1

NT

er er eri
i

NT

er er eri
i
NT

er er eri
i

D G G E G
NT

D V V E V
NT

D L L E L
NT

=

=

=

= −
−

= −
−

= −
−

∑

∑

∑

 (0.53) 

The results are presented in Fig. 3.3 ÷ Fig. 3.6. The plotted functions of the 
calculated mean errors and the standard deviations are different in each case 
of the random fields.  
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The same characteristic features are common, for example:  
– all the calculated error functions are visibly decreasing, in the most cases 

very fast, 
– the maximal errors of a single element computation scatter much more in 

comparison with other estimators,  
– the errors of the variance calculation are always smaller than other 

estimators.  
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Fig. 3.3. Error analysis of white noise field generations (size 11 × 11) 
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Fig. 3.4. Error analysis of the Wiener field generations (size 11 × 11) 
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Fig. 3.5. Error analysis of the Braun field generations (size 11 × 11) 
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Fig. 3.6. Error analysis of homogeneous field generations (size 11 × 11) 

 
In general it can be asserted that most crucial global errors of the covariance 
matrix E(Ger) start to be less than 10% from approximately 2000 ÷ 3000 
realizations (the white field is an exception).  
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Also, from this number of realizations the errors stabilization is noticeable. 
For this reason it should be assumed that at least 2000 realizations is needed 
in order to reproduce the prescribed correlation functions properly.  
The exact number of simulation should be checked in each case individually. 
Additionally, graphical comparisons between the theoretical covariance 
matrices K  and the estimators K̂  (Eq. (3.49)) for the four random fields 
(3.45) ÷ (3.48) are created, and the results are presented in Fig. 3.7.  
In each case the lower triangle represents the generated field while the upper 
triangle the theoretical one.  
The figures allow for a visual check of the correctness of the simulated fields.  
Moreover, one can note that the selected correlation functions (3.45) ÷ (3.48) 
are very different, and because of that the verifying analysis has a 
comprehensive meaning.  
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a) b)

c) d)

 

Fig. 3.7. Comparison of the target covariance matrices (upper triangles) with 
the simulated matrices (lower triangles): a) White noise field, b) the Wiener 

field, c) the Brown field, d) homogeneous field 
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Comparing the graphical presentations of the simulated fields (Fig. 3.7) and 
their errors function (Fig. 3.3 ÷ Fig. 3.6) an additional conclusion can be 
formulated.  
For example, the global covariance matrix errors is greater in the case of the 
white noise field (Fig. 3.3) and the homogeneous field (Fig. 3.6). 
Analysing the fields graphical presentation in Fig. 3.7a and d, it can be stated 
that a great part of the theoretical covariance matrix values equal zero. 
As the matrix element estimators have non-zero values (see Fig. 3.7) the 
calculated errors are remarkably high.  
Some examples of the simulated single realizations are presented in Fig. 3.8.  
Also the graphical presentation of these realizations allows for specifying the 
type of the random field analysed.  
For example, observing the results presented in Fig. 3.7 and Fig. 3.8 one can 
find out if the field is a correlated one. 
Next, a much bigger mesh is analysed.  
A plane discrete field, 16 × 308 = 4928 nodes has been chosen.  
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The same dimension field (but described by different correlation function) is 
used in Chapter 7 to analyse a petrol tank with initial geometric imperfection.  
Only one homogeneous (Shinozuka) correlation function (3.48) has been used 
in the generation process.  
This field seems to be an appropriate description of many two- and three-
dimensional engineering problems, illustrating geometric imperfections of 
steel plates and shells or spatial variability of material parameters of soil, for 
example.  

The same values of the positive constant are assumed ( 2
0 1.0α = , 

1 2 0.25α α= = ) as in the previous calculation.  

The size of the field determines the use of the shifted scheme method of 
generation (see Fig. 3.2). 16 × 16 points scheme has been chosen.  
It is easy to note that to cover all the random field points the scheme must be 
shifted 308 – 16 = 292 times.  
Only one series of calculations has been performed and the results are 
presented in Fig. 3.9. 
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a)

c) d)

b)

 
Fig. 3.8. Examples of realizations of the simulated fields:  

a) White noise,  
b) the Wiener field,  
c) the Brown field,  

d) homogeneous field 
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Fig. 3.9. Error analysis of Shinozuka (homogeneous) field generations  

(size 16 × 308) 
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Compared to the previous convergence analysis a standard mean error of 
covariance matrix and variances has also been calculated (see Fig. 3.9).  
The obtained global covariance error is bigger in comparison with the 11 × 11 
field generation (Fig. 3.6).  
Nevertheless, the results proved that the generation of real engineering fields 
is possible and accurate. 
To prove the correctness of the proposed generation method an additional test 
for the Brown and Wiener fields proposed by Walukiewicz has been 
performed (see Walukiewicz et al. 1995).  
As in the first step of the analysis one hundred independent trials for 11 × 11 
fields have been carried out.  
From the estimation theory (Krishnaiah, 1994) it is known that theoretical 
distributions of estimators for some characteristics of the multidimensional 
normal random variables can be derived on the basis of the Wishart (gamma) 
distribution.  
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In the following the theoretical distributions of variances and covariances 
(local characteristic), as well as the distributions of the determinants of the 
covariance matrices (global characteristic) are calculated. 

To start with, the probability distribution for the estimator of the covariance 
matrix K̂  was derived. Since K̂  is a symmetric matrix of dimension (m × m), 
the following joint probability distribution is defined in space ( )1 2m m+ℜ  

( )( ) ( )( ) ( ) ( )
1

122ˆ ˆ ˆ, , exp tr
2

NR mNR NRf NR C NR m
− −

− − = × − 
 

K K K K K K  (0.54) 

where the constant ( ),C NR m  is calculated from the normalization condition: 

( ) ( )
1

12 2

1

1, 2
2

NR m NR m m
m m

j

NR jC NR m NR π
−× ×

− −

=

 + − = Γ  
  

∏  (0.55) 

The condition 1NR m> −  must be fulfilled for positively defined K̂  (almost 
surely).  
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Function Γ  is defined for positive real arguments or for some natural 
arguments as: 

( ) 1

0

y xy x e dx
∞ − −Γ = ∫  (0.56) 

or           ( ) ( )1 !NR NRΓ = −            (0.57) 
If matrix K̂  is not positively defined then the probability distribution 
vanishes. 
From formula (3.54) one obtains the probability distribution for a single 
variance estimator 2σ̂  (m = 1): 

( )( ) ( ) ( )
2

2 222 2 2
2 2

2
2

ˆ ˆˆ , exp
22

2

NRNR NR

NR

NR NRf NR
NR

σ σ σσ σ
σ

−
−

 
= × − 

   Γ 
 

 (0.58) 

where 2σ  is the theoretical variance of the simulated field at a point. 
The histograms of the variances of the Wiener and the Brown fields are 
presented in Fig. 3.10 and Fig. 3.11.  
These results show a very good agreement with the theoretical (Wishart) 
distribution. 
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Next, the first two moments of the estimated covariance matrix determinant 
ˆ( )K  are calculated 

( ) ( )( ) ( ) ( )

( ) ( )22

1

1ˆ ( ) 1 2 ...  

1 3ˆ ( ) 1 1  

m

m

j

E NR NR NR m
NR

j jE
NR NR=

= − − −  

 − −  = + +   
   

∏

K K

K K
 (0.59) 

For the Wiener field and the Braun fields the sampled (100 samples) and the 
theoretical moments (formulas (3.59)) are calculated, as the functions of the 
number of realizations.  
These moments are presented in Fig. 3.12. One can observe a striking 
agreement of the estimated (generated) moments with the theoretical 
predictions. 



    

J. Górski,M. Skowronek   •   Gdansk University of Technology  •  Reliability Based Optimization •  Random fields 38 

3.0   

3.0   

3.0   

0.2

0.2

0.3

0.4

0.5

0.0

0.0

0.0

0.1

0.1

0.1

3.5

3.5

3.5

4.0

4.0

4.0

4.5

4.5

4.5

5.0

5.0

5.0

5.5

5.5

5.5

6.0

6.0

6.0

6.5

6.5

6.5

7.0

7.0

7.0

FR
EQ

U
EN

C
Y

FR
EQ

U
EN

C
Y

FR
EQ

U
EN

C
Y

WISHART
DISTRIBUTION
SAMPLED 
HISTOGRAM

NUMBER OF REALIZATIONS    = 122NR

NR = 2000

NR = 10000

MEAN VALUE 5.07782  (  ) E s  = 

ESTIMATOR OF VARIANCE  s

E( )   = s  5.00163

E( )   = s  4.99667

DISPERSION 0.52852  (  )  D2 s  =

D2(  )  s  = 0.02915

D2(  )  s  = 0.00550

THEORETICAL
VALUE 5.0   s  =

2

2
2

2

2

2

2
2

 
Fig. 3.10. Distribution of the Brown field sampled variances versus the 

Wishart distribution  
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Further investigation based on Shannon’s measure of information (see, for 
example, Aczél and Daróczy 1975, Sobczyk 1973, or Sobczyk and Spencer 
1996) has been performed by Walukiewicz (1997a and 1997b).  
A statistical analysis of the simulated various homogeneous and 
nonhomogeneous, second-order random fields proved a high accuracy and 
some universality of the proposed method of simulation.  
The method will be especially useful in the simulation-based approach. 
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Fig. 3.11. Distribution of the Wiener field sampled variances versus the 

Wishart distribution  
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Fig. 3.12. Moments of sampled covariance matrix determinants versus 

theoretical moments 
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