
Critical systems
software testing and QA

Bogdan Wiszniewski

Dept. of Intelligent Interactive Systems
rm 423 EA,
ph. 58-347-1089
email: bogwiszn@pg.edu.pl

2 © Bogdan Wiszniewski, 2022 FETI, GUT

Course organization

• Office hours:
 Thursdays, 15:15-17:00 hrs

• Practicals (labs & project):
 Dr. Adam Łukasz Kaczmarek,
 rm. EA422, adam.kaczmarek@eti.pg.edu.pl

mailto:jandac@eti.pg.gda.pl
mailto:jandac@eti.pg.gda.pl
mailto:jandac@eti.pg.gda.pl
mailto:jandac@eti.pg.gda.pl
mailto:jandac@eti.pg.gda.pl

3 © Bogdan Wiszniewski, 2022 FETI, GUT

Course organization
• Objectives:

1. Present software development standards in

the European space industry and techniques
of their implementation.

2. Learn how to assess and manage critical
system software quality in an IT project.

3. Gain basic hands-on experience in bug
tracking and reporting in a software project.

4 © Bogdan Wiszniewski, 2022 FETI, GUT

Course content
1. Development of high-quality IT systems in a

systematic way
2. ECSS standards: series „E” and „Q”
3. Software product life cycle vs. testing cycle.
4. Validation, verification and testing (VVT) processes

in a software product lifecycle.
5. Planning of VVT processes.
6. Static analysis techniques of software systems.
7. Error, program and environment models in software

testing.
8. Black-box (functional) software testing strategies.
9. White-box (structural) software testing strategies

5

Literature
• IEEE Software and Systems Engineering Standards,

http://standards.ieee.org/findstds/standard/software_
and_systems_engineering.html

• Space engineering – Software, ECSS‐E‐ST‐40C, 6
March 2009, European Cooperation for Space
Standardization, ESA-ESTEC,
http://ecss.nl/standards/ecss-standards-on-
line/active-standards

• Space product assurance - Software product
assurance, ECSS-Q-ST-80C Rev.1, 15 February 2017,
European Cooperation for Space Standardization,
ESA-ESTEC, http://ecss.nl/standards/ecss-standards-
on-line/active-standards

© Bogdan Wiszniewski, 2024

6

Grading

© Bogdan Wiszniewski, 2024

Z# Week % opis
L1 8 15 Definition of tests for selected functionalities

L2 8 15 Test execution and reporting
P 15 30 Documentation of the testing process according

to the ESA standard (ECSS)
T 8/15 40 All weeks (lecture part)

= 100 …of the final score

7 © Bogdan Wiszniewski, 2022 FETI, GUT

Pass/fail criteria

1. Total score of 50% minimum
2. Attending the final test (any non-zero

score accepted)
3. All assignments must be submitted

in the due time. No late assignments
accepted, except of a valid medical
excuse.

8

Systematic approach

A. Product life-cycle vs. its testing cycle
B. VVT processes
C. Planning of VVT processes
D. Static analysis techniques
E. Error, program and runt-time

environment models
F. Black-box (functional) testing
G. White-box (structural) testing

© Bogdan Wiszniewski, 2024

9 © Bogdan Wiszniewski, 2024

A.Product life-cycle vs. its testing
cycle

10 © Bogdan Wiszniewski, 2024

Model “V”

verification

analysis

requirements

design

implementation unit testing & debugging

Integration testing

acceptance testing

maintenance

validation

11

Objectives

• Validation
Assess whether the system (or its
component) meets its requirements
specification

→ Are we building the right product?

© Bogdan Wiszniewski, 2024

12

Objectives

© Bogdan Wiszniewski, 2024

• Verification
Assess whether the product of a given
phase meets the assumptions made at
the beginning of this phase

→ Are we building the product right?

13

Objectives

• Testing
Analysis of the system behavior (or its
component) in order to measure
(assess) its quality

→ How good is (or will be) the system?

© Bogdan Wiszniewski, 2024

14

Example

• Object:
→ A library routine for sorting matrices

© Bogdan Wiszniewski, 2024

15

Example

• Object:
→ A library routine for sorting matrices

–Testing
→ Does the object return a sorted matrix?

© Bogdan Wiszniewski, 2024

16

Example

• Object:
→ A library routine for sorting matrices

–Testing
→ Does the object return a sorted matrix?

–Verification
→ Does the object sort matrices?

© Bogdan Wiszniewski, 2024

17

Example

• Object:
→ A library routine for sorting matrices

–Testing
→ Does the object return a sorted matrix?

–Verification
→ Does the object sort matrices?

–Validation
 → Can the procedure be included in the existing system

library?

© Bogdan Wiszniewski, 2024

18

Systematic approach

© Bogdan Wiszniewski, 2024

19

Systematic approach

© Bogdan Wiszniewski, 2024

bugs

20

Systematic approach

© Bogdan Wiszniewski, 2024

bugs

run-time environment
models

21

Systematic approach

© Bogdan Wiszniewski, 2024

bugs

program
models

run-time environment
models

22

Systematic approach

© Bogdan Wiszniewski, 2024

bugs

error
models

program
models

run-time environment
models

23

Systematic approach

© Bogdan Wiszniewski, 2024

bugs

error
models

program
models

run-time environment
models

instrumentation

24

Systematic approach

© Bogdan Wiszniewski, 2024

bugs

error
models

program
models

run-time environment
models

instrumentation test
cases

25

Systematic approach

© Bogdan Wiszniewski, 2024

bugs

error
models

program
models

run-time environment
models

instrumentation test
cases

test scenarios

26

Systematic approach

© Bogdan Wiszniewski, 2024

bugs

error
models

program
models

run-time environment
models

instrumentation test
cases

test scenarios

te
st

 s
tra

te
gi

es

27

Systematic approach

© Bogdan Wiszniewski, 2024

bugs

error
models

program
models

run-time environment
models

instrumentation test
cases

test scenarios

te
st

 s
tra

te
gi

es

testing

28

Dynamic analysis

• Test case

A single element selected from
an enumerable set of program
behaviors

© Bogdan Wiszniewski, 2024

29

Dynamic analysis

• Test completion criterion

A set of test cases defined based
on the program behavior model

© Bogdan Wiszniewski, 2024

30

Dynamic analysis

• Testing strategy

A set of rules for selecting test
cases to a (possibly finite) set
according to some adopted
criterion

© Bogdan Wiszniewski, 2024

31

Dynamic analysis

• Test scenario

Systematic observation of the
expected behavior of an IT
product conducted in a
supervised mode

© Bogdan Wiszniewski, 2024

32

Test case ”life cycle”

© Bogdan Wiszniewski, 2024

test case

test
scenario

test
script

log

test specification

test design

test implementation

test execution

result evaluation

33

Testing levels

• Unit/module testing
• Integration testing
• System testing
• Acceptance testing
• Alfa/Beta-testing

© Bogdan Wiszniewski, 2024

34

Unit testing

• Locating and removing errors
• Test completion
• Regression testing
• Test harness

© Bogdan Wiszniewski, 2024

35

Integration testing

• Strategies:
– incremental
– big-bang

© Bogdan Wiszniewski, 2024

A

B
C

D
E

F

36

step environment

1 unit D driver D
2 unit F driver F
3 connected units E+F driver E
4 connected units D+E+F+B driver B, driver E
5 connected units C+E+F driver C, driver E
6 connected units A+B+C+D+E+F --

Bottom-up method

© Bogdan Wiszniewski, 2024

A

B
C

D
E

F

37

step environment

1 unit A stubs B & C
2 connected units A+B stubs C, D & E
3 connected units A+B+C stubs D & E
4 connected units A+B+C+D stub E
5 connected units A+B+C+D+E stub F
6 connected units A+B+C+D+E+F --

A

B
C

D
E

F

Top-down method

© Bogdan Wiszniewski, 2024

38

System testing

© Bogdan Wiszniewski, 2024

category features systems

functionality every "what" the system dedicated systems
 does
volume voluminous input data file/Big Data systems
stress input data of high RT (control) systems
 intensity
usability user-friendliness system HCI
security break-in attempts secure systems
performance system dynamics RT (control) systems
 measurements
storage memory use memory critical systems
configuration optional system S/H upgrades
 configurations

39

System testing

© Bogdan Wiszniewski, 2024

category features systems

compatibility older versions data new releases
installability installation procedures complex installation
reliability statistics (logs, incident characteristics
 (MTTF, MTTR)
recovery „destructive’ data fault tolerant systems
serviceability maintenance procedures administered systems
documentation useful in testing? administered systems
procedure required personnel command/decision systems
 activities

40

Acceptance testing
• Ownership rights transferred from the

developer to the client
• Demonstration that all acceptance criteria

have been met
→ requirements specification

• Acceptance: phased, final
• “α-testing”: customers test the product at the

developer's facility (laboratory).
• “β-testing”: customers test the product at their

own facility (laboratory)

© Bogdan Wiszniewski, 2024

41 © Bogdan Wiszniewski, 2024

B. VVT processes: life-cycle
validation, verification and
testing

42

Responsibility, time
schedule

• VVT processes:
– early error detection
– continuity of the development

activities
– better understanding of the

product
– decision criteria for the life-cycle

phases

© Bogdan Wiszniewski, 2024

43

DDR

© Bogdan Wiszniewski, 2024

Life-cycle phases
(according to

ECSS)

Software verification
Implementation

Static & dynamic analysis

Requirements baseline
(RB)

Detailed design

Software validation

Implementation Validation wrt. TS Validation wrt. RB

Delivery &
acceptance

Management

Maintenance

Exploitation

AR SRR PDR CDR QR AR

Technical specification
(TS)

CLIENT DEVELOPER CLIENT

44 © Bogdan Wiszniewski, 2024

Life-cycle processes
(ECSS)
•Requirements baseline (RB)

− functional and performance requirements for the planned
software provided by the client

•Technical specification (TS)

− a formal specification (logical model) of what the software is
supposed to do,

− physical design of the software structure mapping individual
functions of the logical model to its components,

− definition of control and data flows between them, the first part
of the answer to the question of how the software is supposed
to do something).

45 © Bogdan Wiszniewski, 2024

Life-cycle processes
(ECSS)
•Detailed design

− design of algorithms and data structures (physical model), the
second part of the answer to the question of how the software
is supposed to do something,

− justification of all design decisions,
− implementation of units (code writing/generation),
− testing of code units to demonstrate their compliance with

requirements.

•Software validation
− Demonstrating that the system meets all assumed quality

goals → quality attributes

46 © Bogdan Wiszniewski, 2024

Life-cycle processes
(ECSS)
•Detailed design

− design of algorithms and data structures (physical model), the
second part of the answer to the question of how the software
is supposed to do something,

− justification of all design decisions,
− implementation of units (code writing/generation),
− testing of code units to demonstrate their compliance with

requirements.

•Software validation
− Demonstrating that the system meets all assumed quality

goals → quality attributes

• Functionality
• Performance
• Dependability
• Security
• Usability

47 © Bogdan Wiszniewski, 2024

Life-cycle processes
(ECSS)
•Detailed design

− design of algorithms and data structures (physical model), the
second part of the answer to the question of how the software
is supposed to do something,

− justification of all design decisions,
− implementation of units (code writing/generation),
− testing of code units to demonstrate their compliance with

requirements.

•Software validation
− Demonstrating that the system meets all assumed quality

goals → quality attributes

• Functionality
• Performance
• Dependability
• Security
• Usability

RAMS:
• reliability,
• availability,
• maintainability
• safety

48 © Bogdan Wiszniewski, 2024

Life-cycle processes
(ECSS)
•Software verification

− confirm that for each activity (phase) of the life cycle there is an
appropriate set of documents specifying the requirements for
the product of a given phase,

− demonstrate that the product of a given phase is correct and
fully compliant with these requirements.

•Implementation
− create code units (coding, adaptation, modification, automatic

code generation),
− integrate system units

49 © Bogdan Wiszniewski, 2024

Life-cycle processes
(ECSS)
• Maintenance

− keep the system running after bug fixes, modifications,
reinstallations, hardware replacements, etc.

• Delivery and acceptance
− Install the system in its target environment,
− Assess it formally based on the created documentation (RB &

TS).
• Exploitation

− Provide support to the end system user (installation, ongoing
administration, etc.).

50 © Bogdan Wiszniewski, 2024

Life-cycle processes
(ECSS)

• Management
− project planning (activities, checkpoints, products, techniques and

procedures),
− risk identification, countermeasure methods,
− principles of organizing and conducting reviews,
− management of configuration and information flow in the team,

time, budget and risk
− ECSS management standards (’M’ series):
o ECSS-M-ST-10-01C – Organization and conduct of reviews
o ECSS-M-ST-10C – Project planning and implementation
o ECSS-M-ST-40C – Configuration and information management
o ECSS-M-ST-60C – Cost and schedule management
o ECSS-M-ST-80C – Risk management

51

Life-cycle milestones

© Bogdan Wiszniewski, 2024

• SRR - system requirements review:
– The developer and client agree on the requirements baseline

specification (is complete and consistent).

• PDR - preliminary design review:
– The developer and client agree that the technical specification

correctly reflects all basic requirements

• DDR - detailed design review:
– Assessment of the possibility of moving to the next phase (all units

designed correctly, realistic testing and integration plan, sufficient
budget, unresolved issues addressed, existing software may be re-
used)

52

Life-cycle milestones

© Bogdan Wiszniewski, 2024

• CDR - critical design review:
– a key decision to continue or close the project

• QR - qualification review:
– The tools are adequate and the product is mature enough (TRL-8)

for acceptance.

• AR - acceptance review:
– all required test cases performed and completed correctly by a

given software version in its target environment,
– final approval of the product.

53

Product maturity

© Bogdan Wiszniewski, 2024

• Technology
readiness levels
(NASA):

54

Quality attributes of a critical
software system

© Bogdan Wiszniewski, 2024

• Basic (ECSS standard definitions):
– reliability

absence of errors that prevent the system from properly performing
all functions required in its RB

– safety
no threat to its environment (people, environment, property and
infrastructure)

– maintainability
can always be brought to a state in which any required function
will be performed properly

– security
correctly and completely achieves only the goals consistent with
the owner's intentions

55

Quality attributes of a critical
software system

© Bogdan Wiszniewski, 2024

• Complex (ECSS standard definitions):
– availability

System is capable of performing the required function at a given
moment or time interval

– dependability
Ability to build trust in the quality of system services in the long
term

• RAMS characteristics
‒ reliable + available + maintainable + safe

56

Classification of critical
systems

© Bogdan Wiszniewski, 2024

• Severity number (SN):

Effect SN Dependability Safety

C
at

as
tr

op
hi

c

1

Progressive
break-down
(propagation
of a series of

failures)

Loss of life, health or permanent disability of
crew members or ground staff
Loss of the system

Permanent loss of connection to the manned
flight control system
Destruction of the launch pad

Serious damage to the natural environment

57

Classification of critical
systems

© Bogdan Wiszniewski, 2024

• Severity number (SN):

Effect SN Dependability Safety

C
ri

ti
ca

l

2 Mission loss

Temporary inability to perform certain
activities or illness of crew or ground staff
Serious damage to the link to the manned
flight control system
Serious damage to ground infrastructure

Significant damage to private or public
property
Other environmental damage

58

Classification of critical
systems

© Bogdan Wiszniewski, 2024

• Severity number (SN):

Effect SN Dependability Safety

S
ig

ni
fi

ca
nt

3 Significant threat
to the mission Mission dependent

N
eg

lig
ib

le

4 Minor threat to
the mission

Mission dependent

59

Classification of critical
systems

© Bogdan Wiszniewski, 2024

• Non-execution or incorrect execution of the
code and other anomalies in its operation
cause the system to fail with the following
consequences:

– catastrophic (category 'A')
– critical (category 'B')
– significant (category 'C')
– negligible (category 'D')

60 © Bogdan Wiszniewski, 2024

C.Planning of VVT processes

61

Verification process

• Verification of the Requirements Baseline (RB)
document by recipients (to do list):
– Comprehensive description of the operating

(target) environment
– Characteristics of the system and devices
– Key points where to control the system and

observe its operation
– Possible system malfunctions and ways to

eliminate their effects
– Specification of the initial system settings
– Specification of user scenarios

© Bogdan Wiszniewski, 2024

62

Verification process

• Verification of the Technical Specification (TS)
document by recipients (to do list):
– System hardware and software requirements are

consistent
– Software requirements are verifiable
– System architecture is feasible
– All hardware and software implementation limits

have been identified
– An appropriate verification method is defined for

each requirement

© Bogdan Wiszniewski, 2024

63

Verification process

• Verification of the system architecture design
by developers (to do list):
– System architecture design accurately reflects

the requirements
– Detailed system design is implementable
– all dynamic aspects of system operation are

correctly considered (processes/threads, their
priorities, synchronization mechanisms, resource
sharing management)

© Bogdan Wiszniewski, 2024

64

Verification process

• Verification of the system detailed design by
developers (to do list):
– Is correct, internally consistent and clearly follows the

system architecture design
– Is testable:

o data entry points and triggers, measurement data collection points
o temporary and invariant values ​​in key places of the system structure
o fault injection possible

– ability to perform maintenance and operational activities
– all dynamic aspects of system operation are correctly

considered (processes/threads, their priorities,
synchronization mechanisms, resource sharing
management)

© Bogdan Wiszniewski, 2024

65

Verification process

•System code verification by developers (to do list):
– its structure and content consistent with requirements

(TS, RB), architecture and detailed design
– is correct, testable and compliant with established

coding standards
– all possible consequences of run-time errors are under

control of the code
– there are no memory leaks
– 100% code execution coverage for assignment and

conditional statements in the event of possible
catastrophic (category ’A’) or critical (category ’B’)
consequences

© Bogdan Wiszniewski, 2024

66

Verification process

•Verification of the unit testing plan and results by
developers (to do list):
– unit tests are consistent with the system design and

requirements documents
– Each unit test ensures examining (at least):
o execution of each conditional code statement (while, for, if) for the limit values ​​of its

predicate
o access (read or write) to each global variable
o input data outside of their valid ranges, causing incorrect function computations
o high volume/intensity data inputs to test the unit's performance limits as specified in

the requirements

– all results obtained are as expected and the completion
criteria for each test have been met

– all unexpected results and anomalies of each tested unit
are documented in the report.

© Bogdan Wiszniewski, 2024

67

Verification process

• Verification of the system integration by
developers (to do list):
– consistency with the system architecture design

document
– testing objectives for system interfaces (adequate

and complete list)
– obtained results obtained are consistent with the

expected ones

© Bogdan Wiszniewski, 2024

68

Verification process

• Verification of the system validation process by
developers wrt RB and TS documents (to do
list):
– results of the validation process were obtained

based on test cases, test procedures, inspections
and design reviews covering the entire scope of
requirements included in TS/RB documents

– all obtained results of the validation process are
consistent with the expected ones

© Bogdan Wiszniewski, 2024

69

Verification process

• Verification of the system documentation by
developers (to do list):
– the content of the documentation is adequate,

complete and consistent
– all documents are prepared within the deadlines

set up in the project time schedule
– management of the process of creating/merging

documents follows the previously defined
procedures

© Bogdan Wiszniewski, 2024

70

Verification process

•Hard real-time system analysis:
1. the system is predictable, all worst case scenario

events are handled within the required time limits
(TS, RB)
o an adequate analytical model was used,
o alternatively (if not possible) valid simulation experiments were carried out
o feasibility of the architectural structure design demonstrated

2. time analyzes were updated at the detailed
construction stage…

3. … and (again) repeatedly, during code verification,
unit testing, and integration phases (based on
information collected during dynamic analysis of the
target system code).

© Bogdan Wiszniewski, 2024

71

Validation process

• TS validation activities:
– Test specification (test cases)

 for each requirement of each code unit (input data, expected results,
test completion criteria)

– Test design (test scenarios)
 volume and stress tests, data limit and/or special values
 testing the system ability to isolate or reduce the effects of errors

(soft-fail systems, fault tolerant systems, interactive systems)
 correct operation in various valid configurations of the target

environment (supervised mode)
 data interfaces (protocols, data ranges, time dependencies)
 user interfaces (average user error rate, average time to learn)

© Bogdan Wiszniewski, 2024

72

Validation process

• RB validation activities:
– Test specification (test cases)

 for each single requirement - the mission's intended inputs, expected
results, and acceptance criteria

– Test design (test scenarios)
 volume and stress tests, data limit and/or special values
 testing the system ability to isolate or reduce the effects of errors (soft-

fail systems, fault tolerant systems, interactive systems)
 correct operation in various valid configurations of the target

environment (random mode)
 data interfaces (protocols, data ranges, time dependencies)
 user interfaces (average user error rate, average time to learn)

© Bogdan Wiszniewski, 2024

73

Delivery and installation
process

• Activities:
– Installation in the target environment

 installation plan and installation procedures development
 testing of installation procedures (installed code, databases and

services can be properly activated to function and close afterwards)
 conducting introductory training for the end user staff (or even cyclic

if requested in RB)
 providing resources and information necessary to carry out the

installation
 testing the system ability to isolate or reduce the effects of errors

(soft-fail systems, fault tolerant systems, interactive systems)
 documenting all relevant events (incidents) during installation

© Bogdan Wiszniewski, 2024

74

Acceptance process

• Activities:
– the recipient (client) prepares the acceptance

testing plan
– the recipient performs all tests specified in the

acceptance testing plan
 the tests must include generation of any executable code from the

source code (!)
 evaluation of all obtained test results must refer to RB

– developer and recipient perform a formal
acceptance review
 after completion of the software delivery, installation and acceptance

processes

© Bogdan Wiszniewski, 2024

75

Experiment
management
1. Quality objectives

– compliance with functional specifications,
performance characteristics, code
characteristics ​​(Halstead. McCabe), test
completion degree, etc.,

2. Anticipated problems
– description of properties and how they could

occur
3. Testing strategies

– capable of detecting anticipated problems
should affect their definition

– project plan, Pareto effect

© Bogdan Wiszniewski, 2024

76

Experiment
management

© Bogdan Wiszniewski, 2024

4. Product delivery
– incremental integration with ongoing

analysis/testing, monitoring trends of
detected anomalies

5. Change management, staff
training, tools
– project plan, Pareto effect

77

Test documentation
(IEEE std.)

© Bogdan Wiszniewski, 2024

Specification
of test cases

Test log
T
e
s
t

e
x
e
c
u
t
i
o
n

Incident
report

Test log

Incident
report

...

Test
summary

Project
documentation

Test item
documentation

Test plan

Test design
specification

Test design
specification

Test design
specification

Specification
of test
procedures

Test item
transmittal report

Test item

... ...

78

Permanent (static) part
of test documentation

• Test plan
– Time schedule, milestones/checkpoints,

management rules
• Test design specification

– Rationale, explanation and justification
of test cases structure

• Specification of test cases
– Input data and expected results, entry

and exit conditions, events and
expected reaction

© Bogdan Wiszniewski, 2024

79

Permanent (static) part
of test documentation

• Specification of test procedures
– how to perform experiments and

measure their advance
• Test completion criteria

– Conditions to be met by each test
procedure

• Test item transmittal report
– method of delivery and format of items

to be tested

© Bogdan Wiszniewski, 2024

80

Variable (dynamic) part
of test documentation

• Test log
– recorded activities and data

• Incident report
– list of incidents requiring further

investigation
• Test summary

– decision of the project management
staff and conclusions

© Bogdan Wiszniewski, 2024

81

Test procedures

• Disposition of test items
• Exceptional situations
• Experiment costs
• Acceptance criteria

© Bogdan Wiszniewski, 2024

82

Disposition of test items

• Item identifier
• Item:

– version, documentation, responsible person
• Method of delivery:

– localization, medium
• Status:

– deviations from documentation, previous
version and/or plan, any modifications in
progress

• Authorization:
– person approving disposition

© Bogdan Wiszniewski, 2024

83

Exceptional situations

• Any incident during the experiment
requiring explanation:

– input data, expected results, observed
anomalies, date and time, step in the
scenario, state of the environment,
repetition attempts, people performing the
test, witnesses

• Determining consequences wrt:
– continuation of the test plan, test design, scenarios,

etc.

© Bogdan Wiszniewski, 2024

84 © Bogdan Wiszniewski, 2024

D.Static analysis techniques

85 © Bogdan Wiszniewski, 2024

Software inspections

• Visually inspect the code or design
of a system component to detect:

– errors,
– deviations from project standards,
– missing or incorrect comments,
– potential portability problems,
– other problems not ”machine checkable”

86

Software inspections

• Inspection is not a part of the
design process:

– decisions are not made, focus on
individual issues only, does not suggest
changes or corrections, but

– allows to detect, identify and remove
defects and formally confirm product
quality

© Bogdan Wiszniewski, 2024

87

Software inspections

• Steps:

© Bogdan Wiszniewski, 2024

initiation

entry
kick-off
meeting

individual
control

editing

exit

leader
nominated

entry criteria

participants

planning

draft
proposal

draft proposal
distribution

continuation

document
approval

individual
control.

wrap-up
meeting

88

Software inspections

• Inspection team members (roles)
– Author: created the work product being

inspected.
– Moderator (leader): plans the inspection and

coordinates it.
– Inspector: examines the work product to

identify possible defects.
– Reader: reads through the documents, one

item at a time. The other inspectors then
point out defects.

– Recorder/Scribe: documents the defects that
are found during the inspection.

© Bogdan Wiszniewski, 2024

89

Reviews

• Developer (programmer) leads the
team through a selected fragment of
code

• The team asks questions and
comments on potential errors

(!) a narrow and highly interactive technique

© Bogdan Wiszniewski, 2024

90

Software audits

• Assessing software processes and
products for compliance with
requirements, standards, and
contractual agreements;

• Ensuring software quality,
accuracy, and functionality while
reducing legal risks and optimizing
performance efficiency;

• Strictly defined criteria and goal,
independent assessment team

© Bogdan Wiszniewski, 2024

91

Software audits

• Types:
– Technical audit: the software is

developed with respect to industry
standards.

– Security audit: the software can
protect sensitive information.

– Usability and accessibility audit (UX
audit): there are no issues with User
Experience in the already-deployed
software.

© Bogdan Wiszniewski, 2024

92

Identification of critical
elements

• Failure Mode and Criticality/Element Analysis
(FMECA/FMEA)

– NASA since the 1960s, currently the space, aviation,

nuclear and automotive industries
– ECSS standard, ISO 9000 norm
– analysis of the effects of defects revealing

individually in the products of the
architectural/detailed design phases, production
phases (coding, testing, integration) as well as flaws
of the production process itself

– most (>80%) defects are detected in the production
phase

© Bogdan Wiszniewski, 2024

93

Failure mode and
effects analysis (FMEA)

• Steps:
1.Identification of system elements and activities of the

production process
2.List all potential product defects and errors in the

activities of individual phases of the production
process

3.List all probable consequences of the potential
defects and errors

4.List possible causes of the identified defects and
errors

5.Analyze all identified defects to :
a. assess the materialization of risks
b. planning risk mitigation

6.Implementation of preventive actions and monitoring
their effectiveness.

© Bogdan Wiszniewski, 2024

94

Failure mode and
effects analysis (FMEA)

• Criticality (CN) is the combination of end effect
probability (PN) and severity (SN), CN = SN x PN

– Criticality number (CN) to rank the risk level;
– Severity number (SN) to rank severity for the worst-case

scenario adverse end effect or state, e.g. catastrophic (4),
critical (3), significant (2), negligible (1);

– Probability number (PN) to classify of the ranges of
probabilities of propagation of the effects of revealing a
defect beyond the analyzed system unit, e.g.

© Bogdan Wiszniewski, 2024

Level Range PN
High P >10-1 4

Moderate 10-3 < P < 10-1 3
Low 10-5 < P < 10-3 2

Negligible P < 10-5 1

95

Analysis of critical
system elements

• Identification of critical elements:

– the analyzed unit is critical when:
can always lead to a system catastrophic failure regardless of the defect
propagation probability level or its index CN>6

© Bogdan Wiszniewski, 2024

Effect SN Probability levels
 10-5 10-3 10-1 1

PN
1 2 3 4

Catastrophic 4 4 8 12 16
Critical 3 3 6 9 12

Significant 2 2 4 6 8
Negligible 1 1 2 3 4

96

E. Models for dynamic analysis:

• error,

• program,

• environment

© Bogdan Wiszniewski, 2024

97

Where do errors come
from?

• The error concept
• Error detection
• Characteristics of code objects

under test
• Sources of errors

•© Bogdan Wiszniewski, 2024

98

The concept of a
program error

• Program error
– an event initiated by a user or the

program environment,
– the program code produces an

unexpected result

• Program failure
– the program crashes
– the program is unable to perform some of

its functions correctly

© Bogdan Wiszniewski, 2024

99

Error detection

• Proof of correctness:

 Objective: to prove that the

program is free of
errors (is correct)

 Environment: axiomatic

 Reasoning: deduction

© Bogdan Wiszniewski, 2024

100

Error detection

© Bogdan Wiszniewski, 2024

• Testing:

 Objective: to demonstrate

that the program
has errors

 Environment: testing or target

 Reasoning: inductive

101

Error detection

© Bogdan Wiszniewski, 2024

• Performance testing:

 Objective: measure physical

parameters

 Environment: testing or target

 Reasoning: metrics, characteristics

102

Characteristics of code
objects

• Linguistic metrics:
– Lines of code (LOC),
– Statement count (SC),
– Halstead’s metrics.

• Structural metrics:
– Cyclomatic complexity (McCabe)

• Functional metrics:
– Computational complexity (time,

memory)

© Bogdan Wiszniewski, 2024

103

Halstead’s metrics

• Program length
 Nlok = N1 + N2

• Estimated program length
 HLOC = n1 ⋅ log2n1 + n2 ⋅ log2n2

N1 operators, N2 operands

 n1 unique operators, n2 unique operands

© Bogdan Wiszniewski, 2024

104

Halstead’s metrics

© Bogdan Wiszniewski, 2024

• Program volume
VOLM = (N1+N2) ⋅ log2(n1+n2)

• Estimated number of errors
B = (N1+N2) ⋅ log2(n1+n2)/3000

N1 operators, N2 operands

 n1 unique operators, n2 unique operands

105

Structural metrics

• Cyclomatic complexity (McCabe):

M = L - N + 2P
Number of edges (L),
Number of nodes (N),
Number of connected components (P)

The maximum number of linear, independent paths
through a program

© Bogdan Wiszniewski, 2024

106 © Bogdan Wiszniewski, 2024

Cyclomatic complexity

L = 4, N = 3, P = 1
M = 4-3+2 = 3

L = 4, N = 4,
P = 1
M = 4-4+2 = 2

L = 4, N = 4,
P = 1
M = 4-4+2 = 2

L = 2, N = 3, P = 1
M = 2-3+2 = 1

107 © Bogdan Wiszniewski, 2024

Cyclomatic complexity

• Text (decision instructions) and
detailed design

 → Missing or redundant path

• Number of (paths) test cases ≥ M
(!) Control flow direction is not taken into account,

e.g.M(if-then-else) = M(while-do)

• Ignore language (syntax)
complexity

108

Functional metrics

• Complexity level (algorithms):

Symbol Complexity Example
Θ(1) constant hash tables
Θ(log n) logarithmic binary search
Θ(n) linear GCD of n-digit numbers
Θ(n log n) linearithmic Fast Fourier Transform (DFT)
Θ(nc) polynomial path tracking (robots)
Θ(cn) exponential generation of prime numbers

© Bogdan Wiszniewski, 2024

109

Sources of errors

• Requirements
specification:

– completeness
– consistency

© Bogdan Wiszniewski, 2024

110

Sources of errors

• Design:

– correctness
– testability

© Bogdan Wiszniewski, 2024

111

Sources of errors

• Coding ("translation" of an
algorithm into some program
code):

– textual (typos, omissions, etc.)
– misunderstanding semantics of the

implementation language,
– not understanding semantics of the

algorithm,
– not understanding (knowing) the

requirements.

© Bogdan Wiszniewski, 2024

typos

112

Models

• Program:

– Control flow,
– Events,
– Data flow,
– State transitions

© Bogdan Wiszniewski, 2024

113

Models

• Error:

– Control flow errors
– Data flow errors
– State errors
– Text anomalies

© Bogdan Wiszniewski, 2024

114

Models

• Run-time environment:

– Sequential (stream) processing
– Even driven sequential

proccessing
– Concurrent processing
– Parallel processing
– Distributed processing

© Bogdan Wiszniewski, 2024

115

Example
public class Buffer {
int N = 10; //total buffer capacity
ipt = 0; //input index
opt = 0; //output index
len = 0; //current buffer load

/** shared resource **/
char *pool = new char[N];

/** consumer **/
/* 1 */ public synchronized char get(){
 char item;
/* 2 */ while (len == 0){
/* 3 */ try {wait(); //buffer is empty
/* 4 */ }catch(Interrupted Exception){
/* 5 */ }
/* 6 */ } //semaphore opened
/* 7 */ item = pool[opt++];
/* 8 */ if (opt == N)
/* 9 */ opt = 0; //modulo N
/*10 */ --len; //one element taken
/*11 */ notifyAll(); //buffer is not full
/*12 */ return item;
/*13 */ }
/** producer **/
/* 1 */ public synchronized void put(char item){
/* 2 */ while (len == N){
/* 3 */ try {wait(); //buffer full
/* 4 */ }catch(Interrupted Exception){
/* 5 */ }
/* 6 */ } //semaphore opened
/* 7 */ pool[++ipt] = item;
/* 8 */ if (ipt == N)
/* 9 */ ipt=0; // modulo N
/*10 */ ++len; // one element added
/*11 */ notifyAll(); //buffer is not empty
/*12 */ }
}

116

Control flow

© Bogdan Wiszniewski, 2024

Buffer.get() Buffer.put()

}

2

3

4

7

8

9

10

11

12

13

len==0

wait ()

len!=0

item= pool[opt ++]

opt==N

opt=0

-- len

notifyAll ()

return item

opt!=N

6 5

catch ()
{}

1

2

3

7

len==N

wait ()

len!=N

pool[ipt++]=item

notifyAll ()

4

6 5

{} catch ()

8

9

10

ipt==N

ipt=0

++len ipt!=N

}

1

11

12

• substitution (none or one outgoing
edge/branch)

• conditional (two or more outgoing
edges/branches)

117

Events

© Bogdan Wiszniewski, 2024

Buffer.get() Buffer.put()

wait ()

len==0 len!=0

item= pool[opt ++]

notifyAll ()

return item }

•

len==N len!=N

pool[ipt ++]=item

notifyAll ()

return item }

wait ()

• (start)

(synchronize)

• Petri net:
- non-determinism
- asynchronism

(terminate)

(loop)

118

Data flow

© Bogdan Wiszniewski, 2024

Buffer.get() Buffer.put()

e
6

4

2

3

7

8

9

10

11

12

13

len

2

3

7

8

9

10

12

13

len len

len

notify notify

item

item

ipt

ipt op t

opt

pool

pool

5
6

thrown
value 4

5
e

thrown
value

1 1

pool opt pool ipt

len

len

len

len

11

• instruction level

119

Data flow

© Bogdan Wiszniewski, 2024

B uffer.get() Buffer.put()

2

3

7

10

11

len

2

3

7

10

11

notify notify

pool

pool

len

len

le n

• communication level
(threads)

120

State transitions

© Bogdan Wiszniewski, 2024

get

new
put put put

get

...

get

q0 q1 q2 qN

• Buffer (finite) state machine

121

Control flow errors

© Bogdan Wiszniewski, 2024

D 1

D 2
D 3

D 4 …
p 1 p 2 p 3

p 4

C (p 1)
C (p 2)

C (p 3) C (p 4)

P

)101()0()(001 ≠+∧≠= optlenxp
)101()0()(002 =+∧≠= optlenxp
)101()0()(003 ≠+∧== optlenxp
)101()0()(004 =+∧== optlenxp

Path (execution) conditions:

len

opt

1

D (p 2)

2 3 4 5 6 7 8 9 10

9

0

1

8

2
3
4
5
6
7

D (p 1)
D (p 3)

D (p 4)

122

Control flow errors

© Bogdan Wiszniewski, 2024

u
C≠C’

p=p’

u

1. Path ‘computation’ error:

2. Path ‘domain’ error:

u
D≠D’

p=p’

u 3. ‘Subcase’ (missing path)
error:

u
D’⊂ D

p=p’

w

123 © Bogdan Wiszniewski, 2024

=
Left side Right side

1. Value assigned to a wrong variable:

2. Variable assigned a wrong value:

=
Left side Right side

Control flow errors

124

public synchronized char get() {
 char item;
 while (len == 0) {
 try {
 wait(); //buffer is empty
 } catch (InterruptedException e) {}
 } //semaphore opened
 item = pool[opt++];
 if (opt == N) opt = 0; // modulo N
 --len; //one element taken
/* notifyAll(); //buffer is not full */
 return item;
 } new

q0

put put put

get

q1 qN q2 ...
get

get

State errors

• Deadlock

© Bogdan Wiszniewski, 2024

125

State errors
• Races

© Bogdan Wiszniewski, 2024

q

q1

...
q2

...

...

t

t
q

q1

...

t

t

...

…

server process (recipient)

client processes (senders)

- on reception: - on sending:

…

sender process

group of recipients

126

Text anomalies

• Interpretation of syntax

© Bogdan Wiszniewski, 2024

 } catch (InterruptedException e) {}

 public synchronized char get() {
 char item;
 while (len == 0);
 try {
 wait(); //buffer is empty

 } //semaphore opened
 item = pool[opt++];
 if (opt == N);

opt = 0; // modulo N

-- len; //one element taken

notifyAll(); //one element taken

 return item;

empty statement

redundant semicolon

redundant semicolon

empty statement

127

Text anomalies

• Side effects

© Bogdan Wiszniewski, 2024

int main() {
 int x,y;
 int *z;
 z=&x;
 z++=1; /* initialization of x */
 z=2; /* alleged initialization of y */
}

128

Text anomalies

• Implicit type conversion

© Bogdan Wiszniewski, 2024

…
void ff(int); // function with one int argument
…
int ival=3.14; // value 3.14 narrowed to 3, ival=3;
ff(3.14); // value 3.14 narrowed to 3,
 // ff(3) called;
ival=4.0; // conversion of 4.0 to 4 (not narrowed),
ival=4;
…
double fval=5; // promotion of 5 to 5.0 of a „wider”
 // type, fval=5.0;
int val=1;
fval=val+3.14; // promotion of 1 to 1.0 of a „wider”
 // type, fval=1.0+3.14;
…

129

Run-time environment
models

© Bogdan Wiszniewski, 2024

sequential
(events, exceptions,
interrupts)

concurrent
(processes, threads)

parallel
(message passing,
remote procedure call)

distributed
(datagrams, pipelines, mobile agents)

• Pascal
• Fortran

• LI SP • Algol
• Prolog

• C • C++

 PL/I

• Java

• Ada83

• Ada95

• C#

• J#

• PVM

• MPI

• UDI
• HLA

• TCP/IP • CORBA
• .NET • WebSphere

• Athapascan
• Modula - 2

streams
(I/O operations) •

• RMI

• JADE

130

Run-time environment
models

• Sequential stream processing

© Bogdan Wiszniewski, 2024

data

Input stream
data

Output stream
program Ipt Opt

131

Run-time environment
models

• Event driven sequential stream
processing

© Bogdan Wiszniewski, 2024

dane dane program we wy

operator system hardware

interrupts, exceptions

program Ipt Opt data

Input stream
data

Output stream

132

Run-time environment
models

• Concurrent processing

© Bogdan Wiszniewski, 2024

t11

t23

t21

t15

t13

t12

t14

t32

t31

t22

t24

t16

P1 P2 P3

processor
time

e7

e1 e2

e3

e4

e5

e6

133

Run-time environment
models

• Parallel processing

© Bogdan Wiszniewski, 2024

r23

s21

r14

r12

r11

s13

r33

r31

s22

s24

s32

P1 P2 P3

system
time

c

c1 c2 c3

134

Run-time environment
models

• Communication events (1-1)

© Bogdan Wiszniewski, 2024

135

Run-time environment
models

• Communication events (1-n)

© Bogdan Wiszniewski, 2024

136

Run-time environment
models

• Communication events (n-1)

© Bogdan Wiszniewski, 2024

137

Run-time environment
models

• Distributed processing

© Bogdan Wiszniewski, 2024

r24

s21

r16

r13

r11

s15

r32

r31

r22

s33

P1 P2 P3

local time

c1 c2 c3

m1

ack1

m2

nack3

m2

ack2

m3

s12

s14

s23

138

Dynamic analysis
techniques

• Black-box testing:

– Program = function,
– Test cases based on requirements

specification
– Potentially all errors but

practically in an infinite time

© Bogdan Wiszniewski, 2024

139

Dynamic analysis
techniques

© Bogdan Wiszniewski, 2024

•White-box (structural) testing:

– Program = structure,
– Test cases based on technical

(architectural/detailed design)
specification or the program code

– Not all errors but in a (practically)
predictable time

140 © Bogdan Wiszniewski, 2024

F. Black-box testing

141

Black-box strategies

© Bogdan Wiszniewski, 2024

F'(x) F(x)

specification program
input output

T1
T2
...

R1
R2
...

Tn Rn

T1, T2, ..., Tn R1, R2, ..., Rn →

142

Black-box strategies

• Mathematical property:

T= {ti | i=1,...,N}, F'(T) = F(T) ⇒ F'(x) ≡ F(x)

• Limitations:

! Undecidability of function equivalence (even of
primitive recursive functions!)

! Approximate binary arithmetic (floating point error,
rounded value, register overflow error)

© Bogdan Wiszniewski, 2024

143

Black-box strategies

• Special values
• Transcendent values
• Polynomial equivalence
• Monte-Carlo testing

© Bogdan Wiszniewski, 2024

144

Special values

© Bogdan Wiszniewski, 2024

A = X/Y

<A>

<X,Y>

<...,1> ? A=X, A=X*Y
<4,2> ? A=X-Y
<0,...> ? A=X, A=X*Y, decl(A)

<a,b> <a != 0, b = 0>
<a !=0, b!=0, a>>b>, np. a=max(float), b=min(float)
<a =0, b=0> ?

<a !=0, b !=0>, b<a, b=prime

• Example

145

Polynomial equivalence

(!) Standard math functions are computed using polynomials

• Classic polynomial algebra:

– Class of polynomials cf(n,x),
– Tested F, specified F' ∈ CF
– T={t1, t2, ..., tn+1}
– F'(T)=F(T) ⇒ F'(x) ≡ F(x)

© Bogdan Wiszniewski, 2024

146

Monte-Carlo testing

(!) Exercise the program for its most typical and
common input values

© Bogdan Wiszniewski, 2024

random number
generator mapping filter program code

test log

147

Monte-Carlo testing

© Bogdan Wiszniewski, 2024

output index
is zero

output index is
non-zero

empty buffer non-empty buffer

T 1

T 2

T 3

T

empty buffer non-empty buffer

output index
is zero

output index is
non-zero

148 © Bogdan Wiszniewski, 2024

G.White-box testing

149

White-box testing
strategies

• Structural model (program,
system)

– control flow testing
– data flow testing
– mutation testing

© Bogdan Wiszniewski, 2024

150

White-box testing
strategies

• Test evaluation:
– quantitative (metrics) → rule of thumb
– qualitative (model) → errors are deviations

• Passing a test:
– all required test cases exercised
– all results obtained consistent with

the expected ones
– → test strategy

© Bogdan Wiszniewski, 2024

151

White-box testing
strategies

• Branch testing
• Path testing

– boundary-interior method
– domain testing
– computational equivalence of

paths
– simple loop patterns

© Bogdan Wiszniewski, 2024

152

White-box testing
strategies

• Data flow testing
– definition-use chains

• Mutation testing
– Text anomalies

© Bogdan Wiszniewski, 2024

153

Branch testing

(!) Each predicate
„true" and „false”

© Bogdan Wiszniewski, 2024

while w. "2":
 (2,3), (2,6)
if w. "3":
 (3,4), (3,5)

154

Path testing

(!) Incorrect control flow implies incorrect results
(!) Paths can exercise control flow systematically

• Program model:
– Control flow graph: G(a,n,s,e)
– Input variables: x=<x1, x2, ..., xn>
– Program (input) domain: D=X1×X2×...×Xn
– Program path: p=(n0, n1, ..., nk)
– Path condition: p(x)
– Path domain: d(p)={ x | p(x)}
– Path computation: c(p): d(p) → R

© Bogdan Wiszniewski, 2024

155

Path testing

• Strategies:

– boundary-interior method
– domain testing
– computational equivalence of

paths
– simple loop patterns

© Bogdan Wiszniewski, 2024

156

Boundary-interior
method

(!) Problem with loops

• Intuitive criterion:

– Each loop ZERO and non-zero
number of iterations,

– Each loop MAX number of
iterations

→ Similar but more demanding then branch testing

© Bogdan Wiszniewski, 2024

157

Example

© Bogdan Wiszniewski, 2024

 P = 1 (2 3 (4 ∪ 5))* 2 6

 p 0 = 1 2 6,

 p 1 = 1 2 3 4 2 6

 p 2 = 1 2 3 5 2 6

 p 3 = 1 2 3 4 2 3 5 2 6

 p 4 = 1 2 3 5 2 3 4 2 6
...

158

Domain testing

(!) Looking for domain errors

• Assumptions:
– Predicates p(x) are linear functions on X,
– Path computations c(p) are different,
– No coincidental correctness.

© Bogdan Wiszniewski, 2024
ON

ONOFF

D(p)i

D(p)j

159

Domain testing

(!) Looking for domain errors

• Assumptions:
– Predicates p(x) are linear functions on X,
– Path computations c(p) are different,
– No coincidental correctness.

© Bogdan Wiszniewski, 2024
ON

ONOFF

D(p)i

D(p)j

160

Domain testing

(!) Looking for domain errors

• Assumptions:
– Predicates p(x) are linear functions on X,
– Path computations c(p) are different,
– No coincidental correctness.

© Bogdan Wiszniewski, 2024
ON

ONOFF

D(p)i

D(p)j

161

Domain testing

(!) Looking for domain errors

• Assumptions:
– Predicates p(x) are linear functions on X,
– Path computations c(p) are different,
– No coincidental correctness.

© Bogdan Wiszniewski, 2024
ON

ONOFF

D(p)i

D(p)j

162

Domain testing

(!) Looking for domain errors

• Assumptions:
– Predicates p(x) are linear functions on X,
– Path computations c(p) are different,
– No coincidental correctness.

© Bogdan Wiszniewski, 2024
ON

ONOFF

D(p)i

D(p)j

163

Example

• Domain testing

© Bogdan Wiszniewski, 2024

)(1pD)(2pD

)(3pD)(4pD

1t

2t

3t

4t
T

164

Computational
equivalence of paths
– Input data: x=<x1, x2, ..., xn>
– Input domain: D=X1×X2×...×Xn
– Output variables: y=<y1, y2, ..., ym>
– Path computation space: linear, (n+m)-dimensional

© Bogdan Wiszniewski, 2024

path p

(n+m)-vector
n+m vectors

t =<d 1 , d 2 , ..., d n , r 1 , r 2 , ..., r m >
{ t 1 , t 2 , ..., t n+m }

Test case:

D(p)

C(p)

F() x
_

x
_

y
_

165

Example

• Path computation testing:
– path

– computation

– hyperplane

© Bogdan Wiszniewski, 2024

p1: 1-2-7-8-10-11-12-13

>→< 00001 ,],10[,,,,:)(optlenpooleitemoptlenpC >+−→< 1,1],10[,,,, 0000 optlenpooleitemoptlen









−

+







⋅








=








1
1

10
01

0

0

len
opt

len
opt

166

Simple loop patterns

– Input variables: x=<x1, x2, ..., xn>
– Input domain: D=X1×X2×...×Xn
– Program variables: z=<z1, z2, ..., zk>
– Program computation space: (n+2k)-dimensional

© Bogdan Wiszniewski, 2024

f 0 = g sv g ve , f 1 = g sv hg ve , ..., f n = g sv h n g ve , ...




 f n=0 0

f H n>0 n-1
f = n

H = (g
ve

) -1 h(g
ve

)
...

f n

f 0

f 1

(n+2k)-space

H

• test completion criterion:
1 +  (2k-1)/n  paths S =

167

Example

© Bogdan Wiszniewski, 2024

 int asynBCD(int number,int count){
1: 2 char symbol;
2: 3 for(;;)
3: 4 {for(;;)
4: 5 {receive(symbol);
5: 6 7 if((symbol==SPACE)||(symbol==STOP))
6: 11 break;
7: 8 count++;
8: 9 10 if(count>9)
9: return ERROR;
10: 3 }
11: 12 number=10*number+count;
12: 13 14 if(symbol==STOP)
13: return (number);
14: 2 }
15: }

Input variables:

symbol, number, count

→ n=3

Program variables:
number, count

→ k=2

168

Data flow

© Bogdan Wiszniewski, 2024

• Simple chain:
<definition, use>

d:

u:

x = f(5)+3y

z = 2x-y

...

• Use chain:
<all-definition, use>

d:

u:

x = f(5)+3y

z = 2x-y

...

a: w = x*z

...

• Live chain:
<all-definition, all-use>

d:

u:

x = f(5)+3y

z = 2x-y

...

a: w = x*z

...

b: y = x+w

...

criterion
→ Exercise each chain

169

Examples

© Bogdan Wiszniewski, 2024

 “d-u” chains (simple):

 <1,3>, <4,2>, ...

“ad-u” chains (use):

 <1,4,3>, <4,5,3>, ...

“ad-au” chains (live):

 <1,4,6>, <1,5,6>, ...

170

Mutation testing

(!) errors result from occasional "typos" in the
program text

 → test harness, Monte-Carlo

© Bogdan Wiszniewski, 2024

program
tested

mutants <t>

?

<t>
<t>

<t>
<t>

?
?

?
?

171

Example

© Bogdan Wiszniewski, 2024

M 1 → while (x=y) ...
M 2 → if (x=y) ...

<x,y> P M 1 M 2

<9,3> 3 9 3
<9,6> 3 - ↑

172

Structure of test cases

• Input data
• Expected results
• Environment settings
• Scenario context

© Bogdan Wiszniewski, 2024

173

Test script

© Bogdan Wiszniewski, 2024 Bogdan Wiszniewski, WETI-PG

/* TeSS 1 */
{
 /* request the master to go first (1) */
 <
 (before 0 22 [])
 >
 /* reach the voting configuration by slaves (2) */
 <
 (before 1 26 [print stid; print ntid;])
 (before 2 26 [print stid; print ntid;])
 (before 3 26 [print stid; print ntid;])
 >
 /* reach the reporting configuration by slaves (3) */
 <
 (before 1 41 [print data;])
 (before 2 41 [print data;])
 (before 3 41 [print data;])
 >
}

Logging the state

174 © Bogdan Wiszniewski, 2024

Test script

/* TeSS 2 */
{
 /* request the master to go first (1) */
 /* spoil v_size of slave #3 before voting */
 <
 (before 0 22 [])(after 3 23 [set v_size=0;])
 >
 /* reach the voting configuration by slaves (2) */
 <
 (before 1 26 [])
 (before 2 26 [])
 (before 3 26 [])
 >
 /* reach the reporting configuration by slaves (3) */
 <
 (before 1 41 [print data;])
 (before 2 41 [])
 (before 3 41 [])
 >
 /* make slave #1 winning the race */
 <
 (after 0 22 [])(after 1 41 [])
 >
}

Value enforcement

175

Attributes of test cases

• Representativeness
– A single case represents a subset

• Feasibility
– Non-empty set of input data exists, eg. path

condition is satisfied
• Observability

– Deterministic automaton
• Reproducibility

– All input data identified (path condition
interpretation)

– Timing conditions under tester’s control

© Bogdan Wiszniewski, 2024

176

Feasibility

© Bogdan Wiszniewski, 2024

 int asynBCD(int number,int count){
1: 2 char symbol;
2: 3 for(;;)
3: 4 {for(;;)
4: 5 {receive(symbol);
5: 6 7 if((symbol==SPACE)||(symbol==STOP))
6: 11 break;
7: 8 count++;
8: 9 10 if(count>9)
9: return ERROR;
10: 3 }
11: 12 number=10*number+count;
12: 13 14 if(symbol==STOP)
13: return (number);
14: 2 }
15: } !? p = 1 2 (3 4 5 7 8 10)10 3 4 5 7 8 9

177

Representativeness

© Bogdan Wiszniewski, 2024

x==y

<x,y>

x != y

x < y x > y

x%y != 0 x%y == 0 ...

178

Observability

© Bogdan Wiszniewski, 2024

→ Testing error

179

Reproducibility

© Bogdan Wiszniewski, 2024

180

Logging results

• Checkpoint
– static (“compiled in”)
– dynamic (breakpoint)

• Log
– centralized
– distributed

• Result analysis
– on-line (state or event detection),
– off-line (% of test coverage, error localization)
– replay (visualization, state recovery)

© Bogdan Wiszniewski, 2024

181

Test scenario execution
mode

• random
• supervised
• deterministic

© Bogdan Wiszniewski, 2024

182

Test scenario types

• One-thread-One-time (OtOt):
race detection

© Bogdan Wiszniewski, 2024

?

183

Test scenario types

•Many-threads-One-time (MtOt):
global state monitoring

© Bogdan Wiszniewski, 2024

184

Test scenario types

• One-thread-Many-times (OtMt):
single process path testing

© Bogdan Wiszniewski, 2024

185

Test scenario types

• Many-threads-Many-times (MtMt):
event monitoring

© Bogdan Wiszniewski, 2024

186

Instrumenting code and
environment

© Bogdan Wiszniewski, 2024

187

Probe effect

...disturbing internal timing
of processes by
instrumenting the system
code

© Bogdan Wiszniewski, 2024

188

Log structure

• Heading:
– Unique identifier
– Comment
– Records (table of content)

• Record:
– date, time, test case ID,
– event, local state, context

• Event:
– Statement executed, signal sent/received,

exception raised, variable value changed

• State:
– Object memory content

• Context:
– history, condition, global state

© Bogdan Wiszniewski, 2024

189

What is worth logging?

• Potential error occurrences:

– Arithmetic instructions (function calls,
assignments),

– Predicate (condition) evaluation,
– Type conversion, actual vs formal parameters,
– Return statements,
– Dynamic variables,
– Systems diagnostics, exception handlers,
– Message packing/unpacking,
– Message tagging,
– Races,
– Communications actions matching

© Bogdan Wiszniewski, 2024

190

Error localization

 (!) Knowing that the program has a bug
doesn't mean knowing what causes it

• Debugging:
– Post-mortem print-out, core dump,
– Trace file (log)
– Building a hypothesis,
– Elimination of hypotheses

• Tools:
– Print-out
– Breakpoint trap
– Instant replay

© Bogdan Wiszniewski, 2024

191

Is it possible to do
without testing?

• Programmers make mistakes when, when
creating a program, they are unable to remember
all the details needed to make it correct

• There are no bug-free programs, they are only
poorly tested

• Programs considered correct may still have
errors

• We can mistake correct program behavior for a
wrong one (and vice versa)

• Errors reveal throughout the entire life of a
program

© Bogdan Wiszniewski, 2024

	Critical systems software testing and QA
	Course organization
	Course organization
	Course content
	Literature
	Grading
	Pass/fail criteria
	Systematic approach
	Slajd numer 9
	Slajd numer 10
	Objectives
	Objectives
	Objectives
	Example
	Example
	Example
	Example
	Systematic approach
	Systematic approach
	Systematic approach
	Systematic approach
	Systematic approach
	Systematic approach
	Systematic approach
	Systematic approach
	Systematic approach
	Systematic approach
	Dynamic analysis
	Dynamic analysis
	Dynamic analysis
	Dynamic analysis
	Test case ”life cycle”
	Testing levels
	Unit testing
	Integration testing
	Bottom-up method
	Top-down method
	System testing
	System testing
	Acceptance testing
	Slajd numer 41
	Responsibility, time schedule
	Life-cycle phases (according to ECSS)
	Life-cycle processes (ECSS)
	Life-cycle processes (ECSS)
	Life-cycle processes (ECSS)
	Life-cycle processes (ECSS)
	Life-cycle processes (ECSS)
	Life-cycle processes (ECSS)
	Life-cycle processes (ECSS)
	Life-cycle milestones
	Life-cycle milestones
	Product maturity
	Quality attributes of a critical software system
	Quality attributes of a critical software system
	Classification of critical systems
	Classification of critical systems
	Classification of critical systems
	Classification of critical systems
	Slajd numer 60
	Verification process
	Verification process
	Verification process
	Verification process
	Verification process
	Verification process
	Verification process
	Verification process
	Verification process
	Verification process
	Validation process
	Validation process
	Delivery and installation process
	Acceptance process
	Experiment management
	Experiment management
	Test documentation (IEEE std.)
	Permanent (static) part of test documentation
	Permanent (static) part of test documentation
	Variable (dynamic) part of test documentation
	Test procedures
	Disposition of test items
	Exceptional situations
	Slajd numer 84
	Software inspections
	Software inspections
	Software inspections
	Software inspections
	Reviews
	Software audits
	Software audits
	Identification of critical elements
	Failure mode and effects analysis (FMEA)
	Failure mode and effects analysis (FMEA)
	Analysis of critical system elements
	Slajd numer 96
	Where do errors come from?
	The concept of a program error
	Error detection
	Error detection
	Error detection
	Characteristics of code objects
	Halstead’s metrics
	Halstead’s metrics
	Structural metrics
	Slajd numer 106
	Slajd numer 107
	Functional metrics
	Sources of errors
	Sources of errors
	Sources of errors
	Models
	Models
	Models
	Example
	Control flow
	Events
	Data flow
	Data flow
	State transitions
	Control flow errors
	Control flow errors
	Slajd numer 123
	State errors
	State errors
	Text anomalies
	Text anomalies
	Text anomalies
	Run-time environment models
	Run-time environment models
	Run-time environment models
	Run-time environment models
	Run-time environment models
	Run-time environment models
	Run-time environment models
	Run-time environment models
	Run-time environment models
	Dynamic analysis techniques
	Dynamic analysis techniques
	Slajd numer 140
	Black-box strategies
	Black-box strategies
	Black-box strategies
	Special values
	Polynomial equivalence
	Monte-Carlo testing
	Monte-Carlo testing
	Slajd numer 148
	White-box testing strategies
	White-box testing strategies
	White-box testing strategies
	White-box testing strategies
	Branch testing
	Path testing
	Path testing
	Boundary-interior method
	Example
	Domain testing
	Domain testing
	Domain testing
	Domain testing
	Domain testing
	Example
	Computational equivalence of paths
	Example
	Simple loop patterns
	Example
	Data flow
	Examples
	Mutation testing
	Example
	Structure of test cases
	Test script
	Test script
	Attributes of test cases
	Feasibility
	Representativeness
	Observability
	Reproducibility
	Logging results
	Test scenario execution mode
	Test scenario types
	Test scenario types
	Test scenario types
	Test scenario types
	Instrumenting code and environment
	Probe effect
	Log structure
	What is worth logging?
	Error localization
	Is it possible to do without testing?

