LABORATORY 7

Cubic Spline Interpolation:

The goal of the exercise is to implement the so-called *natural spline* interpolation method to approximate a function f(x) by a polynomial p(x).

It is assumed that we know the function f(x) at *n* points $[x_j, f(x_j)]$ with j=1,...,n. The step size $h_j = x_{j+1} - x_j$ between the points is assumed to be constant $h_j = h$. The interpolating polynomial for $x \in [x_j, x_{j+1}]$ can be calculated from

$$p(x) = p_{j} + \left[\frac{p_{j+1} - p_{j}}{h} - \frac{1}{6}hp_{j+1}^{"} - \frac{1}{3}hp_{j}^{"}\right](x - x_{j}) + \frac{p_{j}^{"}}{2}(x - x_{j})^{2} + \frac{p_{j+1}^{"} - p_{j}^{"}}{6h}(x - x_{j})^{3}$$

where

$$p_i \equiv f(x_i)$$

and the $p_j^{"}$ (for j=1,...,n) can be obtained by solving the tridiagonal system of equations:

[1	0	0	•••	•••	•••	0	$\begin{bmatrix} p_1 \end{bmatrix}$		0 7
0	4h	h				÷	$p_2^{"}$		$6(p_3 - 2p_2 + p_1)/h$
0	h	·.	·			÷	÷		÷
:		·.	·	·.		÷	÷	=	:
:			·	·	h	0	÷		:
:				h	4h	0	$p_{n-1}^{"}$		$6(p_n - 2p_{n-1} + p_{n-2})/h$
0				0	0	1	p_n^{n-1}		0

Exercise:

- Interpolate the function $f(x) = \frac{1}{1+x^2}$ with the points $x_j = \{-5.0; -4.0; -3.0; ...; 4.0; 5.0\}$. Calculate the *natural spline* polynomial p(x) in the interval $-5 \le x \le 5$ with a step of 0.1 and plot the results.

Use Gaussian elimination to solve the tridiagonal system of equations.