
Parallel and Distributed Algorithms
– Instruction 2 – Scan operation
Written by: Karol Draszawka
Date: 18.03.2016

1 Aims of the laboratory

The second lab has two main aims:
• familiarizing students with scan (prefix op) algorithms, for distributed systems with

blocking communication as well as for systems with shared memory
• introducing and familiarizing students with shared memory parallel computations using

threads in Java programming language

The code for this lab is in Lab02.zip file. Extracted folder should be opened as a project from
Netbeans IDE.

2 Scan operation and it's various algorithms

A scan operation for a data sequence returns another linearly ordered data such that an
element at position i is a result of an binary associative operator applied to all elements of the
source sequence up to that position i. For example, if a binary associative operator is simply
addition of two elements, then for input sequence [1, 2, 3, 0, 5] the resulting sequence is [1, 3, 6, 6,
11] (the scan operation with addition as binary associative operator is often called prefix-sum).

Serial code for scan is therefore:

 public static void scanSerial(double[] array, DoubleBinaryOperator op){
 for(int i = 1; i < array.length; ++i){
 array[i] = op.applyAsDouble(array[i-1], array[i]);
 }
 }

The serial code has time complexity O(n), where n is the size of a sequence.

2.1. Two versions of scan for distributed systems with blocking
communication

There is a number of communication patterns for distributed processes that want to perform
a scan operation. Illustration 1 shows one possibility. The algorithm is composed of two phases.

ARIR lab2, 1/5

The first one is simply a reduce operation, where the process with largest rank/ID collects the result
of applying an operator through the whole sequence using binary tree structure. The second phase
“fills” the gaps in resulting sequence to obtain the desired output. In this version, a value holded by
a given process is updated every time it receives a message by applying a binary operator between
this value and value received.

Illustration 2 shows another possible communication pattern. The pattern is composed of a
number of mutual data exchanges between processes. With blocking communication, the exchange
process requires two time steps. An already written method exchangeWith does this and can be
used for this algorithm. Although the pattern is easier when compared to the above, to calculate
correct scan results nodes must hold and calculate two separate values: it's own value (which at the
end will compose resulting sequence of scan), and auxiliary message value (the value that will be
send by this node in the next step). Message value is updated every time a node receives a message
by applying binary operator between this value and received one. However, a node's own value is
updated only if it received data from a node with smaller ID. Initially, both values are the same for a
given node.

ARIR lab2, 2/5

Illustration 1: Scan algorithm (prefix-sum) for a distributed system - version 1.

2.2. Scan algorithm for processes with shared memory (Hillis/Steele
version)

For processes that share memory, another communication pattern guarantees valid scan results (see
Illustration 3). Implementing this algorithm it is important to note, that between every write and
read operations of a shared memory cell, there should be a synchronization of threads. Otherwise
one thread can read not yet updated value by another cell, or a thread can update a cell before
another even read its previous value.

ARIR lab2, 3/5

Illustration 2: Scan algorithm (prefix-sum) for a distributed system -version 2.The value inside a
node represents the 'own' value of the node, while the number inside brackets besides a node
describes a 'message' value of the node.

3 Shared memory parallel computation using threads in Java

Algorithms in package algorithms.shared will have a common structure. They will
contain a definition of a Runnable class, that has to implement a public run() method, which
will normally be a student's task. Then a number of threads will be created, each with a new
instance of the Runnable class. Then all created threads are started to execute in parallel code
defined in run() method. When all the threads finish their work, a given algorithm ends.

Because shared memory parallel algorithms often requires synchronization between all
processes, each constructed thread has a handler to the same one instance of a CyclicBarrier
class. When the synchronization is needed, they can call an await() method on that barrier
instance. The barrier blocks threads in this method as long as all the threads will execute this call.

4 Student's task

Student should fill in the code implementing one of the presented versions of a scan
operation for distributed system and Hillis/Steele algorithm for shared memory threads.
In testAll method of Lab02 class, student can select which tests to perform – initially single

ARIR lab2, 4/5

Illustration 3: Hillis-Steele scan algorithm for shared memory.

tests should be chosen, so that the correctness is confirmed. After checking correctness on single
runs, ensure that algorithms have correct time complexity by running series of simulations to show
performance chart. As previously, in the coding, binlog helper methods, defined in
algorithms.Utils class may be useful.

ARIR lab2, 5/5

