Hybrid method:

The goal of the exercise is to combine the bisection and Newton-Raphson methods to find the root of a function $f(x)$, that is to say find the $x_{\text {Root }}$ value for which $f\left(x_{\text {Root }}\right)=0$.
It is assumed that $x_{\text {Root }}$ is in the interval $\left[x_{L}, x_{R}\right]$ (for the bisection method) and the initial value for the Newton-Raphson method is taken as $x_{0}=x_{L}$.
Then, the program should decide if it should do a bisection step or a Newton-Raphson step. For that, it must check if a Newton-Raphson step stays in the interval $\left[x_{L}, x_{R}\right]$, i.e. the inequality,

$$
x_{L} \leq x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} \leq x_{R}
$$

must be verified and can be written as

$$
\begin{array}{ll}
\text { If } f^{\prime}\left(x_{0}\right)>0: & \left(x_{0}-x_{L}\right) f^{\prime}\left(x_{0}\right)-f\left(x_{0}\right) \geq 0 \geq\left(x_{0}-x_{R}\right) f^{\prime}\left(x_{0}\right)-f\left(x_{0}\right) \tag{1}\\
\text { If } f^{\prime}\left(x_{0}\right)<0: & \left(x_{0}-x_{L}\right) f^{\prime}\left(x_{0}\right)-f\left(x_{0}\right) \leq 0 \leq\left(x_{0}-x_{R}\right) f^{\prime}\left(x_{0}\right)-f\left(x_{0}\right)
\end{array}
$$

Thus, if the inequality (1) is verified the program should do a Newton-Raphson step, otherwise it should do a bisection step.
Additionally, the interval $\left[x_{L}, x_{R}\right]$ should be adjusted after each bisection and NewtonRaphson steps.
The process should be iterated until the Error is below a given Tolerance :

$$
\text { Error } \equiv\left|\frac{x_{i+1}-x_{i}}{x_{i+1}}\right| \leq \text { Tolerance }
$$

Exercise:

1) Test the program on the polynomial $P(x)$ with $x_{L}=x_{0}=0.4$ and $x_{R}=0.7$

$$
P(x)=\frac{6435 x^{8}-12012 x^{6}+6930 x^{4}-1260 x^{2}+35}{128}
$$

Give the number of bisection and Newton-Raphson steps.
2) Find the root of the function $f(x)=x^{2}-2 x-2$ in the interval $[0,3]$.

