

Parallel and distributed
algorithms

MapReduce: Simplified Data Processing
on Large Clusters

dr inż. Paweł Kaczmarek

Problem for MapReduce

● Process large amounts of raw data
– crawled documents, web request logs, etc.

● To compute various kinds of derived data
– inverted indices, various representations of the

graph structure of web documents, summaries of
the number of pages crawled per host

● Most such computations are conceptually
straightforward
– the input data is usually large

Problem for MapReduce

● Computations have to be distributed across
many machines
– parallelize the computation

– distribute the data

– handle failures

● Originates from Google research
– http://research.google.com/archive/mapreduce.html

– http://en.wikipedia.org/wiki/MapReduce

General operation

● The computation
– takes a set of input key/value pairs

– produces a set of output key/value pairs (in different
domain)

● Example
– counting the number of occurrences of each word in

a large collection of documents
● input: key: index, value: document
● output: key: word, value: count of occurrences

Occurrences of word in
collection of documents

map(String key, String value):
 // key: document name
 // value: document contents
 for each word w in value:
 EmitIntermediate(w, "1");
reduce(String key, Iterator values):
 // key: a word
 // values: a list of counts
 int result = 0;
 for each v in values:
 result += ParseInt(v);
 Emit(AsString(result));

Map reduce operation

● Map function
– processes a key/value pair to generate a set of

intermediate key/value pairs
● the example: emits each word plus an associated count

of occurrences - just `1' in this simple example

– takes one pair of data with a type in one data
domain, and returns a list of pairs in a different
domain

– groups together all intermediate values associated

– with the same intermediate key I and passes them
to the Reduce function

Reduce operation

● Merges all intermediate values associated with the same
intermediate key

– example: sums together all counts emitted for a
particular word

● accepts an intermediate key I and a set of values for that
key

● Merges together these values to form a possibly smaller
set of values

– typically just zero or one output value is produced per
Reduce invocation

● Intermediate values are supplied to the user's reduce
function via an iterator

Types

● map
– (k1,v1) -> list(k2,v2)

● reduce
– (k2,list(v2)) -> list(v2)

● The input keys and values are drawn from a
different domain than the output keys and
values.

Parallel / distributed issues

● MapReduce system (framework) usually splits the input data-
set into independent chunks

– processed by map / reduce tasks in a completely parallel
manner

– each mapping operation is independent of the others

– sorts the outputs of the maps, which are then input to the
reduce tasks

● Processing can occur on data stored either in a filesystem
(unstructured) or in a database (structured)

● The framework takes care of scheduling tasks, monitoring them
and re-executes the failed tasks

Parallel / distributed issues

● Map step: Each worker node applies the "map()" function to the
local data, and writes the output to a temporary storage. A
master node orchestrates that for redundant copies of input
data, only one is processed.

● Shuffle step: Worker nodes redistribute data based on the
output keys (produced by the "map()" function), such that all
data belonging to one key is located on the same worker node.

● Reduce step: Worker nodes now process each group of output
data, per key, in parallel.

● Similarly, a set of 'reducers' can perform the reduction phase,
provided that all outputs of the map operation that share the
same key are presented to the same reducer at the same time,
or that the reduction function is associative

Exemplary tool

● MongoDB provides the mapReduce database
command

● Demo
– run mongo

● mongod, mongo

– create db
● use algorithmdb
● db, show dbs
● show collections

Mongo map - reduce

● Insert demo data ("insert" file)
var customers =
[
{
 cust_id: "A1",
 status: 'A',

 amount: 500
},

... other customers
]

● ... functions

Mongo data

● load file - as JavaScript file
– load ("fileName")

– and file location

● db.algorithmdb.insert(customers)
– db.algorithmdb.find()

Mongo map-reduce functions

var mapFunction1 = function() {
 emit(this.cust_id, this.amount);
 };

var reduceFunction1 = function(keyCustId, valuesAmounts) {
 return Array.sum(valuesAmounts);
 };

db.algorithmdb.mapReduce(
 mapFunction1,
 reduceFunction1,
 { out: "map_reduce_example" }
)

● result in map_reduce_example collection
● db.map_reduce_example.find()

Bibliography

● http://research.google.com/archive/mapreduce.
html

● http://en.wikipedia.org/wiki/MapReduce
● http://hadoop.apache.org/docs/r1.2.1/mapred_t

utorial.html
● http://docs.mongodb.org/manual/core/map-

reduce/

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18

