Numerical Differentiation:

The goal of the exercise is to calculate the first and second derivatives of a function $f(x)$. The Forward Difference Approximations are given by
$f^{\prime}(x)=\frac{1}{h}[f(x+h)-f(x)]+E(h) \quad f^{\prime \prime}(x)=\frac{1}{h^{2}}[f(x)-2 f(x+h)+f(x+2 h)]+E(h)$ in which $E(h)$ is the error.

The Central Difference Approximations are given by
$f^{\prime}(x)=\frac{1}{2 h}[f(x+h)-f(x-h)]+E(h) \quad f^{\prime \prime}(x)=\frac{1}{h^{2}}[f(x+h)-2 f(x)+f(x-h)]+E(h)$

Exercise:

- Calculate $f^{\prime}(2)$ and $f^{\prime \prime}(2)$ for the function $f(x)=x e^{x}$ with $h=0.05 ; 0.10 ; \ldots ; 0.45 ; 0.50$ using the Forward and Central Difference Approximations. Compare to the exact results.
- For small values of h the error is given by $|E(h)| \approx h^{n}$, in which n is the order of the leading term in the error. This equation can be written as $\ln |E(h)| \approx n \ln h$, which takes the form of a linear function ($Y=A X$) with $Y \equiv \ln |E(h)|, X \equiv \ln h$ and $A=n$.

Calculate $|E(h)| \equiv \mid$ Numerical - Exact \mid for $f^{\prime}(2)$ with $h=0.05 ; 0.10 ; \ldots ; 0.45 ; 0.50$ using the Forward and Central Difference Approximations.

Plot $\ln |E(h)|$ with respect to $\ln h$ on a graph and deduce the order of the error (n), which is given by the slope (A) of the line. The slope of the line can be determined with the Least Squares method and is given by

$$
A=\frac{N \sum_{i=1}^{N} X_{i} Y_{i}-\sum_{i=1}^{N} \sum_{j=1}^{N} X_{i} Y_{j}}{N \sum_{i=1}^{N} X_{i}^{2}-\left(\sum_{i=1}^{N} X_{i}\right)^{2}}
$$

in which N is the number of points.

