
Parallel and Distributed Algorithms
– Instruction 3 – Sorting algorithms
Written by: Karol Draszawka
Date: 7.04.2016

1 Aims of the laboratory

The second lab has two main aims:
• familiarizing students with two parallel sorting algorithms: bitonic sort for distributed

systems with blocking communication and parallelized quicksort for systems with shared
memory

• introducing and familiarizing students with shared memory parallel computations using
ForkJoin mechanism in Java programming language

The code for this lab is in Lab03.zip file. Extracted folder should be opened as a project from
Netbeans IDE.

2 Bitonic sort

Bitonic sort is one of many sorting algorithms based on sorting nets, i.e. simple
computational nodes with connections forming special patterns. Illustration 1 depicts this
connections using arrows: after exchanging a node from which an arrow starts saves a smaller
value, while a node to which an arrow points to saves a greater value.

Illustration 1: Bitonic sort of 8 elements using 8 nodes.

Such a bitonic sort algorithm is already implemented in a Sort class in
algoritm.distributed package:

/** Bitonic sort of the first elements of each node data.
 *
 * @param node
 */
public static void bitonicSortAsc(Node node){
 int myId = node.getMyId();
 double myData = node.getMyData()[0];
 int nNodes = node.getNumberOfAllNodes();
 int d = Utils.binlog(nNodes);

 for(int i = 0; i<d; ++i){
 for(int j = i; j >= 0; --j){
 int otherId = myId^(1<<j);
 double otherData = BasicCommunication.exchangeWith(node,
 otherId, myData);

 //if in myId (i+1)-th bit is not equal to j-th bit
 if(((myId&(1<<(i+1))) != 0) != ((myId&(1<<j)) != 0)){
 myData = Math.max(myData, otherData);
 }else{
 myData = Math.min(myData, otherData);
 }
 }
 }
 node.setMyData(new double[]{myData});
}

Described algorithm needs n nodes to sort n elements. To sort n elements on p (p << n)
nodes, it has to be modified in the following way:

• firstly, assuming that each node has exactly n/p elements, each node should sort them locally
• secondly, nodes should continue exchanging their arrays in accordance to bitonic sort net

pattern applying an compareSplit operation in each step, as it is shown in Illustration 2.

3 QuickSort

QuickSort is a very popular sorting algorithm. It has Θ(n lg n) average time complexity with
relatively small coefficients hidden under Θ notation. It sorts arrays in place. Pseudocode of
quicksort algorithm is given below:

Illustration 2: compareSplit example.

quicksort(A, lo, hi):
 if lo < hi:
 q := partition(A, lo, hi)
 quicksort(A, lo, q - 1)
 quicksort(A, q + 1, hi)

The algorithm recursively calls itself with the same array and different start and end point
indexes. In the partition part one of array elements is chosen as so called pivot value. Then an
array rearrangement is done, so that values smaller than pivot goes to positions before pivot and
bigger values to positions after pivot. The final position of pivot value defines then ranges of two
array parts that are then recursively sorted in the same manner.

The implementation of the algorithm can be found in SortSM class in
algorithms.shared package.

There are a couple of ways in which quicksort can be parallelized. Here a 'divide & conquer'
strategy is described. The parallelization can be achieved by simply starting each new recursive call
to quicksort on a new thread, that potentially can run in parallel to others. Because these recursive
calls work on different parts of an array there is no worry about hazards. However, naively creating
new Thread(...) for each call to quicksort would cost significant overheads caused by threads
creation, which would not be compensated by parallel computations, if the number of threads
exceeds the number of available processors. This is where Java Fork/Join framework becomes
handy.

4 Fork/Join Java framework

Fork/Join1 framework, introduced in JAVA SE7 and added to java.util.concurrent
package, is 'divide & conquer' parallelization technique. ForkJoinPool creates only as many
threads as there are processors available. Recursive code has to be written in a class inheriting from
RecursiveAction (or RecursiveTask<T>, if it returns a value). Tasks are scheduled between
threads in a way that maximizes utilization of resources.

Class SortSM contains an example of using fork/join framework to find the maximum
value of an array and place it at position 0 of that array (an example purposely formulated in in
place form).

5 Student's tasks

• write a generalized version of bitonic sort filling the code in the method
bitonicSortGeneralizedAsc in class algorithms.distributed.Sort.

• write a parallel quicksort algorithm using Fork/Join framework filling the code in class
algorithms.shared.SortSM.

1 More at: https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html
and http://www.oracle.com/technetwork/articles/java/fork-join-422606.html

http://www.oracle.com/technetwork/articles/java/fork-join-422606.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html

