
Java High Level Concurrency Objects

Paweł Kaczmarek, Jan Cychnerski
2017



 

java.util.concurrent package 
(since version 5.0)

• Lock objects support locking idioms that simplify many concurrent 
applications.

• Executors define a high-level API for launching and managing 
threads. Executor implementations provided by java.util.concurrent 
provide thread pool management suitable for large-scale 
applications.

• Concurrent collections make it easier to manage large collections of 
data, and can greatly reduce the need for synchronization.

• Atomic variables have features that minimize synchronization and 
help avoid memory consistency errors.

• ThreadLocalRandom provides efficient generation of 
pseudorandom numbers from multiple threads.



 

Lock vs synchronized

• synchronized easier to use, but has limitations
• Lock - analogous to synchronized, but
– ability to back out of an attempt to acquire a lock
• tryLock

– backs out if another thread sends an interrupt before the 
lock is acquired
• lockInterruptibly

• demo



 

Executor

• There's a close connection between the task being done by a new 
thread, as defined by its Runnable object, and the thread itself, as 
defined by a Thread object
– works well for small applications
– separate thread management and creation from the rest of the 

application in large-scale applications
– Objects that encapsulate these functions are known as executors.

• Interface hierarchy
• Executor, ExecutorService, ScheduledExecutorService
• Implementing classes: ForkJoinPool, ScheduledThreadPoolExecutor, 

ThreadPoolExecutor



 

Executor interfaces

• Executor
– void execute(Runnable command)

• ExecutorService
– <T> Future<T> submit(Callable<T> task)
– Submits a value-returning task for execution and returns a 

Future representing the pending results of the task.
– invokeAll, invokeAny, isTerminated, ...

• ScheduledExecutorService
– impl class ScheduledThreadPoolExecutor
– schedule, scheduleAtFixedRate, ...



 

Executors helper class

• Static methods that create and return
– ExecutorService (ScheduledExecutorService) set up with 

commonly useful configuration settings
– "wrapped" ExecutorService
– ThreadFactory that sets newly created threads to a known state

• Examples
– newCachedThreadPool() - Creates a thread pool that creates new 

threads as needed, but will reuse previously constructed threads 
when they are available.

– newFixedThreadPool(int nThreads) - Creates a thread pool that 
reuses a fixed number of threads operating off a shared 
unbounded queue.



 

Thread pools

• Most of the executor implementations in java.util.concurrent 
use thread pools, which consist of worker threads.

• E.g. factory methods in Executors
• newFixedThreadPool, newCachedThreadPool, 

newSingleThreadExecutor
• Demo



 

Fork / Join

• The fork/join framework is an implementation of the ExecutorService 
interface that helps you take advantage of multiple processors. It is designed 
for work that can be broken into smaller pieces recursively. The goal is to use 
all the available processing power to enhance the performance of your 
application.

• ForkJoinPool class
– implements the core work-stealing algorithm

• ForkJoinTask (e.g. RecursiveTask)
– for tasks that run within a ForkJoinPool
– is a thread-like entity that is much lighter weight than a normal thread. 

Huge numbers of tasks and subtasks may be hosted by a small number of 
actual threads in a ForkJoinPool, at the price of some usage limitations. 

• Demo



 

Atomic Variables

• trivial operations on atomic variables - not thread safe
• using synchronized
– for more complicated classes, we might want to avoid the 

liveness impact of unnecessary synchronization
• java.util.concurrent.atomic
– defines classes that support atomic operations on single 

variables
– e.g. AtomicInteger

• Demo



 

Volatile and atomicity

• Volatile variables in the Java language can be thought of as 
"synchronized lite"
– less coding than synchronized
– do a subset of the things that synchronized

• Volatile variables share the visibility features of synchronized, 
but none of the atomicity features.
– threads will automatically see the most up-to-date value for 

volatile variables
– volatile alone is not strong enough to implement a counter, 

a mutex, or any class that has invariants that relate multiple 
variables (not suitable for x++)



 

Volatile and atomicity

• Conditions for using volatile
– Writes to the variable do not depend on its current value.
– The variable does not participate in invariants with other 

variables.
• Reads and writes are atomic for reference variables and for 

most primitive variables (all types except long and double).
• Reads and writes are atomic for all variables declared volatile 

(including long and double variables).
• Exemplary usages
– status flags, one-time safe publication, 



 

Atomic Variables compared 
to volatile

• A small toolkit of classes that support lock-free thread-safe 
programming on single variables. In essence, the classes in 
this package extend the notion of volatile values, fields, and 
array elements to those that also provide an atomic 
conditional update operation of the form:
– boolean compareAndSet(expectedValue, updateValue);

• provide access and updates to a single variable of the 
corresponding type



 

Concurrent Collections

• BlockingQueue
• ConcurrentMap
• ConcurrentNavigableMap



 

BlockingQueue (interface)

• Defines a first-in-first-out data structure that blocks or times out when 
you attempt to add to a full queue, or retrieve from an empty queue

• Classes
– ArrayBlockingQueue (with defined capacity)
– DelayQueue (unbounded, an element can only be taken when its 

delay has expired)
– other

• Implementations are thread-safe. All queuing methods achieve their 
effects atomically using internal locks or other forms of concurrency 
control.

• The bulk Collection operations addAll, containsAll, retainAll and 
removeAll are not necessarily performed atomically



 

BlockingQueue (interface)

• Methods come in four forms, with different ways of handling 
operations that cannot be satisfied immediately
– throws an exception - add, remove, element (get but don't 

remove)
– returns a special value (either null or false) - offer, poll, 

peek
– blocks the current thread indefinitely until the operation 

can succeed - put, take
– blocks for only a given maximum time limit - offer (e, time, 

unit), poll (time, unit)



 

ConcurrentMap

• A subinterface of java.util.Map that defines useful atomic 
operations

• A Map providing thread safety and atomicity guarantees.
• ConcurrentHashMap - standard general-purpose 

implementation (a concurrent analog of HashMap).
– retrieval operations do not entail locking
– there is not any support for locking the entire table in a 

way that prevents all access



 

ConcurrentNavigableMap

• extends ConcurrentMap<K,V>, NavigableMap<K,V>
– A subinterface of ConcurrentMap that supports approximate matches

• NavigableMap
– methods returning the closest matches for given search targets
– Methods lowerEntry, floorEntry, ceilingEntry, and higherEntry return 

Map.Entry objects associated with keys respectively
– firstEntry, pollFirstEntry, lastEntry, and pollLastEntry that return 

and/or remove the least and greatest mappings, if any exist, else 
returning null

• public class ConcurrentSkipListMap<K,V> extends AbstractMap<K,V> 
implements ConcurrentNavigableMap<K,V>, Cloneable, Serializable
– concurrent analog of TreeMap



 

ThreadLocalRandom

• for applications that expect to use random numbers from 
multiple threads or ForkJoinTasks

• less contention and, ultimately, better performance compared 
to Math.random()

• int r = ThreadLocalRandom.current().nextInt(1, 100)
– nextInt(int origin, int bound) - returns a pseudorandom int 

value between the specified origin (inclusive) and the 
specified bound (exclusive)



 

Bibliography

• http://www.ibm.com/developerworks/java/library/j-
jtp06197/index.html

• Oracle Java (8 SE) Tutorial




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

