
Parallel and Distributed Algorithms
– Instruction 1
Written by: Karol Draszawka
Date: 10.03.2016

1 Aims of the laboratory

The first lab has three main aims:
• introducing our simple simulator of a distributed computing system, which will be used

throughout the whole course in the laboratory;
• introducing algorithms performance measurement framework, which also will be used in

most the labs;
• finally, familiarizing students with one of basic communication operations and possible

algorithms besides that operation. Students will be given a naive version of that operation
(implemented using algorithm of linear complexity), and will have to write a correct (of
logarithmic complexity) version.

The code for this lab is in Lab01X.zip file. You should extract files and open the project from
Netbeans IDE.

2 Simple Distributed Computation System Simulator

Package distributedmodel contains code of the simulator. The package implements a
model of distributed computing nodes connected with each other using a network (see Illustration
1).

In a system with N nodes, the nodes have indexes from 0 to N-1. The number of nodes in a
distributed system is configurable during construction. The system is distributed, so there is no
shared memory between the nodes. All the communication between them has to be done by
messaging through the network.

ARIR lab1, 1/5

Illustration 1: Schematic view on a simulated distributed system of computing nodes.

Node 0

MyData

Node 1

MyData

Node 2

MyData

Node N-1

MyData

Process Process Process Process

Synchronuous Network Channel

Each node has its computation process as well as its memory, implemented as MyData field
of double[] type. This field has its public getter and setter. A node can check what index it has in
a current distributed system (getMyIdx() method) as well as how many nodes are in the system in
total (getNumberOfAllNodes()).

The rest of public methods of class Node is related to point-to-point network
communication. There are two families of methods: related to sending and receiving. Both sending
and receiving methods are synchronous. This means that calling a send method (in all its
overloads) blocks the execution of the instructions of the sending node until the message is received
by a destination node (via one of receive methods). The same is true for receiving methods: they
block a receiving node until some node has sent a message to the receiver.

Because sometimes the synchronous feature of communication methods makes troubles (for
example, one of the nodes is waiting at send or receive and therefore prevents the whole distributed
system from closing the simulation), the methods can be called with verbose flag set to true (this
is the default behavior) enabling logging every communication detail to the console.

A node must specify which other node is the desired destination of the message by passing
the destination parameter to a send method. On the other hand, receive methods do not have
corresponding source arguments - they simply receive everything which comes to node’s input port.
If the knowledge of an origin of the message is required, this can be obtained by investigation of a
received DataPacket structure.

Because it is often the case that nodes send data from MyData field as a whole, as well as
nodes frequently set this field to just received data, there exist shortcut methods: sendMyData and
receiveAndSet.

The knowledge of the details of the system not given above are not needed to do the
exercises, but interested students are welcome to investigate the code in this package.

3 Performance measurement framework

Package labs contains starting code of the project as well as algorithms' performance
measurement framework. When project is run it constructs a few times a new distributed system
(with varying number of nodes) (see method testAll in Lab01X class). After each construction it
invokes a tested distributed algorithm (the algorithm is run in parallel on all the nodes of a
constructed distributed system) and waits for the algorithm to finish. The algorithm's running time
is measured. This is repeated for systems with increasing number of nodes. This way, the
complexity of algorithms can be empirically checked by simply looking at a chart generated at the
end of testAll method. After opening the project and clicking run Button, such series of
simulations should be executed and, after a while a chart should pop out, one like this on Illustration
2.

Besides measuring time, after each simulation the status of nodes in a distributed system can
be validated (if validateResults flag is turned on). It is important to ensure that the validation
is successful ('Results are CORRECT' text in the output console), otherwise the algorithm does not
do what expected. Initially, the first four simulations are successfully validated, but the next four
not. This is because the first four run a already implemented naive version of an algorithm under
investigation and the second four run not yet implemented correct version (i.e. with better time
complexity characteristics).

In addition, verboseCommunication flag controls whether all the details about point-
to-point communication should be logged, and printStatusBeforeAndAfter flag
determines whether to print contents of MyData fields of all nodes before and after the execution
of an algorithm.

ARIR lab1, 2/5

4 Basic communication algorithm – Broadcast example

Package algoritms.distributed is the place where classes implementing given
algoritms are placed. In this case, algorithms are written as methods in BasicCommunication class.
Here, the broadcast operation will be described, but in the lab there can be other algorithm for
BasicCommunication (such as scatter, gather, reduce, all-to-all broadcast and so on).

The crucial thing to keep in mind that the methods implementing the algorithms (such as
public static void broadcastNaive(Node node)) are executed in parallel locally
on all the nodes of the distributed system. To differentiate the execution of the program between
nodes, one must depend the computation on node's index. This is why almost every distributed
program first checks what is the index the executing node has.

The aim of broadcast operation is to distribute data initially stored on one node to all the
other nodes in the system. Here we assume that initially node 0 is the one which has data (in its
MyData field) and all the other nodes have no data. The exepected state after broadcast operation is
that all the nodes has their MyData fields equal to what initially was only in node 0.

Naively implemented broadcast do this task as follows. If a node does not have any data, it
waits to receive it calling receiveAndSet method. If it gets data (or had data from the start, as in
case of node 0), then it sends it further to the next node (unless it does not exist). After what was
send is received, the node has done his work. Visually, the communication pattern is presented in
Illustration 3.

ARIR lab1, 3/5

Illustration 2: Performance chart after running the project.

5 Student's task

Student should fill in the code implementing the correct version of a basic communication
algorithm. In case of broadcast, the communication pattern could be one of two presented in
Illustration 4 and Illustration 5. Ensure that simulations are successfully validated and that the
performance chart has the correct curve (should be logarithmic). In the coding, binlog helper
methods, defined in algorithms.Utils class may be useful.

ARIR lab1, 4/5

Illustration 3: Naive broadcast communication pattern.

1 2 3 4 5 6 70

1 2 3 4 5 6 7

2 3 4 5 6 7

3 4 5 6 7

4 5 6 7

5 6 7

6 7

7

t=0

t=1

t=2

t=3

t=4

t=5

t=6

t=7

sending node

receiving node

Nodes

ARIR lab1, 5/5

Illustration 4: Correct broadcast communication pattern - version 1.

1 2 3 4 5 6 70

1 2 3 4 5 6 7

2 3 4 5 6 7

3 5 7

t=0

t=1

t=2

t=3

sending node

receiving node

Nodes

0

0 1

1

Illustration 5: Correct broadcast communication pattern - version 2.

1 2 3 4 5 6 70

1 2 3 4 5 6 7

2 3 4 5 6 7

5 7

t=0

t=1

t=2

t=3

sending node

receiving node

Nodes

0

0 1

4 6

