

1

Synchronization

na podstawie:
A.S. Tanenbaum, M. van Steen

Distributed Systems Principles and Paradigms

z modyfikacjami P. Kaczmarek

2

Synchronization
in distributed systems

● The need for synchronization
– Communication

– Ordering of events

● Centralized vs distributed clocks
● Group communication and elections

3

Clock Synchronization

● Example: edit and compile code on different machines

● When each machine has its own clock, an event that
occurred after another event may nevertheless be
assigned an earlier time.

4

Physical Clocks (1)

5

Physical Clocks (2)

● Computation of the mean solar day.
● Phisical clocks

– timer (quartz cristal) > counter > holding register >
clock tick

– solar day, solar second (1/86400 day), mean solar
second

● International Atomic Time (TAI)
– ticks of cesium 133

– leap seconds - solar days become longer

● Universal Cooridnated Time

6

Physical Clocks (3)

● TAI seconds are of constant length, unlike solar
seconds.

● Leap seconds are introduced when necessary
to keep in phase with the sun.

7

Clock Synchronization
Algorithms

● The relation between clock time and UTC when clocks tick
at different rates. (maximum drift rate)

8

Cristian's Algorithm (1)

● A time server exists and has a WWV receiver

9

Cristian's Algorithm (2)

● Each client machine sends a message to the
time server asking for the current time
– The server responds

● Two problems (and solutions)
– server time might be lower, time must never run

backward
● change must be introduced gradually

– communication takes a nonzero amount of time
● a simple estimate (T1 - T0) / 2 or
● improve by calculating interrupt handling time I

message propagation time is calculated as T1 - T0 - I

10

The Berkeley Algorithm (1)

11

The Berkeley Algorithm (2)

● The time daemon asks all the other machines
for their clock values (server is active)

● The machines answer
● The time daemon tells everyone how to adjust

their clock

12

Decentralized Algorithms

● Averaging algorithm
– Divide time into fixed-length resynchronization

intervals
● T0+iR, T0+(i+1)R, T0 - a moment in past, R - system

parameter

– Every machine broadcasts its time

– Every machine collects all other broadcasts
● when all broadcasts arrive, compute a new time
● take average, discard m highest and m lowest values
● estimate propagation time (from network topology)

13

Logical clocks (1)

● Phisical time is not always necessary
● Happens-before relationship (Lamport)

– a, b are events in the same process, a occurs
before b, a -> b, C(a) < C(b) (C == Clock)

– a - message sending, b - message receiving, a -> b
C(a) < C (b)

● Concurrent events
– neither x->y nor y->x, C(x) != C (y)

– the clock time must always go forward

14

Logical clocks (2)

● Messages are assinged a timestamp
– receiver fast forwards its clock if it is prior to

message send time

● For example
– three processes, each with its own clock. The

clocks run at different rates.

– Lamport's algorithm corrects the clocks.

15

Logical clocks (3)
1

2

3

4

5

6

7

8 / 17

18

1

3

5

7

9

11 / 14

16

18

20

1

4

7

10

13

16

19

22

25

16

Example: Totally-Ordered
Multicasting

17

Totally-Ordered Multicasting (2)

● Updating a replicated database and leaving it in
an inconsistent state.
– (for example: bank update -100$, +1% interest

rates)

● Two updates should be performed in the same
order at each copy

● Totally ordered multicast
– all messages are delivered in the same order to

each receiver

– use Lamport timestamps - distributed fashion

18

● Assumptions:
● Each message is timestamped with the current

(logical) time of its sender (logical time +
sender)

● A message is conceptually also send to the
sender

● Messages from the same sender are received
in the order they were send

● No message is lost

Totally-Ordered Multicasting (3)

19

Totally-Ordered Multicasting (4)

● When a process receives a message it is put into a local queue,
ordered according to its timestamp

● The receiver multicasts an acknowledgment

– acknowledgment timestamp is higher than message
● Eventually, all processes will have the same copy of the local

queue

– each message is multicasted (including acknowledgments)

– processes put messages in local queues according to
timestamps (Lamport timestamps ensure consistent global
ordering of events)

● A process delivers a queued message to the application if

– the message is at the head of the queue and

– it has been acknowledged by each other process

20

Vector timestamps (1)

● Lamport timestamps are insufficient in some
cases
– C(a) < C(b) does not necessarily imply that a

happened before b

– for example network news: delivering message B
after message A does not imply that B is a reaction
to A

– causality (przyczynowość)

– the receipt of an article always causally precedes a
reaction

21

Vector timestamps (2)

● A vector timestamp VT(a) assigned to an event
a has the property that if VT(a) < VT (b) for
some event b, then a is known to causally
precede event b
– each process Pi maintains a vector Vi

● Vi[i] - the number of events that have occurred so far at Pi
● if Vi[j]=k then Pi knows that k events have occurred at Pj

– the first property is maintained by incrementing Vi[i]
at the occurrence of each new event at Pi

– the second property is maintained by piggy-back
vectors along with messages, timestamp vt is send
with messages

22

Vector timestamps (3)

● A receiver receives vt
– it is informed about the number of events that have

occurred at Pi

– informed about how many events at other
processes have taken place before Pi sent
message m

– potentially causally dependent

● When Pj receives m, it adjusts its vector
– Vj[k] = max {Vj[k], vt[k]}

23

Global state

● Global state consists of the local state of each
process and the messages that are currently in
transit

– detect deadlock or end of computation

● Distributed snapshot
– reflects a state in which the distributed system might have

been

– reflects a consistent global state
● if we have recorded that P has received a message

from Q, we should have recorded that Q had sent it
● the reverse condition is allowed (Q has sent, P has not

received)

24

Global State (2)

● (a) A consistent cut
● (b) An inconsistent cut

25

Distributed snapshot

● Organization of a process and channels for a distributed
snapshot, assumption:

– a distributed system - a collection of processes connected
by unidirectional point-to-point communication channels

26

Distributed snapshot (2)

● Any process can initialize (P)

● P records its state and sends a marker along each of its
outgoing channels

● When Q receives a marker

– if Q had not recorded its state, Q records its state and sends
a marker along each of its outgoing channels

– if Q had recorded its state, the marker on channel C
indicates Q should record the state of the channel

– channel state - the squence of messages
● A process has finished its part when it has received a marker

along each of its incomming channels

● The state can be sent, e.g., to the process that initialized the
snapshot (different snapshots might be taken simultaneoustly)

27

Distributed snapshot (3)

● Process Q receives a marker for the first time and
records its local state

● Q records all incoming message

● Q receives a marker for its incoming channel and
finishes recording the state of the incoming channel

28

Election algorithms

● Many distributed algorithms require one
process to act as coordinator

● Assumptions
– processes are the same, each process has a

unique number

– every process knows the process number of every
other process

– processes do not know which ones are currently up

● In general, locate the process with the highest
number

29

Election
The Bully Algorithm (1)

● A process, P, holds an election as follows:
– P sends an ELECTION message to all processes

with higher number

– If no one responds, P wins and becomes
coordinator

– If one of the higher-ups answers, it takes over, P's
job is done

30

The Bully Algorithm (2)

● The bully election algorithm

– Process 4 holds an election

– Process 5 and 6 respond, telling 4 to stop

– Now 5 and 6 each hold an election

31

The Bully Algorithm (3)

● Process 6 tells 5 to stop
● Process 6 wins and tells everyone

32

A Ring Algorithm

● Processes are ordered
● Process sends ELECTION message to its

successor
– if the successor is down, the sender skips over it

● At each step, the sender adds its own process
number - become a candidate

● Eventually, the message gets back to the
process that started it

● The process calculates and sends
COORDINATOR (circulated again)

33

A Ring Algorithm

● Election algorithm using a ring.

34

Mutual Exclusion

● Sequential systems (semaphores, monitors)
● Distributed systems

– algorithms: centralized, distributed, token ring

35

A Centralized Algorithm

a) Process 1 asks the coordinator for permission to enter a critical
region. Permission is granted

b) Process 2 then asks permission to enter the same critical
region. The coordinator does not reply (or denies permission)

c) When process 1 exits the critical region, it tells the coordinator,
when then replies to 2

36

A Distributed Algorithm

● A process wants to enter a critical region

– it builds a message (name, process number, time)

– sends the message to all processes (group communication)

● A process receives a message

– sends OK

– if in the critical region, does not reply
● queues the request

– if it wants to enter, compares timestamps of the request and
its request, the lowest wins

– queues the request if necessary

● When it exits the region, it sends OK messages to all
processes on its queue

37

A Distributed Algorithm

a) Two processes want to enter the same critical region at the
same moment.

b) Process 0 has the lowest timestamp, so it wins.

c) When process 0 is done, it sends an OK also, so 2 can now
enter the critical region.

38

A Token Ring Algorithm

a)An unordered group of processes on a network.

b)A logical ring constructed in software

39

Comparison

Lost token,
process crash

0 to n – 11 to Token ring

Crash of any
process

2 (n – 1)2 (n – 1)Distributed

Coordinator crash23Centralized

Problems
Delay before entry
(in message times)

Messages per
entry/exit

Algorithm

Lost token,
process crash

0 to n – 11 to Token ring

Crash of any
process

2 (n – 1)2 (n – 1)Distributed

Coordinator crash23Centralized

Problems
Delay before entry
(in message times)

Messages per
entry/exit

Algorithm

● A comparison of three mutual exclusion algorithms.

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35
	Slajd 36
	Slajd 37
	Slajd 38
	Slajd 39

