Introduction to Laboratory 8

Laboratory 8 concerns the implementation of the forward difference and central difference approximations to calculate the first and second derivatives of a function $f(x)$. For example, the forward difference approximation for $f^{\prime}(x)$ can be obtained from the Taylor expansion:

$$
f(x+h)=f(x)+h f^{\prime}(x)+\frac{h^{2}}{2} f^{\prime \prime}(x)+\cdots
$$

which can be rewritten as

$$
f^{\prime}(x)=\frac{1}{h}\left[f(x+h)-f(x)-\frac{h^{2}}{2} f^{\prime \prime}(x)+\cdots\right]
$$

giving the forward difference approximation

$$
\begin{gathered}
f^{\prime}(x)=\frac{1}{h}[f(x+h)-f(x)]+E(h) \\
f^{\prime}(x) \approx \frac{1}{h}[f(x+h)-f(x)]
\end{gathered}
$$

where $E(h)$ is the error arising from the finite value of h, and it is given by

$$
E(h)=-\frac{h}{2} f^{\prime \prime}(x)+\cdots
$$

This shows that for small value of h the error behaves linearly with respect to h, i.e. the error is of order 1 for the forward difference approximation (FDA).

Similarly, we can derive expressions for the central difference approximation (CDA) and for the second derivative $f^{\prime \prime}(x)$ (see Laboratory 8).

In Laboratory 8 you have to:

1) Calculate the first and second derivatives of the function $f(x)=x e^{x}$ at $x=2$ for different values of h, using both the forward difference and central difference approximations.
2) Calculate the error for different values of h by making the difference between the numerical estimate and the exact value, i.e. $|E(h)|=\left|f_{F D A \text { or } C D A}^{\prime}-f_{\text {Exact }}^{\prime}\right|$.
3) Estimate the order of the error using the Linear Least Squares method. For small values of h the error can be approximated by $|E(h)| \approx h^{n}$, where n corresponds to the order of the error. This equation can be rewritten as $\ln |E(h)| \approx n \ln h$, which takes the form of a linear function $(y=a x)$ with $y \equiv \ln |E(h)|, x \equiv \ln h$ and $a \equiv n$. By using the data points $x_{i}=\ln h_{i}$ and $y_{i}=\ln \left|E\left(h_{i}\right)\right|$ calculated from different values of h, the order of the error n can be obtained with the Linear Least Squares method (see Figure 1).

Figure 1: Plot of $\ln |E(h)|$ in function of $\ln h$. The slope a of the linear function $p(x)$ interpolating the data points gives the order of the error.

In the Linear Least Squares method the interpolating polynomial is a linear function $p(x)=$ $a x+b$. The coefficients a and b defining $p(x)$ are obtained by minimizing the quantity S (summation of the squared differences):

$$
S=\sum_{i=1}^{N}\left(p\left(x_{i}\right)-y_{i}\right)^{2}
$$

where N is the number of data points.
S is a function of the two variables a and b. Using the relations for a minimum, i.e. $\partial S / \partial a=0$, $\partial S / \partial b=0, \partial^{2} S / \partial a^{2}>0$ and $\partial^{2} S / \partial b^{2}>0$, we can find expressions for the coefficients a and b that minimize S. Thus, it is found that S is minimum for

$$
a=\frac{N \sum_{i=1}^{N} x_{i} y_{i}-\sum_{i=1}^{N} \sum_{j=1}^{N} x_{i} y_{j}}{N \sum_{i=1}^{N} x_{i}^{2}-\left(\sum_{i=1}^{N} x_{i}\right)^{2}}
$$

$$
b=\frac{\sum_{i=1}^{N} \sum_{j=1}^{N} x_{i}^{2} y_{j}-\sum_{i=1}^{N} \sum_{j=1}^{N} x_{i} y_{i} x_{j}}{N \sum_{i=1}^{N} x_{i}^{2}-\left(\sum_{i=1}^{N} x_{i}\right)^{2}}
$$

In Laboratory 8, you should find values of the slope n close to 1 and 2 for the FDA and CDA, respectively.

