Lagrange and Hermite interpolations:

The goal of the exercise is to implement the Lagrange and Hermite interpolation methods to approximate a function $f(x)$ by a polynomial $p(x)$.

- In the Lagrange interpolation method it is assumed that we know the function $f(x)$ at n points $\left[x_{j}, f\left(x_{j}\right)\right]$ with $j=1, \ldots, n$. The Lagrange interpolating polynomial is given by:

$$
p(x)=\sum_{j=1}^{n} l_{j, n}(x) f\left(x_{j}\right)
$$

with

$$
l_{j, n}(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{j-1}\right)\left(x-x_{j+1}\right) \ldots\left(x-x_{n}\right)}{\left(x_{j}-x_{1}\right)\left(x_{j}-x_{2}\right) \ldots\left(x_{j}-x_{j-1}\right)\left(x_{j}-x_{j+1}\right) \ldots\left(x_{j}-x_{n}\right)}=\prod_{i \neq j}^{n} \frac{x-x_{i}}{x_{j}-x_{i}}
$$

- In the Hermite interpolation method it is assumed that we know the function $f(x)$ and its derivatives $f^{\prime}(x)$ at n points $\left[x_{j}, f\left(x_{j}\right), f^{\prime}\left(x_{j}\right)\right]$ with $j=1, \ldots, n$. The Hermite interpolating polynomial is given by:

$$
p(x)=\sum_{j=1}^{n} h_{j, n}(x) f\left(x_{j}\right)+\sum_{j=1}^{n} \bar{h}_{j, n}(x) f^{\prime}\left(x_{j}\right)
$$

with

$$
\begin{gathered}
h_{j, n}(x)=\left[1-2\left(x-x_{j}\right) l_{j, n}^{\prime}\left(x_{j}\right)\right]_{j, n}^{2}(x) \\
\bar{h}_{j, n}(x)=\left(x-x_{j}\right) l_{j, n}^{2}(x)
\end{gathered}
$$

and

$$
l_{j, n}^{\prime}\left(x_{j}\right)=\frac{1}{x_{j}-x_{1}}+\frac{1}{x_{j}-x_{2}}+\ldots+\frac{1}{x_{j}-x_{j-1}}+\frac{1}{x_{j}-x_{j+1}}+\ldots+\frac{1}{x_{j}-x_{n}}=\sum_{i \neq j}^{n} \frac{1}{x_{j}-x_{i}}
$$

Exercise:

- Interpolate the function $f(x)=e^{x}$ with the points $x_{j}=-1.0 ; 0.5 ; 1.5 ; 2.0$
- Interpolate the function $f(x)=\frac{1}{1+x^{2}}$ with the points $x_{j}=-5.0 ;-4.0 ;-3.0 ; \ldots ; 4.0 ; 5.0$
- For both functions calculate the Lagrange and Hermite polynomial $p(x)$ in the interval $-5 \leq x \leq 5$ with a step of 0.1 and plot the results.

