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Synchronization
in distributed systems

● The need for synchronization
– Communication

– Ordering of events

● Centralized vs distributed clocks
● Group communication and elections
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Clock Synchronization

● Example: edit and compile code on different machines

● When each machine has its own clock, an event that 
occurred after another event may nevertheless be 
assigned an earlier time.
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Physical Clocks (1)



  
5

Physical Clocks (2)

● Computation of the mean solar day.
● Phisical clocks

– timer (quartz cristal) > counter > holding register > 
clock tick

– solar day, solar second (1/86400 day), mean solar 
second

● International Atomic Time (TAI)
– ticks of cesium 133

– leap seconds - solar days become longer

● Universal Cooridnated Time
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Physical Clocks (3)

● TAI seconds are of constant length, unlike solar 
seconds.

● Leap seconds are introduced when necessary 
to keep in phase with the sun.
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Clock Synchronization 
Algorithms

● The relation between clock time and UTC when clocks tick 
at different rates. (maximum drift rate)
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Cristian's Algorithm (1)

● A time server exists and has a WWV receiver
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Cristian's Algorithm (2)

● Each client machine sends a message to the 
time server asking for the current time
– The server responds

● Two problems (and solutions)
– server time might be lower, time must never run 

backward
● change must be introduced gradually

– communication takes a nonzero amount of time
● a simple estimate (T1 - T0) / 2 or 
● improve by calculating interrupt handling time I

message propagation time is calculated as T1 - T0 - I
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The Berkeley Algorithm (1)



  
11

The Berkeley Algorithm (2)

● The time daemon asks all the other machines 
for their clock values (server is active)

● The machines answer
● The time daemon tells everyone how to adjust 

their clock
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Decentralized Algorithms

● Averaging algorithm
– Divide time into fixed-length resynchronization 

intervals
● T0+iR, T0+(i+1)R, T0 - a moment in past, R - system 

parameter

– Every machine broadcasts its time

– Every machine collects all other broadcasts
● when all broadcasts arrive, compute a new time
● take average, discard m highest and m lowest values
● estimate propagation time (from network topology)
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Logical clocks (1)

● Phisical time is not always necessary
● Happens-before relationship (Lamport)

– a, b are events in the same process, a occurs 
before b, a -> b, C(a) < C(b) (C == Clock)

– a - message sending, b - message receiving, a -> b
C(a) < C (b)

● Concurrent events
– neither x->y nor y->x, C(x) != C (y)

– the clock time must always go forward



  
14

Logical clocks (2)

● Messages are assinged a timestamp
– receiver fast forwards its clock if it is prior to 

message send time

● For example
– three processes, each with its own clock.  The 

clocks run at different rates.

– Lamport's algorithm corrects the clocks.
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Logical clocks (3)
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Example: Totally-Ordered 
Multicasting
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Totally-Ordered Multicasting (2)

● Updating a replicated database and leaving it in 
an inconsistent state.
– (for example: bank update -100$, +1% interest 

rates)

● Two updates should be performed in the same 
order at each copy

● Totally ordered multicast
– all messages are delivered in the same order to 

each receiver

– use Lamport timestamps - distributed fashion
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● Assumptions:
● Each message is timestamped with the current 

(logical) time of its sender (logical time + 
sender)

● A message is conceptually also send to the 
sender

● Messages from the same sender are received 
in the order they were send

● No message is lost

Totally-Ordered Multicasting (3)
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Totally-Ordered Multicasting (4)

● When a process receives a message it is put into a local queue, 
ordered according to its timestamp

● The receiver multicasts an acknowledgment

– acknowledgment timestamp is higher than message
● Eventually, all processes will have the same copy of the local 

queue

– each message is multicasted (including acknowledgments)

– processes put messages in local queues according to 
timestamps (Lamport timestamps ensure consistent global 
ordering of events)

● A process delivers a queued message to the application if

– the message is at the head of the queue and

– it has been acknowledged by each other process
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Vector timestamps (1)

● Lamport timestamps are insufficient in some 
cases
– C(a) < C(b) does not necessarily imply that a 

happened before b

– for example network news: delivering message B 
after message A does not imply that B is a reaction 
to A

– causality (przyczynowość)

– the receipt of an article always causally precedes a 
reaction
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Vector timestamps (2)

● A vector timestamp VT(a) assigned to an event 
a has the property that if VT(a) < VT (b) for 
some event b, then a is known to causally 
precede event b
– each process Pi maintains a vector Vi

● Vi[i] - the number of events that have occurred so far at Pi
● if Vi[j]=k then Pi knows that k events have occurred at Pj

– the first property is maintained by incrementing Vi[i] 
at the occurrence of each new event at Pi

– the second property is maintained by piggy-back 
vectors along with messages, timestamp vt is send 
with messages



  
22

Vector timestamps (3)

● A receiver receives vt
– it is informed about the number of events that have 

occurred at Pi

– informed about how many events at other 
processes have taken place before Pi sent 
message m

– potentially causally dependent

● When Pj receives m, it  adjusts its vector
– Vj[k] = max {Vj[k], vt[k]}
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Global state

● Global state consists of the local state of each 
process and the messages that are currently in 
transit

– detect deadlock or end of computation

● Distributed snapshot
– reflects a state in which the distributed system might have 

been

– reflects a consistent global state
● if we have recorded that P has received a message 

from Q, we should have recorded that Q had sent it
● the reverse condition is allowed (Q has sent, P has not 

received)



  
24

Global State (2)

● (a) A consistent cut
● (b) An inconsistent cut
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Distributed snapshot

● Organization of a process and channels for a distributed 
snapshot, assumption:

– a distributed system - a collection of processes connected 
by unidirectional point-to-point communication channels
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Distributed snapshot (2)

● Any process can initialize (P)

● P records its state and sends a marker along each of its 
outgoing channels

● When Q receives a marker

– if Q had not recorded its state, Q records its state and sends 
a marker along each of its outgoing channels

– if Q had recorded its state, the marker on channel C 
indicates Q should record the state of the channel

– channel state - the squence of messages
● A process has finished its part when it has received a marker 

along each of its incomming channels

● The state can be sent, e.g., to the process that initialized the 
snapshot (different snapshots might be taken simultaneoustly)
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Distributed snapshot (3)

● Process Q receives a marker for the first time and 
records its local state

● Q records all incoming message

● Q receives a marker for its incoming channel and 
finishes recording the state of the incoming channel
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Election algorithms

● Many distributed algorithms require one 
process to act as coordinator

● Assumptions
– processes are the same, each process has a 

unique number

– every process knows the process number of every 
other process

– processes do not know which ones are currently up

● In general, locate the process with the highest 
number
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Election
The Bully Algorithm (1)

● A process, P, holds an election as follows:
– P sends an ELECTION message to all processes 

with higher number

– If no one responds, P wins and becomes 
coordinator

– If one of the higher-ups answers, it takes over, P's 
job is done
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The Bully Algorithm (2)

● The bully election algorithm

– Process 4 holds an election

– Process 5 and 6 respond, telling 4 to stop

– Now 5 and 6 each hold an election
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The Bully Algorithm (3)

● Process 6 tells 5 to stop
● Process 6 wins and tells everyone
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A Ring Algorithm

● Processes are ordered
● Process sends ELECTION message to its 

successor
– if the successor is down, the sender skips over it

● At each step, the sender adds its own process 
number - become a candidate

● Eventually, the message gets back to the 
process that started it

● The process calculates and sends 
COORDINATOR (circulated again)
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A Ring Algorithm

● Election algorithm using a ring.
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Mutual Exclusion

● Sequential systems (semaphores, monitors)
● Distributed systems

– algorithms: centralized, distributed, token ring
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A Centralized Algorithm

a) Process 1 asks the coordinator for permission to enter a critical 
region.  Permission is granted

b) Process 2 then asks permission to enter the same critical 
region.  The coordinator does not reply (or denies permission)

c) When process 1 exits the critical region, it tells the coordinator, 
when then replies to 2
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A Distributed Algorithm

● A process wants to enter a critical region

– it builds a message (name, process number, time)

– sends the message to all processes (group communication)

● A process receives a message

– sends OK

– if in the critical region, does not reply
● queues the request

– if it wants to enter, compares timestamps of the request and 
its request, the lowest wins

– queues the request if necessary

● When it exits the region, it sends OK messages to all 
processes on its queue
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A Distributed Algorithm

a) Two processes want to enter the same critical region at the 
same moment.

b) Process 0 has the lowest timestamp, so it wins.

c) When process 0 is done, it sends an OK also, so 2 can now 
enter the critical region.



  
38

A Token Ring Algorithm

a)An unordered group of processes on a network.

b)A logical ring constructed in software
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Comparison
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● A comparison of three mutual exclusion algorithms.
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