Newton-Raphson method:

The goal of the exercise is to apply the Newton-Raphson method to find the root of a function $f(x)$, that is to say find the $x_{\text {Root }}$ value for which $f\left(x_{\text {Root }}\right)=0$.
It is assumed that we have an initial value $\left(x_{0}\right)$ close enough to $x_{\text {Root }}$. Using the values of the function $f\left(x_{0}\right)$ and of its derivative $f^{\prime}\left(x_{0}\right)$, one can calculate the tangent line crossing zero at the point x_{1}. Then, the value $\left(x_{1}\right)$ provides a new approximation to the root, which can be employed to calculate a new tangent line crossing zero at the point x_{2}. Thus, the process can be iterated according to the formula:

$$
x_{i+1}=x_{i}-\frac{f\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)}
$$

The algorithm is as follows:

1. Specify the values for x_{0} and Tolerance .
2. Calculate $f\left(x_{i}\right)$ and $f^{\prime}\left(x_{i}\right)$.
3. Calculate the new approximation to the root $\left(x_{i+1}\right)$.
4. Iterate the steps 2 and 3 until the Error is below a given Tolerance :

$$
\text { Error } \equiv\left|\frac{x_{i+1}-x_{i}}{x_{i+1}}\right| \leq \text { Tolerance }
$$

5. Print the root value ($x_{\text {Root }}$).

Exercise:

1) Find the root of the function $f(x)=\cos x-x$ starting with the initial value $x_{0}=0$.

- Derive the analytical expression for $f^{\prime}(x)$.
- Calculate the root ($x_{\text {Root }}$) with 8 digits of accuracy and compare the number of necessary iterations with the bisection method.

2) Find the 4 roots of the polynomial $P(x)$ in the interval $[0,1]$.

$$
P(x)=\frac{6435 x^{8}-12012 x^{6}+6930 x^{4}-1260 x^{2}+35}{128}
$$

- Indicate the values of the 4 roots on the graph:

- What happens if one starts with the initial value $x_{0}=0.4$?

3) Use the Newton-Raphson method to calculate the value of x such that: $x=13^{2 / 3}$
