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Mechanical vibrations due to random excitations 
Christian Bucher “Computational Analysis of Randomness in Structural 
Mechanics” CRC Press 2009 
Typical actions on mechanical systems and structures have a considerable 
temporal variation.  
This leads to time-dependent dynamic responses.  
• The mathematical framework to describe actions and reactions is based on 

random process theory: the basic description of random processes in both 
time and frequency domains, including the mechanical transfer functions.  

• Methods to compute the response statistics in stationary and non-stationary 
situations are described and applied to several problem classes.  

• Analytical methods based on Markov process theory are discussed as well a 
numerical methods based on Monte Carlo simulation.  

• Stochastic stability. 
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Basic definitions 
A random process ( )X t  is the ensemble of all possible realizations (sample 
functions) ( , )X t σ  as shown in Fig. 4.1.  

 
Here t denotes the independent variable (usually identified with time) and σ  
denotes chance (randomness). 
For any given value of t, ( )X t  is a random variable.  
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By taking ensemble averages at a fixed value of t, we can define expected 
values of the random process ( )X t .  
These expectations are first of all the mean value function 

( ) ( )X t X t=   E  (1) 
and the auto-covariance function 

( ) ( ) ( )( ) ( ) ( )( ),XXR t s X t X t X s X s = − − E  (2) 
From (2) we obtain as a special case for t=s  

( ) ( ) ( )( ) ( )2 2,XX XR t t X t X t tσ = − = E  (3) 

An enhanced description of a random process involves the probability 
distribution functions.  
This includes the one-time distribution function 

( ) ( ), PrXF x t X t x= <    (4) 

and, moreover, all multi-time distribution functions 
( )

( )( ) ( )( ) ( )( )
1 1 2 2

1 1 2 2 2 2

, ; , ; ... ; ,

Pr ...
X n nF x t x t x t

X t x X t x X t x = < ∧ < ∧ ∧ < 
 (5) 
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for arbitrary n∈ .  
If all these distribution functions are (multidimensional) Gaussian 
distributions, then the process ( )X t  is called Gaussian process.  

This class of random processes has received particular attention in stochastic 
dynamics since its properties are easily described in terms of the mean value 
function and the auto-covariance function only. 
A random process is called weakly stationary if its mean value function ( )X t  
and auto-covariance function ( ),XXR t s  satisfy the relations 

( )
( ) ( ) ( )

.

,XX XX XX

X t X const

R t s R s t R τ

= =

= − =
 (6) 

For weakly stationary processes we have 

( ) ( )
( ) ( ) 2max 0

XX XX

XX XX Xt R

R R

R t R

τ τ

σ
∈

= −

= =
 (7) 
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Intuitively, one may expect that for large time separation (i.e. for τ → ±∞ ) 
the autocovariance function should approach zero.  
If this is actually the case, then the Fourier transform of the auto-covariance 
functions exists, and we define the auto-power spectral density ( )XXS ω  of the 
weakly stationary random process ( )X t  in terms of 

( ) ( )1
2

i t
XX XXS R e dωω τ τ

π

∞

−∞

= ∫  (8) 
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By inverting this transformation we can recover the auto-covariance function 
in terms of 

( ) ( ) i
XX XXR S e dωττ ω ω

∞
−

−∞

= ∫  (9) 

These equations are frequently called Wiener-Khintchine-relations. 
Specifically, for 0ω =  we obtain from the previous equation 

( ) ( )2 0X XX XXR S dσ ω ω
∞

−∞

= = ∫  (10) 

This leads to the interpretation of the power spectral density (PSD) as the 
distribution of the variance of a process over the frequency axis. It forms the 
basis of the so-called power spectral method of random vibration analysis. 
According to the range of frequencies covered by the PSD, the extreme cases 
of wide-band and narrow band random processes may be distinguished.  
The qualitative relation between the PSD and the respective auto-covariance 
functions is shown in Fig. 4.3. 
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Markov processes 
A continuous Markov process is defined in terms of conditional probability 
density functions, i.e. 

( ) ( )1 1 1 1 1 1 1 1, , ; ... ; , , , ; ...X n n n n X n n n n n nf x t x t x t f x t x t t t t− − − − −= > > >  (11) 

This states that the probability density function of a Markov process at time 
1 1, , ...n nt t t−  depends only on the value 1nx −  at tIme 1nt − , i.e. only on the 

immediate past.  
A Markov process called a “one-step-memory random process".  
Using properties of the correlation coefficient function  

( ) ( )
( ) ( )

,
, XX

XX
X X

R t s
t s

t s
ρ

σ σ
=  (12) 

there is a weaker form of defining a Markov process (Markov process in the 
wide sense) by 

( ) ( ) ( ), , , ,XX XX XXt s t u u s t u sρ ρ ρ= ≤ ≤  (13) 
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If a random process is both wide-sense Markovian and weakly stationary, 
then 

( ) ( ) ( ),XX XX XXt s t u u s t u sρ ρ ρ− = − − ≤ ≤  (14) 
or equivalently 

( ) ( ) ( )XX XX XXρ τ ρ ϕ ρ τ ϕ= −  (15) 
Taking derivatives with respect to τ  we get 

( ) ( ) ( ),XX XX XXt uρ τ ρ ρ τ ϕ= −   (16) 

and upon setting τ ϕ=  

( ) ( ) ( ) ( )0XX XX XX XXρ τ ρ τ ρ βρ τ= = −   (17) 

which due to ( )0 1XXρ =  has the unique solution 

( ) ( )exp ; 0XXρ τ βτ β= − >  (18) 

Hence the auto-covariance function of a weakly stationary wide-sense 
Markov process is of the exponential type: 

( ) ( )2 expXX XR τ σ βτ= −  (19) 
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This can easily be Fourier-transformed to give the power spectral density as a 
rational function 

( ) ( )
2

2 2
X

XXS βσω
π β ω

=
+

 (20) 

The relation between these functions is shown in Fig. 4.4 for 2 1Xσ =  and for 
different numerical values of β . 
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The concept of Markov processes can be extended to vector-valued random 
processes ( )X t .  
In this case, the defining equation becomes  

( ) ( )1 1 1 1 1 1 1 1, , ; ... ; , , , ; ...X n n n n X n n n n n nf x t x t x t f x t x t t t t− − − − −= > > >  (21) 

The matrix of correlation coefficients ( )ρ τ  consequently has the property 

( ) ( ) ( )t s t u u sρ ρ ρ− = − −  (22) 

which implies 

( )
( )
( )

exp ; 0

exp ; 0T

Q

Q

τ τ
ρ τ

τ τ

− >= 
<

 (23) 

in which Q is a constant matrix whose eigenvalues have positive real parts.  
Note that the matrix exponential typically contains both exponential and 
trigonometric functions, thus the correlation coefficients of Markov vector 
processes will usually be oscillating functions of the time lagτ . 
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Upcrossing rates 
For the design of a structure or structural element it is essential to deal with 
extreme responses to dynamic loading.  
This means that the probability of exceeding large, possibly dangerous levels 
ξ  of the response ( )X t  should be kept small. 

Different types of failure can be associated with the exceedance of the 
threshold value.  
One possible failure mechanism is sudden failure once the threshold is 
crossed (ultimate load failure), another possibility is the accumulation of 
damage due to repeated exceedance of the threshold (fatigue failure).  
For both types of failure it is essential to investigate the average number of 
crossings over the threshold per unit time (the upcrossing ratevξ ). 

Upcrossing is an event at time t in which the value of the random process X is 
below the threshold immediately before t and above the threshold 
immediately after t.  

The event occurs while the time-derivative X  is positive.  
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In order to derive an expression for vξ  it is necessary to know the joint 
probability density function of the random process and its time derivative at 
any time t, i.e. , ( , , )X Xf x x t



 . 
If X  exists in the mean square sense, then its mean value is zero 

( )
0

1lim 0
t

E X E X t t X
t∆ →

  = + ∆ = =    ∆


  (24) 

and its covariance function is given by  
( ) ( )

( ) ( ) ( ) ( ) ( )
0 0

limlim

XX

XXu v

R E X t X t

X t t X t X s v X s
E R t s

u v→ →

 = = 
+ ∆ − + − 

′′= = − − 
 

 

 

 (25) 

This means that the differentiability of a random process in the mean square 
sense requires that its auto-covariance function is twice differentiable.  
This shows that a scalar Markov process is not mean-square differentiable.  
However, individual components of a vector Markov process may be mean-
square differentiable.  
In a stationary process, the process itself and its time derivative are 
uncorrelated if taken at the same time t.  
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This is readily shown by taking  

( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )

0

0

1lim

1lim 0 0

t

XX XX XXt

E X t X t E X t X t t X t
t

R t R R
t

∆ →

∆ →

  = + ∆ − =    ∆

′= ∆ − =
∆

 

 (26) 

Due to the required symmetry of the auto-covariance function ( )XXR τ  with 
respect to the time separation argument τ , its derivative XXR  is either zero or 
it does not exist. 
However, since the existence of the derivative requires the differentiability of 

( )XXR τ  we conclude that ( )X t  and ( )X t  are uncorrelated. 

In the case of a Gaussian random process this implies that ( )X t  and ( )X t  are 
independent when evaluated at the same time.  
The joint probability density function of the process and its time derivative is  

( ) ( )2 2

2 2
1 1, exp exp

2 2 2XX
X X XX

x X xf x x
π σ σ σ σ

 −  
 = − − 
    



  (27) 
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The upcrossing rate vξ  of a random process ( )X t  over a threshold ξ  from 
below can be computed as: 

( )
0

,XXv xf x dxξ ξ
∞

= ∫ 

    (28) 

For a Gaussian process as defined in Eq. (27), this evaluates to 

( )2

2
1 exp

2 2
X

X X

x X
vξ

σ
π σ σ

 −
 = −
  

  (29) 

By studying the joint probability density function of the process ( )X t  and its 
first and second derivatives ( )X t  and ( )X t , an expression for the probability 
density function ( )Af a  of the peaks A of a random process can be obtained.  

For the limiting case of a narrow-band process, ( )Af a  becomes 

( ) ( )2

2 2exp ,
2A

X X

x Xaf a a X
σ σ

 −
 = − ≥
  

 (30) 
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Single-degree-of-freedom system response 
Mean and variance of response 
Consider a mechanical system consisting of a mass m, a viscous damper c and 
an elastic spring k as shown in Fig. 4.17.  

 
The equation of motion (dynamic equilibrium condition) for this system is  

( )mX cX kX F t+ + =   (31) 
For this system, we can derive the natural circular frequency 0ω  and the 
damping ratio ζ  as 

0 ;
2

k c
m mk

ω ζ= =  (32) 
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We assume that the load ( )F t  acting on the system is a random process.  

At present we specifically assume that ( )F t  is a weakly stationary process 
with a given mean value j; and a given autocovariance function ( )FFR τ .  

We want to compute the statistical properties of the displacement response 
( )X t , which will be a random process, too. 

From structural dynamics, we can apply the so-called Duhamel's integral: 

( ) ( ) ( )
0

t

X t h t w F w dw= −∫  (33) 

( )h u  denotes the impulse response function given by 

( ) ( )0
1 exp sin 0

0 0

u ü u
h u m

u

ζω ω
ω

 ′− ≥= ′
 <

 (34) 

with 2
0 1ω ω ζ′ = − .  
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Applying the expectation operator on Eq. (33), we obtain 

( ) ( ) ( )

( ) ( ) ( )

0

0 0

t

t t

E X t X t E h t w dw

h t w E F w dw F h t w dw

 
= = + =    

 

= + = +  

∫

∫ ∫



 (35) 

By substituting the variable u t w= −  we immediately get 

( ) ( )

( )( )
0

2
02

0

1 exp sin 1 cos

t

X t F h u du

F t t
m

ζω ζ ω ζ ω
ω

= =

 ′ ′= − − + −  

∫
 (36) 

From this it is easily seen that in the limit as t →∞ , we obtain the static 
solution as the stationary solution 

( )lim
t

FX t X
k ∞→∞

= =  (37) 

If the damping ratio is not too small, the limit is approached quite rapidly.  
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For numerical values of 0 1ω =  and 0.05ζ = , this is shown in Fig. 4.7.  

 
 
There is an initial overshoot which in structural analysis is commonly called 
dynamic load factor.  
It is less or equal to 2.  
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For processes with a sufficiently long duration, the stationary limit X∞  is of 
main interest.  
This so-called stationary mean response can also be obtained for finite values 
of t by assuming that the excitation started in the infinite past.  
Based on this Duhamel's integral can be written as 

( ) ( ) ( )
t

X t h t w F w dw
−∞

= −∫  (38) 

Actually, due to the fact that ( ) 0h u =  for 0u < , we can write just as well 

( ) ( ) ( )X t h t w F w dw
∞

−∞

= −∫  (39) 

From this, we can easily get 

( ) ( ) ( ) ( ) ( )
0

FE X t X t E h t w F w dw F h u du
k

∞ ∞

−∞

 
= = − = =    

 
∫ ∫  (40) 

In the following, we assume that the excitation has been acting since the 
infinite past.  
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The autocovariance function ( , )XXR t s  of the response ( )X t  can then also be 
computed from Eq. (39): 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

E X t X t E h t w F w dw h s z F z dz

E h t w h s z F w F z dwdz

h t w h s z E F w F z dwdz

∞ ∞

−∞ −∞

∞ ∞

−∞ −∞

∞ ∞

−∞ −∞

 
= − ⋅ − =    

 
 

= − − = 
 

= − −   

∫ ∫

∫ ∫

∫ ∫

 (41) 

Subtracting the expected values F  and X , respectively, this becomes 

( ) ( ) ( ) ( ), ,XX FFR t s h t w h s z R w z dwdz
∞ ∞

−∞ −∞

= − −∫ ∫  (42) 

With the application of the Wiener-Khintchine-relations Eq. (8) we obtain the 
power spectral density function ( )XXS ω  of the response 

( ) ( ) ( ) ( )1
2

i
XX FFS h t w h t z R z w e dwdzdωτω τ ω

π

∞ ∞ ∞

−∞ −∞ −∞

= − + − −∫ ∫ ∫  (43) 
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Using the substitutions 

1 2 3; ;u z w u t w u t zτ= − = − = + −  (44) 

with the absolute Jacobian determinant III of the coordinate transformation 

( )
( )

1 2 3

1 1 0
, ,

0 1 0 1 1
, ,

0 0 1

u u u
J

z w τ

−
∂

= = − = − =
∂

 (45) 

this can be rewritten as 

( ) ( )

( ) ( )

1

32

1 1

2 2 3 3

1
2

i u
XX FF

i ui u

S R u e du

h u e du h u e du

ω

ωω

ω
π

∞

−∞

∞ ∞
−

−∞ −∞

=

⋅ ⋅

∫

∫ ∫
 (46) 

The first line on the right hand side of this equation apparently represents the 
power spectral density ( )FFS ω  of the excitation.  
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The remaining two integrals are the complex transfer function ( )H ω  and its 
complex conjugate *( )H ω : 

( ) ( ) i uH h u e duωω
∞

−

−∞

= ∫  (47) 

So we may conclude that the power spectral density of the response is given 
by the simple relation 

( ) ( ) ( ) ( ) ( ) ( ) 2*
XX XX XXS S H H S Hω ω ω ω ω ω= =  (48) 

Evaluation of Eq. (47) yields 

( ) 2
1H

k m ic
ω

ω ω
=

− +
 (49) 

so that   ( ) ( ) ( )2 2 2 2 4

1
2XX FFS S

k c km m
ω ω

ω ω
=

+ − +
 (50) 

Using Eq. (10), the variance 2
Xσ  can be computed from 

( ) ( ) 22
X FFS H dσ ω ω ω

∞

−∞

= ∫  (51) 
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Example 4.1  
Cantilever subjected to lateral loading. 
As an example, consider a simple cantilever structure subjected to random 
lateral loading (cf. Fig. 4.8).  
Structural data is H=4m, EI=3600 kN/m2, m= 1 t.  

From this, the lateral stiffness is 3
3 400 kN/mEIk
H

= = .  
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The load model uses a constant mean value F  and power spectral density 

( ) ( )
2

2 2
F

FF
aS

a
σω

π ω
=

+
 (52) 

We assume that 0.2F Fσ =  and a = 12 rad/s.  
The mean response X  is readily computed to be 

0.0025FX F
k

= =  (53) 

The power spectral densities (on the positive frequency axis) of load and 
response are shown in Fig. 4.9.  
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Integration over ω  from −∞  to ∞  yields the variance of the displacement 
response 

2 2 6 2 313 2.338 10 1.529 10
5560000X XF F Fσ σ− −= = ⋅ → = ⋅  (54) 

The coefficient of variation of the response is 0.61.  
This clearly indicates the magnification of the randomness due to dynamic 
effects. 
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White noise approximation 
In view of the integral, as given in Eq. (51), it is quite obvious that the major 
contribution to the value of 2

Xσ  will most likely come from the frequency 
range near the natural circular frequency 0ω . 

Based on this observation, the integral can be approximated by 

( ) ( ) ( ) ( )2 22
0 0X FF FFS H d S H dσ ω ω ω ω ω ω

∞ ∞

−∞ −∞

≈ =∫ ∫  (55) 

The integral over the squared magnitude of the complex transfer function can 
be evaluated in closed form: 

( ) ( )
2

2 2 2 2 4

1
2

H d d
kck c km m
πω ω ω

ω ω

∞ ∞

−∞ −∞

= =
+ − +∫ ∫  (56) 

This approximation procedure can be interpreted as replacing the actual 
loading process ( )F t  by another process ( )W t  which has a constant power 
spectral density function 0( ) ( )WW FFS const Sω ω= = . 
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Applying this to the previous example with the cantilever under lateral 
loading, we obtain the approximate result 

2 2 6 2 33 2.206 10 1.485 10
1360000X XF F Fσ σ− −= = ⋅ = ⋅  (57) 

It should be noted, however, that such a process with constant power spectral 
density cannot exist in reality since according to Eq. (10) its variance 2

Wσ  
should be infinite. 
Due to the equally distributed frequency components, such a fictitious process 
is called "white noise" (in analogy to white light containing all visible 
frequencies in equal intensity).  
Formally, the autocorrelation function ( )WWR τ  of a process with constant 
power spectral density 0S  can be constructed from Eq. (9): 

( ) ( ) ( )0 02i
WWR S e d Sωττ ω ω π δ τ

∞
−

−∞

= =∫  (58) 

Here, ( )δ ⋅  denotes the so-called Dirac's Delta function with the properties 

( ) ( ) ( ) ( )0 0; 0u u u g u du gδ δ
∞

−∞

= ∀ ≠ =∫  (59) 
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The latter property is true for all functions g(u) which are continuous in a 
vicinity of u = 0.  
The Delta function can be interpreted for example as the limiting case of a 
rectangular function ( )uεδ  (d. Fig. 4.10).  

 
We define εδ  as 

( )
1 0

0 else

u
u

ε
δ ε

 ≤ ≤= 


 (60) 
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The function g can be expanded in a Taylor series about u = 0 

( ) ( ) ( ) ( ) 210 0 0
2

g u g g u g u′ ′′= + +  (61) 

so that 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
2

0 0 ...

1 10 0 ... 0 0 ...
2

u g u du u g g u du

g g u du g g

ε εδ δ

ε
ε ε

∞ ∞

−∞ −∞

∞

−∞

′= + +  

 ′ ′= + + = + +    
 

∫ ∫

∫
 (62) 

In the limit as 0ε →  we obtain 

( ) ( ) ( )
0

lim 0u g u du gεε
δ

∞

→
−∞

=∫  (63) 
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Returning to the expression for the autocovariance function of the response as 
given in Eq. (44), the above property of the Delta function allows the 
computation of an expression for the time-dependent variance ( )2

X tσ  of the 
response to white noise excitation 

( ) ( ) ( ) ( ) ( ) ( )22
0 0

0 0 0

, 2 2
t t t

X XXt R t t h t w h t z S z w dwdz S h t z dzσ π δ π= − − − = −∫ ∫ ∫
 (64) 
By substituting the variable u t z= −  we obtain 

( ) ( )

( )

22
0

0

2 2 2
0 0 0

0 2 2

2

1 exp 2 cos2 sin 2

t

X t S h u du

S t t t
kc

σ π

π ω ζ ωζω ω ζ ω
ω ω

= =

  ′ ′= − − − +  ′ ′  

∫
 (65) 

For numerical values of k = 1 N/m, m = 1 kg, ζ  = 0.05, S0 = 1 N2s, the result 
of Eq. 4.65 is shown with the label "exact" in Fig. 4.11.  
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From Eq. (65) it can be seen that the contributions from the trigonometric 
functions are of the order of the damping ratio ζ  or smaller.  
Therefore, omitting these terms yields a simple approximation in the form of 

( ) ( )2 0
0

2 1 exp 2X
St t

kc
πσ ζω= = − −    (66) 

The result from this equation is shown with the label "approximate" in Fig. 
4.11.  
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Multi-degree-of-freedom response 
Equations of motion 
For a linear multi-degree-of-freedom system the equations of motion can be 
written in matrix-vector form as 

( )t+ + =MX CX KX F   (67) 

together with appropriate initial conditions for X and X .  

Here, the vectors X and X  have the dimension n, the symmetric and non-
negative matrices M, C and K have the size n n× , and ( )tF  is an n-
dimensional vector valued random process.  
We assume that at least the second order statistics of F are known. For an 
important class of nonlinear structural systems, the equations of motion can 
be written as 

( ) ( ), t+ =MX g X X F   (68) 

The nonlinearity in Eq. (68) is present in the function g involving both 
restoring forces and damping. 
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Covariance analysis 
In the case of delta-correlated excitation processes, there is a direct way of 
deriving equations for the covariance matrix of the response vector 
components.  
This is especially advantageous for multi-degree-of-freedom systems.  
We assume that the matrix of auto- and cross-covariance functions of the 
components of the excitation vector ( )tF  are given in the form of 

( ) ( ) ( ),FF t t tτ δ τ+ =R D  (69) 
Here, D is an arbitrary cross intensity matrix of the size n n× , possibly 
depending on time t.  
This means that the excitation process ( )tF  is a multi-dimensional white 
noise process.  
Now the equation of motion is represented in phase space, i.e. the response is 
described in terms of a state vector Y containing the displacements X and the 
velocities X .  
In phase space, the equation of motion becomes (cf. Eq. (67)): 

( )t− =Y GY g  (70) 
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The 2 2n n× -matrix G is assembled from the mass, stiffness and damping 
matrices as 

1 1− −

 
=  − − 

0 I
G

M K M C
 (71) 

The covariance matrix YYR  also has the size of 2 2n n× .  
This matrix satisfies the differential equation 

( )T
YY YY YY t= + +R GR R G B  (72) 

Here, the matrix B is defined by 

( )1 1t− −

 
=  
 

0 I
B

0 M D M
 (73) 

This equation can be solved, for instance, by arranging the elements of YYR  
into a vector r.  
Hereby, the symmetry of YYR  can be utilized to reduce the problem size.  
The vector r then contains ( 1) / 2n n +  elements.  
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Correspondingly, the coefficients of the matrix G are then arranged into- 
another matrix H, and the matrix B is put into a vector b. 
Thus we obtain the system of linear equations 

( )T
YY YY YY t= + +R GR R G B  (74) 

which can be solved using standard methods.  
The covariance matrix XXR  of the displacements is a sub-matrix of the size 
n n× . 
An important special case is the stationary state, i.e. the case in which B = 
const. and 0YY =R . 

The excitation process in this case possesses a constant power spectral density 
matrix 0 / 2π=S B .  
If we write the matrix YYR  for this case in block notation 

,XX XX T
YY XX XX

XX XX

 
= = 
 

R R
R R R

R R


 

  

 (75) 
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we obtain for the stationary state 

( ) 2

XX XX

XX XX XX

XX XX XX

XX XX XX

+ =

+ − =

+ − =

+ + =

R R 0
KR CR MR 0
R K R C R M 0
K R R CR MB

 

  

  

   

 (76) 

From this we can immediately get the covariance matrix of the displacements 

1 11
2XX

− −=R K MC MB  (77) 

Note: For a SDOF-system this reduces to 

2 20 0;X X
S S

kc mc
π πσ σ= =



 (78) 

The effort required for the numerical solution can be reduced substantially if 
modal damping is assumed and approximate validity of some of the relations 
in Eq. (76) is assumed as well.  
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For this case, we can obtain decoupled approximate equations for the 
elements ijR  of the modal covariance matrix 

( )ij ij ij ij ija R b R B t= + =  (79) 
in which the constants ija  and ijb  are given by 

2 2

22

2 2 33

2

2 2
4 4 4 4

4 4 4 4

i j j i i j
ij i j

i i j j

ij i j i j i i i

j ji i
i j i i j j

i j j j i i

i j i j ji

j i i j

a

b

ζ ω ζ ω ω ω
ωω

ζ ω ζ ω

ωω ζ ζ ωζ ω

ω ωω ωζ ω ζ ω ζ ω
ζ ζ ζ ω ζ ω

ω ω ωω ωω
ζ ζ ζ ζ

+ +
= +

+

= + +

 
+ + − − − −  

 

+ + − −

 (80) 

This leads directly to the modal covariance matrix.  
For the case i = j, Eq. (79) reduces to 

22
2

ii
ij i i ii

i

BR Rζ ω
ω

+ =  (81) 
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Filtered white noise excitation 
The limitation to delta-correlated processes (i.e. generalized white noise) can 
be lifted by introducing filters.  
In this approach, the output responses of linear filters to white noise are 
applied as loads to the structure.  
A well-known example from earthquake engineering is the Kanai-Tajimi 
filter.  
Here, the ground acceleration ( )a t  is defined as a linear combination of the 
displacement and velocity of a system with a single degree of freedom.  
This SDOF system is characterized by its natural circular frequency gω  and 
the damping ratio gζ .  

The input ( )w t  to this filter system is white noise with a power spectral 
density 0S .  

The equation of motion for the filter system is 

( )22 g g gz z z w tζ ω ω+ + =   (82) 
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The ground acceleration process ( )a t  is then defined as 

( ) 22 g g ga t z zζ ω ω= +  (83) 

It can be seen that the power spectral density ( )aaS ω  has a significant 
frequency dependence 

( )
2 2 2 4

0 2 2 2 2 2 2

4
( ) 4

g g g
aa

g g g

S S
ζ ω ω ω

ω
ω ω ζ ω ω

+
=

− +
 (84) 

In Fig. 4.12 this function is plotted for numerical values of  
S0 = 1 m2/s, gω  = 17 rad/s and gζ  = 0.3.  
Fig. 4.12 clearly shows that significant contributions are present from the 
frequency range near 0ω = .  
In a nonlinear analysis these low-frequency components may lead to 
excessively large plastic drift.  
In order to avoid this, the Kanai-Tajimi model can be modified such that low-
frequency components are reduced. 
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Example 4.2  
(Covariance analysis for SDOF-system) 
For such a system the covariance matrix of the state vector contains only four 
(three mutually different) entries 

0 1
;

/ /
XX XX

YY YY
XX XX

r r
r r k m c m
   

= =   − −  
R G

  

 (85) 

We assume that the excitation is a non-stationary (amplitude modulated) 
white noise excitation with a power spectral density 0S  and a time 
envelope ( )e t . 
Then, the matrix B is defined by 

2

0

0 1
( )

0 2 /
e t

S mπ
 

=  
 

B  (86) 
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The differential equation (72) according to (74) can be written as 

2
0

0 2 0 0
/ / 1 0

0 2 / 2 / 2 ( ) /

XX XX

XX XX

XX XX

r r
d r k m c m r
dt

r k m c m r S e t mπ

      
      = − − +      
      − −      

 

   

 (87) 

which can be written in the symbolic form 
( )h t= +r Hr  (88) 

with the initial condition r(0) = 0.  
The general solution to this equation can be obtained by quadrature 

( ) ( ) ( ) ( ) ( )
0

exp 0 exp
t

t t t dτ τ τ= + −  ∫r H r H h  (89) 

which, for h constant in a time interval t∆ , evaluates to 

( ) ( ) ( ) ( ) 1exp 0 expt t t −∆ = ∆ + ∆ −  r H r H I H h  (90) 
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Note that the matrix exponential exp(A) is readily computed by means of 
diagonalizing the matrix A such that 

1−= ΛA T T  (91) 
in which Λ  is a diagonal matrix containing the (possibly complex) 
eigenvalues iλ  of A and T is the matrix of corresponding right eigenvectors.  

This step is always possible if the eigenvalues are distinct.  
Using Eq. (91), the matrix exponential can be computed using the standard 
series expansion for exp (.) i.e. 

( )

( )

1 1 1

0

1 1 2 1

2 1 1

1 1exp ...
! 2

1 ....
2

1 ... exp
2

k

k k

∞
− − −

=

− − −

− −

= = + Λ + Λ Λ +

= + Λ + Λ +

 = + Λ + Λ + = Λ 
 

∑A A I T T T T T T

TT T T T T

T I T T T

 (92) 
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The matrix exponential of the diagonal matrix Λ  is simply a diagonal matrix 
containing the exponentials of the eigenvalues iλ .  

The time-dependent intensity (envelope) is assumed to be (Fig. 4.13) 

( ) ( ) ( )4 exp 0.25 exp 0.50e t t t= ⋅ − − −    (93) 

 
The exact solution from the differential equation (72) is obtained and the 
results for ( )X tσ  are shown in Fig. 4.14. 
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Upon application of the approximations as mentioned above we obtain the 
first-order differential equation 

( )2 2 20
X X

d c S m e t
dt m k

πσ σ= − +  (94) 

The solution to this equation is also shown in Fig. 4.14.  
It can be seen that the approximate solution does not contain oscillations.  
However, apart from that it matches the exact solution quite well. 
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Exercise 4.1 
(Transient stochastic response) 
Compute the variance of the displacement response for a system as defined in 
the previous example to a nonstationary white noise with an amplitude-
modulating function 

( )
1; 0
0;

t T
e t

else
≤ ≤

= 


 (95) 

for the time interval [0, 3T] with T = 20. 
Solution: The resulting standard deviation ( )X tσ  is shown in Fig. 4.15. 
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