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1 Aims of the laboratory

The  aim  of  the  last  laboratory  is  to  practice  distributed  programming  skills  by  implementing
distributed neural network training. The implementation will utilize the provided java framework
for simulating distributed system, which was already used in the previous classes.

Unlike the previous assignments, Lab 6 will take two laboratory classes. This instruction covers all
tasks planned for both classes.

The code for this lab is in Lab06.zip file. Extracted folder contain a project for Netbeans IDE. The
source can be however easily imported to other IDEs (Idea, Eclipse).

2 Neural network training

The assignment will will cover simple neural networks consisting of 3 layers: input layer, hidden
layer and output layer. This kind of network in fact called a 2-layer network, since the input layer is
not counted, as it only passes unchanged input vectors to the first hidden layer. The number of
neurons in the input and hidden layers will be set in the constructor of the network, while the output
layer will be fixed and will contain one neuron. The network will use ReLU activation functions
and the training will use several weight update methods.

Figure 1: An example of a 2-layer neural network (the input layer is not counted) with a single 
neuron in the output layer.
Source: http://cs231n.github.io/neural-networks-1/



Training data for a neural network consists of a set of input vectors associated with expected output
values. The set of input vectors form an input matrix, called trainDataIn in the laboratory code. The
width of the matrix is equal to the number of vectors, while the height is equal to vector length, and
equal  to  the  number  of  input  neurons.  The  set  of  output  values  form  an  output  matrix
(trainDataOut), which in fact is a vector (since in this case there is only one output neuron). The
training data is usually split into batches, which are then subsequently used in training iterations.
The training iterations consists of using data batch to perform 3 steps:

1. Forwards pass

2. Backward pass

3. Weight update

In the forward pass data batch is propagated through the network, generating some output values at
the  end of  the  network.  The outputs  are  then  compared to  the  expected output  values  and the
differences are evaluated as an error rate. Then, knowing the output error rate acquired for the data
batch, is propagated backwards (backwards pass), during which gradients are computed, denoting
the  impact  of  all  of  the  weights  of  the  given  layer  on  the  error  rate.  Finally,  with  gradients
established for all layers (excluding input layer, which has no weights), the weights are updated
using a given method (e. g. Rprop).  It should be noted, that the weights (and biases) of each layer
are also represented as matrices, therefore forward and backward passes are matrix operations.

3 Distributed training (DATA PARALLELISM)

In distributed training using data parallelism scheme, each node will keep the full model of the
network (and all of it's weights) in the memory. The nodes will be however given different data
batches  to  process.  Each  node  will  then  perform  forward  and  backwards  pass.  Then,
synchronization between the nodes is required, which takes place in three steps:

1. accumulation of  gradients  (computing the mean of  gradients  acquired by each node for
every single weight and bias over their batches)

2. updating weights in node 0

3. broadcasting updated weights to all nodes, which update their local copy of the model

4 Student's tasks

There are two tasks to complete, as listed below. The tasks require implementing proper methods in
two classes representing parallel neural networks. As reference, the already implemented methods
of sequential training can be used, provided in FFNet and FFNetSimple classes.

1. Distributed neural network training – 6 pts

• requires implementing the following methods of the neuralnets.FFNetParallel class:

void accumulateGrads(int wholeTrainDataSize)
void broadcastWeights()

• requires passing Test 1: compareParallelToSequential()



•

2. Extending per node processing with multithreading – 4 pts

• requires implementing the following method of the neuralnets.FFNetParallelDouble 

class:

Matrix forwardPass(Matrix input)
void backwardPass(Matrix lastDelta)

• requires passing Test 2: compareDoubleParallelToParallel()

5 Cheat Sheet

FFNet._InW Matrix with weights of the connections between the input layer
and the hidden layer

FFNet._InBiasW Weights of the biases of the hidden layer

FFNet._InWGrad Gradients of the weights of the hidden layer

FFNet._InBiasWGrad Gradients of the weights of the biases of the hidden layer

FFNet._LayerW Matrix with weights of the connections between the hidden 
layer and the output layer

FFNet.LayerBiasW Weights of the biases of the output layer

FFNet._LayerWGrad Gradients of the weights of the output layer

FFNet._LayerBiasWGrad Gradients of the weights of the biases of the output layer

FFNet._AFHidden Activation function of the hidden layer neurons

FFNet._HiddenState Output of the hidden layer neurons

BasicCommunication.reduceWithBarrie
r

       (node, data, operator)

Reduces the distributed data parts to a single part 
by applying given operator. The result is returned 
only in the node 0. Also, at end of the operation all
of the nodes are synchronized (like a barrier).

BasicCommunication.broadcastWithBar
rier(node, data)

Broadcast the data from the node 0 to all other 
data. The return value contains the broadcasted 
data. Also, at end of the operation all of the nodes 
are synchronized (like a barrier).

Node.synchronizeDS() Barrier for the nodes - forces synchronization. The
method will finish when all of the nodes in the 
system reach the function.
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