LABORATORY 10

Richardson/Romberg schemes to calculate Derivatives/Integrals:

The goal of the exercise is to calculate the first and second derivatives as well as the integral of a function f(x).

$$f'(x)$$
; $f''(x)$; $I \equiv \int_{x_0}^{x_N} f(x) dx$

The *Richardson Extrapolation Scheme* for first and second derivatives starts with the *Central Difference Approximation* given by

$$D_1(h) \equiv \frac{1}{2h} [f(x+h) - f(x-h)] \qquad \text{or} \qquad D_1(h) \equiv \frac{1}{h^2} [f(x+h) - 2f(x) + f(x-h)]$$

Then, the next approximations to the derivatives are obtained with the recursive relation:

$$D_{i+1}(h) = \frac{4^{i} D_{i}(h) - D_{i}(2h)}{4^{i} - 1}$$

The Romberg Integration Scheme starts with the Trapezoid rule given by

$$I_{m,0} \equiv h \left(\frac{f_0}{2} + f_1 + f_2 + \dots + f_{N-1} + \frac{f_N}{2} \right) \text{ with } N = 2^n$$

Then, the next approximations to the integral are obtained with the recursive relation:

$$I_{m,k} = \frac{4^{k} I_{m,k-1} - I_{m-1,k-1}}{4^{k} - 1}$$

Exercise:

- Considering the function $f(x) = xe^x$, generate the *Richardson Tables* for f'(2) and f''(2) going from h=0.4 to h=0.05. Print the values with 12 digits and compare to the exact results.

h	D_1	D_2	D_3	D_4
0.4	$D_{l}(0.4)$			
0.2	$D_{l}(0.2)$	$D_2(0.2)$		
0.1	$D_{l}(0.1)$	$D_2(0.1)$	$D_3(0.1)$	
0.05	$D_1(0.05)$	$D_2(0.05)$	$D_3(0.05)$	$D_4(0.05)$

- Generate the *Romberg Table* for $I = \int_0^{\pi} \sin x dx$ going from m=2 to m=5. Print the values with 12 digits and compare to the exact result.

m	$I_{m,0}$	$I_{m,1}$	$I_{m,2}$	$I_{m,3}$
2	$I_{2,0}$			
3	$I_{3,0}$	$I_{3,1}$		
4	$I_{4,0}$	$I_{4,1}$	$I_{4,2}$	
5	$I_{5,0}$	$I_{5,1}$	$I_{5,2}$	$I_{5,3}$