NeurophStudio

http://neuroph.sourceforge.net/download.html

wybrałam ten program ponieważ ma opcję rozpoznawania obrazów

Nowy projekt

Nowa sieć

Nowa sieć

✓ Wybieramy liczbę wejść i Wyjść oraz regułę nauczania \rightarrow Perceptron Learning W ten sposób stworzyliśmy sieć neuronową z dwoma neuronami na wejściu i jednym na wyjściu, co jest przedstawione graficznie na screanie obok

.

	¥	New Neural Network	×
	 Set neural network name and type Projects 	Number of input neuors, number of output neuros and learning rule Inputs Num Outputs Num Learning rule Perceptron Lear	
,	ANDNetwork - Explorer ×	s .nnet	
		Outputs: Out 1	

✓ Otwieramy nowy plik

→ wybieramy Data Set

*	New File		×
Steps	Choose File Type		
 Choose File Type 	Project: LogicGates		~
	Categories:	File Types: Neural Network Sample Data Set Licence Plate Recognition Image Recognition Data Set Srain Wave Recognition	

✓ Wybieramy nazwę tutaj AND

liczbę wejść i wyjść

oraz typ

\$-	New Data Set	x
 Steps Choose File Type Set data set name, type and number of inputs and outputs 	Set data set name , type and number of inputs and outputs Data set name AND Type Supervised Number of inputs 2 Number of outputs 1	

✓ W oknie pojawi się plik z danymi do trenowania (jeżeli nie to potrzeba dwukliknąć na ikonę obok And.tset). Dodajemy Add Row (przycisk na dole na screenie go nie widać)

*		Neurop	hStudio 201510122201	
File Edit Versioning View Naviga	ate Source Refactor Run Debug Tools Window Help			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	V T W V Train Stop Pause Test Reset	■●		
Projects × -	ANDNetwork.nnet × AND ×			
CatsandBirds		Data Set Name AND		
Neural Networks	Input 1	Input 2		Output 1
ANDIVETWORKING Training Sets AND.tset Test Sets				

✓ Poniżej wpisałam wejścia i wyjścia dla bramki AND, koniecznie zatwierdźcie dane przyciskiem OK na dole okna

*			
File Edit Versioning View N	lavigate Source Ref	actor Run Debug To	ools Window Help
12 🔁 😫 🦻 🥙		· T 🎲 🕨	Train Stop Pause Test
Projects × -	ANDNetwork.nnet ×	AND ×	
		Data Set Name	
🖃 🚺 Neural Networks	Input 1	Input 2	Output 1
ANDNetwork.nnet	0	0	0
Training Sets	0	1	0
AND.tset	1	0	0
🗄 🔑 Test Sets	1	1	1

Przechodzimy do zakładki AndNetwork.nnet

✓ Pojawi się okno dialogowe Celem uczenia się sieci jest zminimalizowanie funkcji błędu ✓ Pozostałe parametry: Learning rate - parametr kontroluje wielkość wag jest z przedziału [0,1] Momentum – dodaje pewien ułamek wagi z poprzedniej iteracji, zapobiega wpadaniu w minima lokalne, także z przedziału [0,1] Zatwierdzam parametry przyciskiem Train

Sector Training Dialog	×
Stopping Criteria	
Max Error 0.01	
Limit Max Iterations	
Learning Parametars	
Learning Rate 0.2	
Momentum 0.7	
Crossvalidation	
Use Crossvalidation	
Subset count	
60 20 20	
Allow samples repetition	
Save all trained networks	
Options	
Display Error Graph	
i urn off for faster learning	
Train Close	

✓ Po ośmiu iteracjach błąd praktycznie spadł do zera

Testowanie sieci

W tym kroku należy podać
 nazwę danych do testów oraz
 liczbę próbek obrazu
 (w innym projekcie wzięłam
 16 na 16, po prostu przy tylu
 danych program się wieszał)

Ustawiamy parametry
 Sieci – wpisałam 12 neuronów
 w warstwie ukrytej, ustalamy
 także funkcję aktywacji

 Przechodzimy do trenowania sieci: dane testowe przerzucamy (drag&drop) do wejścia sieci i naciskamy przycisk Train

✓ Przechodzimy do trenowania sieci. Celem uczenia się sieci jest zminimalizowanie funkcji błędu-✓ Pozostałe parametry: Learning rate - parametr kontroluje wielkość wag jest z przedziału [0,1] Momentum – dodaje pewien ułamek wagi z poprzedniej iteracji, zapobiega wpadaniu w minima lokalne, także z przedziału [0,1]. Zbyt niska wartość nie zapobiega wpadnięciu w minimum lokalne, zbyt wysoka powoduje niestabilności

🛓 Training Dialog	×
Stopping Criteria	
Max Error 0.01	
Limit Max Iterations	
Learning Parametars	
Learning Rate 0.2	
Momentum 0.7	
Crossvalidation	
Use Crossvalidation	
Subset count	
4	
Subset distribution (%)	
Allow samples repetition	
Save all trained networks	
Options	
Display Error Graph	
Turn off for faster learning	
Train Close	

Po ośmiu iteracjach funkcja błędu spadła poniżej ustalonego wcześniej parametru

✓ W zakładce Image Recognition Test testuję także inne obrazy kotów i ptaków – na przykładzie widać, ______

że grafika tego ptaszka

bardziej przypomina sieci

ptaka niż kota. Ładujemy

nowe obrazy do testów przy

pomocy Select Test Image

Testing network Cat	AndBirds_net			Test of	data set	CatsAndBird
			<i>e</i> e			
Dutput ×	louroph X Imago P	Select Te	est Image	Test who	ole data set	sults X
JMonkeyEngine Logs × N bird : 0,0257	europh × Image Re	ecognition	n Test X	Image Reco	ognition ke	suits ×
cat : 0						