Improper Integrals

DEFINITION OF AN IMPROPER INTEGRAL

The functions that generate the Riemann integrals of Chapter 6 are continuous on closed intervals.
Thus, the functions are bounded and the intervals are finite. Integrals of functions with these char-
acteristics are called proper integrals. When one or more of these restrictions is relaxed, the integrals are

said to be improper. Categories of improper integrals are established below.
b
The integral J f(x)dx is called an improper integral if

a

1. a@= —o0 or b = o0 or both, i.e., one or both integration limits is infinite,
2. f(x)is unbounded at one or more points of ¢ < x < b. Such points are called singularities of

().

Integrals corresponding to (1) and (2) are called improper integrals of the first and second kinds,
respectively. Integrals with both conditions (1) and (2) are called improper integrals of the third kind.

EXAMPLE 1. J sinx” dx is an improper integral of the first kind.
0

4
d.
EXAMPLE 2. [ Y isan improper integral of the second kind.
Jo -
00 e—X
EXAMPLE 3. J N3 dx is an improper integral of the third kind.
0 A
1 . 1 -
EXAMPLE 4. J Smx dx is a proper integral since lim Yy,
0o X x—>0+ X

IMPROPER INTEGRALS OF THE FIRST KIND (Unbounded Intervals)
X a
If f is an integrable on the appropriate domains, then the indefinite integrals J f(®)dt and J fdt

a X
(with variable upper and lower limits, respectively) are functions. Through them we define three forms

of the improper integral of the first kind.

Definition o "
(a) If f is integrable on ¢ < x < oo, then J f(x)dx = lim J f()dr.

a

(b) If f is integrable on —oco < x < a, then J f(x)dx = ‘lir_n J f(0)dt.
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(¢) If f is integrable on —oo < x < oo, then
| rmae=| seace | roo

= lim_ J S di+ lim J f(o)dt.

a

In part (¢) it is important to observe that

X

lim J f(H)dt + lim J f(t)dr.
and

xlirrolo [ J: f(@)de + r @ dz]

a

are not necessarily equal. ,
This can be illustrated with f(x) = xe*. The first expression is not defined since neither of the
improper integrals (i.e., limits) is defined while the second form yields the value 0.

2
)

EXAMPLE. The function F(x) = is called the normal density function and has numerous applications

2
in probability and statistics. In particular (see the bell-shaped curve in Fig. 12-1)

| /2
J ef‘(—:dx:l
0o V21 2

(See Problem 12.31 for the trick of making this evaluation.)

Perhaps at some point in your academic career you were
“graded on the curve.” The infinite region under the curve with
the limiting area of 1 corresponds to the assurance of getting a
grade. C’s are assigned to those whose grades fall in a desig-
nated central section, and so on. (Of course, this grading
procedure is not valid for a small number of students, but as
the number increases it takes on statistical meaning.)

In this chapter we formulate tests for convergence or diver-
gence of improper integrals. It will be found that such tests and
proofs of theorems bear close analogy to convergence and Fig. 12-1
divergence tests and corresponding theorems for infinite series
(See Chapter 11).

O 010203
gx) = e

CONVERGENCE OR DIVERGENCE OF IMPROPER INTEGRALS OF THE FIRST KIND

Let f(x) be bounded and integrable in every finite interval ¢ < x < b. Then we define

00 b
J f(x)dx = blim J f(x)dx (1)
where b is a variable on the positive real numbers.

The integral on the left is called convergent or divergent according as the limit on the right does or

(o] o0

does not exist. Note that J f(x)dx bears close analogy to the infinite series Z u,, where u, = f(n),
b a n=1

while J f(x)dx corresponds to the partial sums of such infinite series. We often write M in place of

a

b in ().
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Similarly, we define

b b
| reax= im [ reax &)

where a is a variable on the negative real numbers. And we call the integral on the left convergent or
divergent according as the limit on the right does or does not exist.

00 b g.. 00
EXAMPLE 1. J d;( = lim J d—; = lim <1 —%) =150 thatJ d); converges to 1.

1 X b—oo J1 X b—o0 1 X

U

EXAMPLE 2. [ cosxdx = lim [
J a——00

U
cosxdx = lim (sinu —sina). Since this limit does not exist, [ cos x dx
Ja a—»—00 J—00

is divergent.

In like manner, we define

T pmdv= [ s [ reodx )
| s J

—o0 X0

where X, is a real number, and call the integral convergent or divergent according as the integrals on the
right converge or not as in definitions (/) and (2). (See the previous remarks in part (¢) of the definition
of improper integrals of the first kind.)

SPECIAL IMPROPER INTEGRALS OF THE FIRST KIND

(o]
1. Geometric or exponential integral J e ™ dx, where t is a constant, converges if > 0 and

x X

a
diverges if # < 0. Note the analogy with the geometric series if » = e~ so that e™™ = ",
o0

2. The p integral of the first kind J x—; where p is a constant and a > 0, converges if p > 1 and

diverges if p < 1. Compare with the p series.

CONVERGENCE TESTS FOR IMPROPER INTEGRALS OF THE FIRST KIND

The following tests are given for cases where an integration limit is co. Similar tests exist where an
integration limit is —oo (a change of variable x = —yp then makes the integration limit co). Unless
otherwise specified we shall assume that f(x) is continuous and thus integrable in every finite interval
a<xZ<bh

1. Comparison test for integrals with non-negative integrands.
00
(a) Convergence. Let g(x) = 0forall x = a, and suppose that J g(x) dx converges. Then if
0 a
0 < f(x) < g(x) forall x = a, J f(x)dx also converges.

a

1 1 ’ L °d;
EXAMPLE. Since —— < —=¢ " and J e~ dx converges, J _dx also converges.
e +1 e’ 0 0 e +1

00
(b) Divergence. Let g(x) = 0 for all x = a, and suppose that J g(x)dx diverges. Then if
0 a
f(x) = g(x) for all x = a, J f(x)dx also diverges.

a

00

1 1 Cdx . . .
EXAMPLE. Since TR for x = 2 and J dx diverges (p integral with p = 1), J
X X ) X

d> .
) ﬁ also diverges.
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2. Quotient test for integrals with non-negative integrands.
(a) If f(x) = 0 and g(x) = 0, and if lim ZAC) = A # 0 or oo, then J
5% g(x) ;
either both converge or both diverge.

o0 o0

f(x)dx and J g(x)dx

a

00

g(x) dx converges, then J f(x) dx converges.

a

o0
() If A=01in (a) and I
a
{o¢]
g(x) dx diverges, then J f(x)dx diverges.
a a
This test is related to the comparison test and is often a very useful alternative to it. In particular,
taking g(x) = 1/x”, we have from known facts about the p integral, the following theorem.

00

(¢) If A =o00in (a) and J

Theorem 1. Let lim x”f(x) = A. Then
X—> 00

(1) J f(x)dx converges if p > 1 and 4 is finite

a

(i1) J f(x)dx diverges if p < 1 and 4 # 0 (4 may be infinite).

a

00 2 2
X~ db . . 4 1
EXAMPLE 1. L ﬁ converges since \ILH;IC x? 4\4}"? =7
x dx X

00
EXAMPLE 2. J
0

diverges since lim x - ——=1.

/x4+X2+1 X—00 /X4+X2+1

Similar test can be devised using g(x) = e~ ™.

(oo}
3. Series test for integrals with non-negative integrands. J f(x) dx converges or diverges accord-
ing as Xu,, where u, = f(n), converges or diverges. a

00 00
4. Absolute and conditional convergence. J f(x)dx is called absolutely convergent if J | f(x)| dx

| f(x)] dx diverges, then J f(x)dx is called con-

a

o0 00

converges. If J f(x)dx converges but J

a a

ditionally convergent.

00

| f(x)| dx converges, then J f(x)dx converges. In words, an absolutely convergent
a

00

Theorem 2. 1f J

a
integral converges.

00
EXAMPLE 1. J % dx is absolutely convergent and thus convergent since
« X

I

EXAMPLE 2. J
0

cos X
X241

dx < J zdx and J Zd—xconverges.
0 X +1 0 X +1

sin x

° sin x J“’

de converges (see Problem 12.11), but dx does not converge (see

Problem 12.12). Thus, J Smx dx is conditionally convergent.
0 X

Any of the tests used for integrals with non-negative integrands can be used to test for absolute
convergence.
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IMPROPER INTEGRALS OF THE SECOND KIND

If f(x) becomes unbounded only at the end point x = a of the interval ¢ < x < b, then we define
b b
J f(x)dx = lim J f(x)dx 4)
a 0+ Jgte

and define it to be an improper integral of the second kind. If the limit on the right of (4) exists, we call
the integral on the left convergent; otherwise, it is divergent.

Similarly if f(x) becomes unbounded only at the end point x = b of the interval ¢ < x < b, then we
extend the category of improper integrals of the second kind.

b b—e
J f(x)dx = lim J f(x)dx (®))
a e—>0+ a

Note: Be alert to the word unbounded. This is distinct from undefined. For example, J Y o =
0o X

1 .

. sinx . . . . sinx .

l1mJ —— dx is a proper integral, since hn}) —— =1 and hence is bounded as x — 0 even though the
X X—> X

e—0 )

function is undefined at x = 0. In such case the integral on the left of (5) is called convergent or
divergent according as the limit on the right exists or does not exist.

Finally, the category of improper integrals of the second kind also includes the case where f(x)
becomes unbounded only at an interior point x = x, of the interval ¢ < x < b, then we define

b

f(x)dx+ lim J f(x)dx )
€—>0+

Xot+e€

"X0—€]

J: f(x)dx = Elli_)r{)lJr Ja

The integral on the left of (6) converges or diverges according as the limits on the right exist or do
not exist.

Extensions of these definitions can be made in case f(x) becomes unbounded at two or more points
of the interval a < x < b.

CAUCHY PRINCIPAL VALUE

It may happen that the limits on the right of (6) do not exist when ¢; and €, approach zero
independently. In such case it is possible that by choosing €; = €, = € in (6), i.e., writing

b Xg—€ b
J f(x)dx = lim { J F(x)dx + J £(x) dx} 7)
a e—0+

a Xo+€

the limit does exist. If the limit on the right of (7) does exist, we call this limiting value the Cauchy
principal value of the integral on the left. See Problem 12.14.

EXAMPLE. The natural logarithm (i.e., base ¢) may be defined as follows:

Ydt
lnx:JT, 0<x<o00
1

Since f(x) = — is unbounded as x — 0, this is an improper integral of the second kind (see Fig. 12-2). Also,
X

<dt . . S . . L
[ — is an integral of the third kind, since the interval to the right is unbounded.

0 1

. dr . o . L

Now hn(l)J —= hng) [I[nl —Ine] > —oo as € — 0; therefore, this improper integral of the second kind is
€—> €—>

divergent. Also, J d = lim J di = lim [Inx — Ini] — oo; this integral (which is of the first kind) also diverges.

1 I3 x—o00 J; t X—00
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v
g

g0= y=inx
@ ®
Fig. 12-2

SPECIAL IMPROPER INTEGRALS OF THE SECOND KIND

b

dx . . .

J ﬁ converges if p < 1 and diverges if p = 1.
J(x—a

b
d> . . .
2. L @ _xx)p converges if p < 1 and diverges if p = 1.

These can be called p integrals of the second kind. Note that when p < 0 the integrals are proper.

CONVERGENCE TESTS FOR IMPROPER INTEGRALS OF THE SECOND KIND

The following tests are given for the case where f(x) is unbounded only at x = a in the interval
a < x £ b. Similar tests are available if f(x) is unbounded at x = b or at x = xy where a < xy < b.

1. Comparison test for integrals with non-negative integrands. 5

(a) Convergence. Let g(x) = 0fora < x < b, and suppose that | g(x)dx converges. Then if

b a
0=f(x) <gx)fora<x < b, J f(x)dx also converges.

a

1 1 S dx
EXAMPLE. < for x > 1. Then since J converges integral with a =1,
- A A ges (p integ
p= %), J 4X also converges.
1vVx*—1

b
(b) Divergence. Let g(x) = 0 for a < x < b, and suppose that J g(x)dx diverges. Then if

a

b
f(x) = g(x) fora<x £ b, J f(x)dx also diverges.

Inx . S dx . . .
7> ——— forx > 3. Then since J 7 diverges (p integral with a = 3, p = 4),
x=3" (-3 3(x—3)

% In; .
7 dx also diverges.
3(x—3)

EXAMPLE.

2. Quotient test for integrals with non-negative integrands.

b
a) Iff(x) 2 0andg(x) 2 0fora<x < b,andiflim‘@:A 0 or oo, then ‘(x)dx and
(x)

x—a g(x P

b
J g(x) dx either both converge or both diverge.

a



312 IMPROPER INTEGRALS [CHAP. 12

b b

g(x) dx converges, then J f(x)dx converges.

a

(b) If A=0in (a), then J

a

b b
(¢) If A=o00in (a), and J g(x) dx diverges, then J f(x)dx diverges.

a a

This test is related to the comparison test and is a very useful alternative to it. In particular
taking g(x) = 1/(x — a)’ we have from known facts about the p integral the following theorems.

Theorem 3. Let 1im+(x —a) f(x)=A. Then
X—a

b
(1) J f(x)dx converges if p < 1 and 4 is finite

a

b
(i1) J f(x)dx diverges if p = 1 and 4 # 0 (4 may be infinite).

a

If f(x) becomes unbounded only at the upper limit these conditions are replaced by those in

Theorem 4. Let lir}’l (b —x)f(x)=B. Then

b
(1) J f(x)dx converges if p < 1 and B is finite

a

b
(it) J f(x)dx diverges if p = | and B # 0 (B may be infinite).

a

EXAMPLE 1 r dx converges, since lim ( ' ! lim ,/ =11
. X — ey = _—
N 4/X4 —1 £e5, x— 1+ (x4 — 1)1/2 x— 1+ _x4 —1 2

3
EXAMPLE 2. J o diverges, since ‘lin31 B—-x)- ! L

03—V A1 G-/ +l VIO

b
3. Absolute and conditional convergence. J f(x)dx is called absolute convergent if J | f(x)| dx

a

b

b b b

| f(x)| dx diverges, then J f(x)dx is called condition-

a

converges. If J

a

f(x) dx converges but J

a
ally convergent.

b b

| f(x)| dx converges, then [ f(x)dx converges. In words, an absolutely convergent

Ja

Theorem 5. 1If J

a
integral converges.

. i 1 q . . .
EXAMPLE. Since Ssv_‘lcn_xn s = and L 5 —xi = converges (p integral with a =7, p = %), it follows that
471 sinx 4T sinx
L N dx converges and thus L i dx converges (absolutely).

Any of the tests used for integrals with non-negative integrands can be used to test for absolute
convergence.
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IMPROPER INTEGRALS OF THE THIRD KIND

Improper integrals of the third kind can be expressed in terms of improper integrals of the first and
second kinds, and hence the question of their convergence or divergence is answered by using results
already established.

IMPROPER INTEGRALS CONTAINING A PARAMETER, UNIFORM CONVERGENCE
Let

(0]

o) = | fxaydx ®)
a
This integral is analogous to an infinite series of functions. In seeking conditions under which we
may differentiate or integrate ¢(«) with respect to «, it is convenient to introduce the concept of uniform
convergence for integrals by analogy with infinite series.
We shall suppose that the integral (8) converges for @; < a < a,, or briefly [«, a,].

Definition.
The integral (8) is said to be uniformly convergent in [}, 5] if for each € > 0, we can find a number N
depending on € but not on «, such that

<€ for all u > N and all & in [}, 5]

ola) — J (v, @) dx

This can be restated by nothing that ’(ﬁ(a) — J f(x,a)dx| = J f(x, @) dx|, which is analogous in

a u
an infinite series to the absolute value of the remainder after N terms.

The above definition and the properties of uniform convergence to be developed are formulated in
terms of improper integrals of the first kind. However, analogous results can be given for improper
integrals of the second and third kinds.

SPECIAL TESTS FOR UNIFORM CONVERGENCE OF INTEGRALS

1. Weierstrass M test. If we can find a function M(x) = 0 such that
(@ Ifx,ol =Mx) o Sa=mmx>a

(b) I M (x) dx converges,

a

00
then J f(x, @) dx is uniformly and absolutely convergent in «; < o < «,.

a

° cos ax

X 1  da
cosax d J - ¢ converges, it follows that [ 5
+1 0 X°+ 1

5 —— an
x”+1 x+1 0 X
and absolutely convergent for all real values of «.

EXAMPLE. Since

dx is uniformly

As in the case of infinite series, it is possible for integrals to be uniformly convergent
without being absolutely convergent, and conversely.
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2. Dirichlet’s test. Suppose that

(a) ¥(x) is a positive monotonic decreasing function which approaches zero as x — oo.

(b)

<Pforallu>aand o) £ a < ay.

Juf(x, o) dx

a

00
Then the integral J f(x, @)¥(x) dx is uniformly convergent for o; < o < a».

a

THEOREMS ON UNIFORMLY CONVERGENT INTEGRALS

(oo}
Theorem 6. If f(x,«) is continuous for x = ¢ and «; £ @ < @y, and if J f(x, a)dx is uniformly

00 a

convergent for o < o < ay, then ¢(a) = J f(x,®)dx is continous in o; < o < «,. In particular, if
a
o is any point of o; < o < «,, we can write

lim ¢(a) = lim Jocf(x, a)dx = J~0<> lim f(x, &) dx 9

a

If « is one of the end points, we use right or left hand limits.

Theorem 7. Under the conditions of Theorem 6, we can integrate ¢(«) with respect to « from o to o, to

obtain
[t [ | = |

which corresponds to a change of the order of integration.

rzf(x, a) da}dx (10)

o

Theorem 8. 1f f(x, o) is continuous and has a continuous partial derivative with respect to « for x = a

(o0}
. 9 . . .
and o; £ o £ a,, and 1fJ Bl dx converges uniformly in o; £ @ < «a,, then if a does not depend on «,
a oo
d 9
d¢ - J L/ dx (11
da ), o

If a depends on «, this result is easily modified (see Leibnitz’s rule, Page 186).

EVALUATION OF DEFINITE INTEGRALS

Evaluation of definite integrals which are improper can be achieved by a variety of techniques. One
useful device consists of introducing an appropriately placed parameter in the integral and then differ-
entiating or integrating with respect to the parameter, employing the above properties of uniform
convergence.

LAPLACE TRANSFORMS

Operators that transform one set of objects into another are common in mathematics. The
derivative and the indefinite integral both are examples. Logarithms provide an immediate arithmetic
advantage by replacing multiplication, division, and powers, respectively, by the relatively simpler
processes of addition, subtraction, and multiplication. After obtaining a result with logarithms an
anti-logarithm procedure is necessary to find its image in the original framework. The Laplace trans-
form has a role similar to that of logarithms but in the more sophisticated world of differential
equations. (See Problems 12.34 and 12.36.)
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The Laplace transform of a function F(x) is F(x) L)
defined as
S a a4 8> 0
0= 2FW) = | eFwa 12 g
0 e 3 ! 8>a
and is analogous to power series as seen by replacing —d
e’ by t so that ¢ = r*. Many properties of power sin ax 5 2 5 8>0
series also apply to Laplace transforms. The adjacent 8 'g”
short table of Laplace transforms is useful. In each cos ax Feae] 8>0
case a is a real constant. n‘+ 4
X'n=12,3,... W 8§>0
LINEARITY Y'(x) 8L{Y(x)} — Y (0)
The Laplace transform is a linear operator, i.e., Y'(x) 22 (Y(x)) - 8Y(0) — Y'(0)

HF(x) + G(x)} = t{F ()} + H{G(x0)}.

This property is essential for returning to the solution after having calculated in the setting of the
transforms. (See the following example and the previously cited problems.)

CONVERGENCE

S

The exponential e~* contributes to the convergence of the improper integral. What is required is
that F(x) does not approach infinity too rapidly as x — oo. This is formally stated as follows:

If there is some constant a such that |F(x)| <™ for all sufficiently large values of x, then
(o0}

f(s) = J e **F(x)dx converges when s > a and f has derivatives of all orders. (The differentiations

of f can occur under the integral sign >.)

APPLICATION
The feature of the Laplace transform that (when combined with linearity) establishes it as a tool for

solving differential equations is revealed by applying integration by parts to f(s) = J e "F(t)dt. By
letting u = F(f) and dv = e~ dt, we obtain after letting x — oo 0

AR 1 L[> _
J e "F(f)dt = - F(0) + —J e "F'(t)dt.
0 S S Jo
Conditions must be satisfied that guarantee the convergence of the integrals (for example, e *F(f) — 0
as t — 00).

This result of integration by parts may be put in the form

(@) HF' (0} = st{F(n)} + F(0).
Repetition of the procedure combined with a little algebra yields

(b) LF"(0)) = SE(F(0) = sF(0) — F'(0).
The Laplace representation of derivatives of the order needed can be obtained by repeating the
process.
To illustrate application, consider the differential equation
d y
—=+4y =3sint,
ar

where y = F(f) and F(0) =1, F'(0) =0. We use
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. a K
sinat} = ———, ¢{cosat} = ——
e } T a o } oy

and recall that

S(s) = {F(O)Y{F" (1)} 4 4¢{F (1)} = 3¢{sin 1}

Using (b) we obtain

Sf(s)—s+4f(s) = s

Solving for f(s) yields

3 K 1 1 K

f(s):(s2+4)(s2+1)+s2+4:s2+1_s2+4+s2+4'

(Partial fractions were employed.)
Referring to the table of Laplace transforms, we see that this last expression may be written

f(s) =¢{sint} — %{{Sin 2t} + ¢{cos 2t}

then using the linearity of the Laplace transform

f(s) = ¢{sint — Lsin 27 + cos 2¢}.

We find that

F(f) = sint — §sin 27 + cos 21

satisfies the differential equation.

IMPROPER MULTIPLE INTEGRALS

The definitions and results for improper single integrals can be extended to improper multiple

integrals.

Solved Problems

IMPROPER INTEGRALS

12.1. Classify according to the type of improper integral.

! dx 0 xdx T1—cosx
a) _— c — e ———dx
( Lﬁ(wl) © L (x—2)° © L X
© dx o X2 dx
(b) J T tanx (d) J O
o 1 +tanx Coo Xt X7+ 1
(a) Second kind (integrand is unbounded at x = 0 and x = —1).
(b) Third kind (integration limit is infinite and integrand is unbounded where tan x = —1).
(¢) This is a proper integral (integrand becomes unbounded at x =2, but this is outside the range of

()

integration 3 < x < 10).

First kind (integration limits are infinite but integrand is bounded).



CHAP. 12] IMPROPER INTEGRALS 317

(e) This is a proper integral <since lil’(I)l 1—7020sx = % by applying L’Hospital’s rule).
=0+ X
. . . 2 dx .
12.2. Show how to transform the improper integral of the second kind, J ———— into
. : . . 1Vx(2 = x)
(a) an improper integral of the first kind, (b) a proper integral.
(a) Conside J.z_e dx here 0 1, sa Let 2 : Then the integral becomes
a nsider ———— wher <e<1, say. —x=-. n integr
1 1 /X2 —X) )
N /5 dy
—————  As e — 0+, we see that consideration of the given integral is equivalent to considera-
J 12y —1
. © dy L. . . .
tion of [ —————, which is an improper integral of the first kind.
1 /2y =1

1
. . . . d . .
(b) Letting 2 — x = o in the integral of (a), it becomes 2J Y We are thus led to consideration of

1 Vevvr 42
ZJ _ v which is a proper integral
0v/v?+ I
From the above we see that an improper integral of the first kind may be transformed into an
improper integral of the second kind, and conversely (actually this can a/ways be done).
We also see that an improper integral may be transformed into a proper integral (this can only
sometimes be done).

IMPROPER INTEGRALS OF THE FIRST KIND

12.3. Prove the comparison test (Page 308) for convergence of improper integrals of the first kind.

Since 0 < f(x) < g(x) for x = a, we have using Property 7, Page 92,

gee]

0< J'hf(x> dx < jh gy dx < J ¢ dx

a a a

But by hypothesis the last integral exists. Thus

b 00
blim J f(x)dx exists, and hence J f(x)dx converges
—> 00 a a

12.4. Prove the quotient test («) on Page 309.

By hypothesis, lim S = A > 0. Then given any € > 0, we can find N such that ZACI A' < € when
x—o00 g(x) 8(x)
x = N. Thus for x = N, we have
S
A—e= ﬁ§A+e or  (4d—eg(x) = f(x) = (Ad+eg)
g(x
Then
b b b
U=a ewdr s | fedx < A9 s 1)
N N N

There is no loss of generality in choosing 4 — € > 0.

If J g(x) dx converges, then by the inequality on the right of (1),

a

b 00
lim J f(x)dx exists, and so J f(x)dx converges
N

b—o0 a

If J g(x) dx diverges, then by the inequality on the left of (7),
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b 00
lim J f(x)dx =00 and so J f(x)dx diverges
b—oo J N a

For the cases where 4 =0 and 4 = oo, see Problem 12.41.

As seen in this and the preceding problem, there is in general a marked similarity between proofs for
infinite series and improper integrals.

125, Test for comergence: (@) | 5o a—r. () Jwﬁ i
B ) s 2 V16

(¢) Method 1: For large x, the integrand is approximately x/3x* = 1/3x°.

Since m =< 3'1?, and %JTO% converges (p integral with p = 3), it follows by the
[ xdx
L3 +5x2 41

Note that the purpose of examining the integrand for large x is to obtain a suitable comparison
integral.

comparison test that J also converges.

1 > 1 o0
,g(x) = —. Since lim & =, and [ g(x)dx converges,
X J1

Method 2: Let f(x) = gx) 3
X—>00

X

3xt 4 5x% 4 1
00

[ f(x)dx also converges by the quotient test.

Ji

Note that in the comparison function g(x), we have discarded the factor % It could, however, just

as well have been included.

Method 3:

converges.

. b 1 . .
\fll>n;10 X <m) =3 Hence, by Theorem 1, Page 309, the required integral

() Method 1: For large x, the integrand is approximately x*/+/x% = 1/x.
2 00 00 2
Al = 1 l Since lj dx diverges, J oot dx also diverges.
/%6 + 1 2 x X

2} 2 Vx6+16

i

For x = 2,

2 d 00
-1 1 . . 2 .
Method 2: Let f(x) = \/xéi———]g’ g(x) = o Then since lim ;Eg =1, and L g(x)dx diverges,
X0 — 2 X—00 b

{o¢]
J f(x)dx also diverges.
2

2
. . x =1 S .
Method 3: Since lim x[——— | = 1, the required integral diverges by Theorem 1, Page 309.
X—00 /x(y +16
Note that Method 1 may (and often does) require one to obtain a suitable inequality factor (in this
case 4, or any positive constant less than 1) before the comparison test can be applied. Methods 2 and
3, however, do not require this.

00

12.6. Prove that J e dx converges.
0
lim x%e™
X—> 00

integral converges. Compare Problem 11.10(a), Chapter 11.

= 0 (by L’Hospital’s rule or otherwise). Then by Theorem 1, with 4 = 0, p = 2 the given

12.7. Examine for convergence:

1 —cosx

2

dx.

* Inx . . o
(a) dx, where a is a positive constant; (b)
1 X+a 0

Y _ oo. Hence by Theorem 1, Page 309, with 4 = co, p = 1, the given integral diverges.

X—00 x+a
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Fid

®) JOO 1 —cosx gy — J”l —czosx dx+Jml —czosx dx
0 X 0 X X
The first integral on the right converges [see Problem 12.1(e)].

X—00

1—
Since lim x*? (ﬂ) = 0, the second integral on the right converges by Theorem 1, Page 309,

with 4 =0 and p = 3/2.
Thus, the given integral converges.

—1 &~ 00 ‘C3 + YZ
12.8. Test for convergence: (a) J —dx, (b) J ——dx.
oo X oo X041
oo =V
(a) Let x =—y. Then the integral becomes —J T dy.
Ly
%) oo =)
eV dy converges, [ — dy converges; hence the
Ji Yy

—y
Method 1: < < ¢’ for y £ 1. Then since J

1
given integral converges.

e’

= lim ye™ =0. Then the given integral converges by Theorem 1, Page
y—>00

Method 2:  lim )7
y—>00
309, with 4 =0 and p = 2.

3 2

0 3, 2 0 .
XAy + [ XA dx. Letting x = —y in the first integral, it

b) Write the given integral as ——
(0) g g .Lox“+1 X T

9] y3 _ y2 y} _ }’2
becomes —J G dy. Since lim y° G = 1, this integral converges.
0 ) +1 y—>00 ) +1
3, .2
Since lim x* (x 6+ ol ) = 1, the second integral converges.
X—00 x0 41

Thus the given integral converges.

ABSOLUTE AND CONDITIONAL CONVERGENCE FOR IMPROPER INTEGRALS OF THE
FIRST KIND

00 00

f(x) dx converges if J | f(x)| dx converges, i.e., an absolutely convergent integral is
a

12.9. Prove that J

a
convergent.

We have —|/(x)] = f(x) = I/(¥)],i.e., 0 = f(x)+ /()] = 2[f(x)]. Then

b b
0< J /() + 1/ ()l dx < zj () dx

{o¢] {o¢]
If [ | f(x)| dx converges, it follows that [ [f(x)+ |f(x)]]dx converges. Hence, by subtracting
o Ja

a

(o] 00
J | f(x)| dx, which converges, we see that [ f(x)dx converges.

a a

°cos x
12.10. Prove that J 5— dx converges.
1 X
Method 1:
cos X 1 . . © dx .
| = o for x = 1.  Then by the comparison test, since = converges, it follows that
X ) 1

COS X
2

00
dx converges, i.e., J COS;X dx converges absolutely, and so converges by Problem 12.9.
1 X

I

X
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12.11.

12.12.

IMPROPER INTEGRALS [CHAP. 12
Method 2:
Since lim x*/? cosx lim cos X _ 0, it follows from Theorem 1, Page 309, with 4 = 0 and p = 3/2,
X—00 X X—00 xl/z
0 b > cos x
that [ 5—| dx converges, and hence J 5— dx converges (absolutely).
Ji | X 1 X

*°sin x
Prove that J —— dx converges.
X

0
1. .
. sin x sinx . . . sinx
Since [ —— dx converges (because is continuous in 0 < x <1 and lim = 1> we need
Jo X RY x=>0+ X
in
only show that J MY converges.
1 X
Method 1: Integration by parts yields
M M M M
sin x cos X cos X cos M cosx
[ dx = — J 5— dx =cos1 — J 5— dx (1)
J1 X 1 X M 1 X
. . . . . cosM
or on taking the limit on both sides of (/) as M — oo and using the fact that Mhm =0,
— 00
% sin x < cosx
[ —dx:cosl+[ 5— dx 2
J1o X Ji X

Since the integral on the right of (2) converges by Problem 12.10, the required results follows.
The technique of integration by parts to establish convergence is often useful in practice.

Method 2:

c(n+1)m sin x

°°sin x (7 sin x 27 sin x
J dx:J —dx+J —dx+~-~+J
0 X 0 X T X
00 p(n+1)m i
sin x
= J dx
n=0

dx +

nmw 4

nm X

Letting x = v + n7wr, the summation becomes

i(_l)nr sinv dq}:J'”sinvdv_J” sinv dv-i-r sinv dom .
— o n+nmw 0 v ov+m ov+ 2w

.. . . . 1 1 . . .
This is an alternating series. Since < and sinv = 0 in [0, 7], it follows that
v+ nw v+ (n+ D

J” sinv < J” sinv
WS | ————dv
ov+nt T Jov+m+ Dm

Also, Jim J MY < lim J @ _

n—oo Jo v+ nmw — n—ooo Jo nmw

Thus, each term of the alternating series is in absolute value less than or equal to the preceding term,
and the nth term approaches zero as n — co. Hence, by the alternating series test (Page 267) the series and
thus the integral converges.

°©sin x .
Prove that | —— dx converges conditionally.
0 X

Since by Problem 12.11 the given integral converges, we must show that it is not absolutely convergent,

00
ie., [
Jo

As in Problem 12.11, Method 2, we have

sin x

dx diverges.

X
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I

for 0 < v < m. Hence,

sin x sin x

o e(n+)m
=3

n=0 Jnm

. (" sin
Tar=y [
X = 0 U+ nmw

1

N _—=
oW v+nr — (n+ Dm

T sinv 1 i 2
dv = invdy=——
Lv—&-nn V= (n+l)71LsmU v n+ Dm

o0
. 2 . . . . .
Since E ———— diverges, the series on the right of (/) diverges by the comparison test.
=+ Dr

sin x

dx diverges and the required result follows.

I,

IMPROPER INTEGRALS OF THE SECOND KIND, CAUCHY PRINCIPAL VALUE

7 dx
12.13. (a) Prove thatJ ——— converges and () find its value.
(a) AT g (b)
The integrand is unbounded at x = —1. Then we define the integral as
7 dx (x+ D3 3
li = lim ~—— 2 — = 1li —-2&P) =
i [ | = (oo 3e) =

This shows that the integral converges to 6.

5

321

()

®)

Hence,

. d. . . .
12.14. Determine whether J 7)61)3 converges (a) in the usual sense, (b) in the Cauchy principal

“1(x—
value sense.

(a) By definition,
(3 dx . (1=e dx . (3 dx
T3 = llm 3 + llm 3
1 (x — ]) a—0+ ) (x — ]) €0+ l+e (x — ])

= lim ! ! + lim ! !
T a—0+\8 26 a—0+\265 32

and since the limits do not exist, the integral does not converge in the usual sense.
(b) Since

lim J]_é dx +r dx — lim l_i_i_L_i _i
o) (k=1 Jipe(x =17 T 0|8 2 T2 32 T 32

the integral exists in the Cauchy principal value sense. The principal value is 3/32.

12.15. Investigate the convergence of:

3 5 /2
d d d
@ | 5" © | = © ] et
2 ¥ (x? — 8)* I/ =x)(x—-1) 0 (cosx)/"
T o 1 sin”! x
0 J T v (d) J dx
0 X -1 1 —x
. 2 1 ! 1 RN .
(a) xlir?Jr(X -2) m = ,\»lg?Jr Z\erra) < 8 UTS Hence, the integral converges by

Theorem 3(i), Page 312.
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b) li%l MYy Hence, the integral diverges by Theorem 3(ii) on Page 312.
x—0+ X

3 5
(¢) Write the integral as Jl N fl;(x =5 + L NG _f)c(x =5

1 1 .
= —, the first integral converges.

VE-x@&-1 2

1 1 .
12, = -, the second integral converges.

VE-0G -1 2

Thus, the given integral converges.

Since lim (x — 1)"/2.
x—1+
Since lir? 5—-x)

zsin’I X

1—x

(d) linln (1-x)- =22 Hence, the integral diverges.

Another method:

1.

l—x =~ 1—-x -

2sin’ X 2—7:/2 1 dx
> , and J T—» diverges. Hence, the given integral diverges.
-1

(e) lim (w/2— X)l/n . /2 — X

1/n
—— 7, = lim < ) = 1. Hence the integral converges.
x—1/2n— (COS x) n x—1/27—\  COSX

1
12.16. If m and n are real numbers, prove that J X" (1 =x)""Vdx (a) convergesif m>0andn >0
0
simultaneously and (b) diverges otherwise.

(a) For m =2 1 and n = 1 simultaneously, the integral converges, since the integrand is continuous in
0 < x < 1. Write the integral as
12 1
[ xm—l(l _ x)n—l dx + [ xm—l(l _ x)n—l dx (1)
Jo Ji2

m xm—l(l _ x)n—l — 1, using

If0 < m < land 0 < n < 1, the first integral converges, since lim x'~
Theorem 3(i), Page 312, with p=1—m and a = 0. A
Similarly, the second integral converges since lim (1 — x)'™ - x"~!(1 — x)"~! = 1, using Theorem
4(i), Page 312, with p=1—nand b = 1. vl
Thus, the given integral converges if m > 0 and n > 0 simultaneously.
b)) Iftm =0, vli%ler ¥ 11 = x)""! = co. Hence, the first integral in () diverges, regardless of the value

of n, by Theorem 3(ii), Page 312, with p =1 and ¢« = 0.

Similarly, the second integral diverges if n < 0 regardless of the value of m, and the required result
follows.

Some interesting properties of the given integral, called the beta integral or beta function, are
considered in Chapter 15.

1 .1 ..
12.17. Prove that J < sm; dx converges conditionally.
0

o -
Letting x = 1/y, the integral becomes J w dy and the required result follows from Problem 12.12.
1/m

IMPROPER INTEGRALS OF THE THIRD KIND

{o.¢]
12.18. If nis a real number, prove thatJ x"'e™dx (a) convergesifn > 0and (b) divergesifn < 0.
0
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Write the integral as

1 o0
[ X"le ™ dx + [ X"le ™ dx (1)
Jo Ji
(a) If nm = 1, the first integral in (/) converges since the integrand is continuous in 0 < x < 1.

If 0 < n < 1, the first integral in (/) is an improper integral of the second kind at x =0. Since

lin(r)l x!7" . x"1e™ = 1, the integral converges by Theorem 3(i), Page 312, with p = 1 —n and a = 0.
x—>0+

Thus, the first integral converges for n > 0.

If n>0, the second integral in (/) is an improper integral of the first kind. Since
lim x> - x""'¢™ = 0 (by L’Hospital’s rule or otherwise), this integral converges by Theorem 1(i),

X—>00
Page 309, with p = 2.
Thus, the second integral also converges for n > 0, and so the given integral converges for n > 0.
(b) If m <0, the first integral of (/) diverges since ’lir(r)1+x - x"1e™ = oo [Theorem 3(ii), Page 312].
If n < 0, the second integral of (/) converges since lim x - x"~'¢™ = 0 [Theorem 1(i), Page 309].

Since the first integral in (/) diverges while the second integral converges, their sum also diverges,
i.e., the given integral diverges if n < 0.

Some interesting properties of the given integral, called the gamma function, are considered in
Chapter 15.

UNIFORM CONVERGENCE OF IMPROPER INTEGRALS
o0

12.19. (a) Evaluate ¢(a) = J ae " dx for a > 0.
0
(b) Prove that the integral in (@) converges uniformly to 1 for « = «; > 0.
(¢) Explain why the integral does not converge uniformly to 1 for o > 0.

b b

(a) ¢p(@) = lim j ae ¥ dx = lim —e™**
b—oo J, b—o00

=liml—e®=1 ifa>0

=0 b—o0

Thus, the integral converges to 1 for all @ > 0.

(b) Method 1, using definition:

The integral converges uniformly to 1 in @ = «; > 0 if for each € > 0 we can find N, depending on
U

€ but not on «, such that |1 — J ae” Y dx
0

<eforallu> N.

Since

1 1
=|l—-(I—-e)| =™ < e <€ for u>—In—= N, the result fol-
lows. €

o

U
11— J ae " dx
0

Method 2, using the Weierstrass M test:
Since lim x% - ae™® =0 for « = a; > 0, we can choose |ae

X—>00 00

. 1 . d> . . . .
x = xg. Taking M(x) = 2 and noting that J Y—; converges, it follows that the given integral is

’ 1 .
~* < — for sufficiently large x, say
x

A Xg 7
uniformly convergent to 1 for « = «; > 0.

(¢) Asa; — 0, the number N in the first method of (b) increases without limit, so that the integral cannot
be uniformly convergent for o > 0.

12.20. If ¢(a) = [ f(x, &) dx is uniformly convergent for & < o < «a,, prove that ¢(«) is continuous in
0

this interval.
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u 00

f(x,®)dx + R(u, @), where R(u,a) = J f(x, @) dx.

u

Let )= J

a

Then ¢la+h) = [ f(x,a+h)dx + R(u, ¢+ h) and so

a

u

Hla+h) — Pla) = J (xa+h) —f(x, @)} dx + R(u, a + 1) — R(u, @)

a

Thus

B+ ) — $(a)] < [ /6 a4 ) — fx. )l + [ Rt o+ )| + | R, o) ()

a

Since the integral is uniformly convergent in ¢; < o < a,, we can, for each € > 0, find N independent
of « such that for u > N,

|R(u, ¢ + h)| < €/3, |R(u, @)| < €/3 2

Since f(x, «) is continuous, we can find § > 0 corresponding to each € > 0 such that

J lfCe,a+h) —f(x, ) dx < €/3 for |h] < § 3
a

Using (2) and (3) in (1), we see that |¢p(a + 1) — p(a)| < € for |h] < &, so that ¢(«) is continuous.

Note that in this proof we assume that o« and « + /i are both in the interval o; < o < . Thus, if
o = «, for example, 4 > 0 and right-hand continuity is assumed.

Also note the analogy of this proof with that for infinite series.

Other properties of uniformly convergent integrals can be proved similarly.

12.21. (a) Show that li%l J ae " dx # J ( 1in01 ae"”) dx. (b) Explain the result in (a).
a—=0+ Jo 0 \a—>0+

00
(a) lim [ ae *dx = lim =1 by Problem 12.19(a).
a—0+ Jo a—>0+

o0 00
J ( linoq aef‘”) dx = J Odx =0. Thus the required result follows.
0 a—0+ 0

(b) Since ¢p(a) = | ae™ dx is not uniformly convergent for o = 0 (see Problem 12.19), there is no

0
guarantee that ¢(«) will be continuous for @« = 0. Thus h%l ¢(a) may not be equal to ¢(0).
a—0+

00

12.22. (a) Prove that J e " cos rxdx =
0

5 ad 5 for o > 0 and any real value of r.
a-+r
(b) Prove that the integral in (a) converges uniformly and absolutely for ¢ < o < b, where
0 <a < b and any r.

(a) From integration formula 34, Page 96, we have

e ““cosrxdx = lim

lim =
o ey o +72 o

M—o0

- . M
JM e (rsinrx — acosrx)|’ a

(h) This follows at once from the Weierstrass M test for integrals, by noting that |e”** cosrx| < e ** and

(o)
J e * dx converges.
0
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EVALUATION OF DEFINITE INTEGRALS
/2
12.23. Prove that J

Insinxdx = _r In2.
0 2

The given integral converges [Problem 12.42(f)]. Letting x =m/2 —y,
/2 /2 /2
1:J lnsinxdx:J lncosydy:J In cos x dx
0 0

0
Then

/2 /2 in2
21 = [ (Insinx + Incos x) dx = J In <51n2 x) dx
Jo 0

o/2 /2 (/2
= J In sin 2x dx —J In2dx = J

1nsin2xdx—z In2
0 0 2

0

Letting 2x = v,

/2 1(* 1 77/2 T
J lnsin2xdx:—J lnsinvdv:—” lnsinvdv—}—J lnsinvdv}
0 2 )y 2 o 2

1
= 5(1 +1)=1 (letting v=m — u in the last integral)

Hence, (1) becomes 2/ =1 — g In2or /= —g In2.

/4 2

12.24. Prove that J xInsinxdx = — % In2.
0

Let x =7 —y. Then, using the results in the preceding problem,

(mr—u)Insinudu = [ (r — x)Insin x dx

J = [ xInsin xdx = [
Jo

Jo Jo
T

:n[ lnsinxdx—J x Insin x dx
Jo 0

=-—’In2-J

2
or J:—%lnz

* d
12.25. (a) Prove that ¢(o) = J % is uniformly convergent for « = 1.
0 X o

T > dx
(b) Show that ¢(a) = N (¢) Evaluate Jo RS

00 dx /2 o 1-3-5---Cn—Dr
(d) Prove that JO W—JO cos™0do = 246(2}1) E

(a) The result follows from the Weierestrass test, since
converges.

<
X4a = X241

b b

(b) ¢(@) = lim Jb dx *limitan’]i *1imitan o _ T
o _I)—>c>o 0X2+c{_b—>oo\/& \/ao_beoo«/& ﬁ_Zﬁ

for a > 1 andj

325

()

® dx

0

x2+1
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Differentiating both sides with respect to «, we have

©dx b4
(¢) From (b), L 1o = m.

9 1
JO @(szra)dx_

the result being justified by Theorem 8, Page 314, since [ Ity is uniformly convergent for o > 1
Jo (x* +a)

7J'°° dx _ T
0 (2 +a) 4

00

1 1 o0 x
because 5 = 5 and 5 converges |.
(4o’ T P+ o (X +1) T -
Taking the limit as « — 1+, using Theorem 6, Page 314, we find J ﬁ ==,
o (P41 4

. . . °dx T i
(d) Differentiating both sides of == n times, we find

0o X24a 2

o N/ 3\/ 5 M- I\7T _p,
00 en | = () (5)(55) - () e

where justification proceeds as in part (¢). Letting @ — 14, we find

JOO dx _1:3:5--@Cn-Dm_1.3.5--2n—-Dm
o (24 DT 2"'n) 27 2.4-6---2n) 2

/2
Substituting x = tan 6, the integral becomes J cos¥ 6d6 and the required result is obtained.
0

oo —ax —bx 2 2

- 1. b

12.26. Prove that ¢ ¢ dx == lni where a, b > 0.
o XSecrx 2 a7

From Problem 12.22 and Theorem 7, Page 314, we have

00 b b 00
J {J e *Ycosrx doc} dx = J {J e Y cosrx a’x} da
x=0 UJa=a a=a L Jx=0

or
0o —ax b b
J e cosrx dv:J 20: Zda
x=0 —X a=a a=a ¥ +r
00 p—aX _ e—bx 1 b2 + ],2
ie., J ——dx==-In——
o Xsecrx 2 a4
0 1 —cosx 1 «
12.27. Prove that J e ———dx= tan~'— — 3 In(e? +1), @ > 0.
0 X o

By Problem 12.22 and Theorem 7, Page 314, we have

T {o¢] 00 T
J {J e " cosrx dx} dr = J ” e " cosrx dr} dx
olJo o Lo

{o¢] M T
e Sinrx a _
or J e‘”—dx:Jﬁ:tanl
0 X oo +r

Integrating again with respect to r from 0 to r yields

r
o

gl —cosrx T o«
J e "“‘42dx:J tan™!— dr = rtan™! — — = In(c® + %)
0 X 0 o a 2

using integration by parts. The required result follows on letting r = 1.
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1 —cosx T
12.28. Prove that J ———dx==.
0 X 2
. —ax L — 1 —cos2 % ] —cos
Since ¢ " czosx czosv for « 2 0,x 2 0 and J ﬁdx converges [see Problem
X X 0 X

00
. . _ax 1 — €082 . .
12.7(b)], it follows by the Weierstrass test that J e ‘“ﬁ dx is uniformly convergent and represents
0 X
a continuous function of « for @ = 0 (Theorem 6, Page 314). Then letting @ — 0+, using Problem 12.27, we

have
00 _ " 00 1 _
e "ﬂdx: l—czosxdx:“m tan’ll—gln(az—i-l) -z
b's a 2 2

0 X a—0

©sinx  (®sin’x b4
12.29. Prove that J —= J 5— dx = =.

0 X 0 X 2
Integrating by parts, we have

M1
J lﬁdx:<—%>(l—cosx)

¢ X )

MM gin x l—cose 1—cosM [Msinx
+| —adx= — +
€

—dx

e X

d
Exx € M

Taking the limit as € — 0+ and M — oo shows that

00 1 B 001_
J smxdx:J cosxdxzz
0 X 0 X 2

Sl 00 3.2 2 00 ;.2
Since J ﬂ dx=2 [ M dx = J sm_2u du on letting u=x/2, we also have
2

. 0 X Jo 0o U
> sin xdx_z
Jo X2 T 2
® gin® x T
12.30. Prove that J dx =—.
0 4
ix —ixy 2 ix ix\2, —ix ix —ix —ix
sin3x:<e —ec ) (@9 =3 e + 3N = )
’ 2i i)*
7 71 673“ _6731'.\’ +§ eix _efix B 71 1n3 +§ -
T4 2 g\ ) T Ty
Then
J‘“’ sin” x dx :§r° sin x dx_lr"sinSX dy — Er"sinx dx _lJ‘O" sinu du
0 4}, 4 ) 4), x 4)0 u
3/ 1/ T
_Z<§>71(§> 4

MISCELLANEOUS PROBLEMS

o0
12.31. Prove that J e dx = J7/)2.
0

Mo Mo
By Problem 12.6, the integral converges. Let I}, = J e dx = J e dy and let A}im I, =1, the
0 0 — 00
required value of the integral. Then
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12.32.

12.33.
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M 5 M 5
Iy = < e dx) <J e dy>
0 0

where %), is the square OACE of side M (see Fig. 12-3). Since integrand is positive, we have

J ch(xzﬂz) dxdy < Iy < ”e’("z“’z) dxdy @)
P @
where #; and %, are the regions in the first quadrant bounded y

by the circles having radii M and M+/2, respectively.
Using polar coordinates, we have from (/),

/2 M 5 T2 (MN2 D
[ R N I Y —
J¢p=0 J p=0 ¢=0 J p=0
or E c
0=y shy = Za—e) 3 0
Then taking the limit as M — oo in (3), we find M
lim I3, = I° = /4 and I = \/7/2.
M—o0
l 0 4 B
00 ) X
Evaluate J e cosaxdx.
0 Fig. 12-3
Let /(@) = e cosaxdy. Then using integration by
0
parts and appropriate limiting procedures,
dl o0 2 . | I (* _e
—= J —xe " sinaxdx =~e¢ " sinax|° —faJ e cosaxdy = — 21
da ) 2 27 Jo 2

The differentiation under the integral sign is justified by Theorem 8, Page 314, and the fact that

X X

00
2 . . . . . — 2 . —
J xe " sinaxdx is uniformly convergent for all a (since by the Weierstrass test, |xe ™ sinax| < xe

0
gl

2
and J xe™* dx converges).
0

From Problem 12.31 and the uniform convergence, and thus continuity, of the given integral (since
00

2 2 2 . .
le™" cosax| < e and J ¢ “dx converges, so that that Weierstrass test applies), we have
0
1(0) = lirr%)l(oz) =17
a—

1 >
Solving j— = —%I subject to 1(0) = ?, we find /(o) = %ﬁe’“ Al
o

© 2 w e 24572
(a) Prove that I(a) = J eI gy = ER (b) Evaluate J e gy,
0 0
(a) We have I'(a) = zj e (| _ g /32) d.
0
The differentiation is proved valid by observing that the integrand remains bounded as x — 0+
and that for sufficiently large x,
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. 2 2 2,2 2
e—(,\—ot/x) (1 _ Ol/Xz) —e +2a—a”/x (l —Ot/.X2) é 62016—,\

oo

so that 7'(er) converges uniformly for o = 0 by the Weierstrass test, since J e~ dx converges. Now
0

o0 5 00 e—(,\‘—a/x)z

I'(@) = 2J e T gy — 2aJ ———dx=0

0 0 X

as seen by letting a/x = y in the second integral. Thus /(&) = ¢, a constant. To determine ¢, let « — 0+ in

the required integral and use Problem 12.31 to obtain ¢ = /7/2.

o0 . 2 o 2 2 2 o0 2, 2.2 T
(b) From (a), J e T gy = J R e J e iy = %
0 0 0

S 2, 2 - T . ad 2, 2 T
Then J e gy — %e’z"‘. Putting o = 1, J e gy = \/_e’z.
0 0

. ) ) s
12.34. Verify the results: (a) L{e™} = @ (b) Z{cosax} =———,s>0.
s“+a
. M
(a) PLle™} = J e e™ dx = lim J e UmDY gx
0 M—oo Jo
1 — —(s—a)M 1
= lim —% = ifs>a
M—o0 sS—a s—a
(b) L{cosax} = J e cosaxdx = % by Problem 12.22 with a = 5,1 = a.
0 s+ a
Another method, using complex numbers.
: 1
From part (a), Z{e*"} = T Replace a by ai. Then
L™} = P{cosax + isinax} = L{cosax}) + iL{sin ax}
1 s+ ai K .
= - = = +1
s—ai S+ad* S+ P +ad
. L s . a
Equating real and imaginary parts: #{cosax} = g Pfsinax} = i

The above formal method can be justified using methods of Chapter 16.

12.35. Prove that (a) L{Y'(x)} = sL{Y(x)} — Y(0), (b) L{Y"(x)} = s> L{Y(x)} —sY(0)— Y'(0)

under suitable conditions on Y (x).

(a) By definition (and with the aid of integration by parts)
M

LY (x)} JOO e Y'(x)dx = lim J e Y/ (x)dx
0 M=0Jo

M

M
+s l e Y (x) dx}
0 Jo

=y Jm e Y (x)dx — Y(0) = sZL{Y(x)} — Y(0)
0

assuming that s is such that A}im e My(M) =0.
(b) Let U(x) = Y'(x). Then by part (a), Z{U'(x)} = sZ{U(x)} — U(0). Thus
LY} = s2{Y (%)} = Y'(0) = s[sZ{Y(x)} — Y(0)] — Y'(0)
= L{Y(x)} — sY(0) — Y'(0)
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12.36. Solve the differential equation Y "(x) + Y(x) = x, Y(0) =0, Y'(0) = 2.
Take the Laplace transform of both sides of the given differential equation. Then by Problem 12.35,

LY+ Y =2, LY )+ LY ) =15

and so SLLY (X)) —sY(0) — Y'(0)+ L{Y(x)} = 1/5°
Solving for #{Y(x)} using the given conditions, we find

2¢° 1 1

[ 1
(2 + 1) s2+s2+1 0

LY (x)} =

by methods of partial fractions.

1

m = !f{x + Sinx}.

1 1 1
Since 2= Z{x} and e = P{sinx}, it follows that = +

Hence, from (7), Z{Y(x)} = £{x + sin x}, from which we can conclude that Y(x) = x + sin x which is,
in fact, found to be a solution.
Another method:

If Z{F(x)} =f(s), we call f(s) the inverse Laplace transform of F(x) and write f(s) = £ {F(x)}.

By Problem 12.78, Z'{f(s) + g(s)} = 7' {f(s)} + £ {g(s)}). Then from (I),

1 1 1 1
-1 -1 -1 in v
Y(.X)Zg {g‘i‘m}:g {S—2}+g :SZ+I}ZX+SIH)»

Inverse Laplace transforms can be read from the table on Page 315.

Supplementary Problems

IMPROPER INTEGRALS OF THE FIRST KIND

12.37. Test for convergence:

x4+ 1 © dx o0 X2 dx
T u d A
(@ .[0 e @) ,ch“+4 ® Lo(xz+x+1)5/2
*© xdx % 24sinx *° In x dx
b d> h
®) L x> —1 © Jfoo 21 7 ) Jl x+e™
o0 dx > xdx 0 §in® x
R — j d
© Jl xX/3x+2 /) L (Inx) @ Jo x? Y

Ans. (a) conv., (b) div., (c¢) conv., (d) conv., (e) conv., (f) div., (g) conv., (h) div., (i) conv.

{o'e]
12.38. Prove that[ dx T ifh> |al.

,,wx2+2ax+b2:./})2fa2

00 {o¢] {o¢]
12.39. Test for convergence: (a) J e “Inxdx, (b) J e In(l +e%)dx, (c) J e *coshx? dx.
I 0 0

Ans. (a) conv., (b) conv., (c) div.
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12.40. Test for convergence, indicating absolute or conditional convergence where possible: («a) J

() ro ~a* cos bx dx, where a, b are positive constants; (c) rc Cosx ) [OC xsinx
¢ A @ ;o (c X _xsinx .
- JO XZ +1 0 xZ + a2
© cos x
d.
@ JO cosh x X

Ans. (a) abs. conv., (b) abs. conv., (c¢) cond. conv., (d) div., (e) abs. conv.

12.41. Prove the quotient tests (») and (¢) on Page 309.

IMPROPER INTEGRALS OF THE SECOND KIND

12.42. Test for convergence:

! dx 2 Inx X Vdx
_ d d> —— j —
(@ Jo x4+ DV1—x? @ Jl 8 — 3 v (&) Jo 3 - )c)2 * ) L x*
®) Jl cosx © Jl dx " J”/z e " cosx dx
0o X 0 v/In(1/x) 0 x ’
1 tan'x /2 1 _ 1242
© J_] ¢ ——d f) JO In sin x dx (i) L 11 _kxf dx, k| < 1

*° sin 2x
3 X
0 X +1

331

Ans. (a) conv., (b) div., (c) div., (d) conv., (e) conv., (f) conv., (g) div., (h) div., (i) conv.,

(j) conv.

5
d . . . ..
12.43. (a) Prove that J i—x al diverges in the usual sense but converges in the Cauchy principal value senses.
04— X

(b) Find the Cauchy principal value of the integral in («) and give a geometric interpretation.
Ans. (b) In4

12.44. Test for convergence, indicating absolute or conditional convergence where possible:

1 1 1
(a) [0 cos (i) dx, (b) L % cos ()lc) dx, (¢ [0 é cos(i) dx.

Ans. (a) abs. conv., (b) cond. conv., (c) div.

4

12.45. Prove that J
0

o1 1 324/2
<3x251n;—xcosf)dx: {—

X e

IMPROPER INTEGRALS OF THE THIRD KIND

12.46. Test for convergence: (a) [oo MInxdx, (b) ro 7€_X dx (¢) ro e dx
.46. : e xdx, , —_—
£ Jo Jo /xIn(x+1) Jo /x(3+ 2sinx)

Ans. (a) conv., (b) div., (c) conv.

00 d> 00 X 4>
12.47. Test for convergence: (a) [ d ( [ ¢
Jo

_— —_——a>0
Vx4 X2 ) Jo /sinh (ax)

Ans. (a) conv., (b) conv.ifa>2,div.if0<a < 2.

°° sinh (> . . .
12.48. Prove that J L(avc) dx converges if 0 < |a| < 7 and diverges if |a| < 7.

o sinh (7x)

12.49. Test for convergence, indicating absolute or conditional convergence where possible:
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(a) JO %d (b) J.C>Q ssliﬁl://i Ans. (a) cond. conv., (b) abs. conv.

UNIFORM CONVERGENCE OF IMPROPER INTEGRALS

12.50. (a) Prove that ¢(oz):J e
0 1+X

(b) Prove that ¢(«) is continuous for all @. (¢) Find lir% o). Ans. (¢) w/2.

dx is uniformly convergent for all .

00 .
12.51. Let ¢(a) = J F(x, a)dx, where F(x, o) = o’xe ™ . (a) Show that ¢(e) is not continuous at o =0, i.c.,
0

00

lir%J F(x,a)dx # J lin}) F(x,a)dx. (b) Explain the result in (a).
0 0 o—>

oa—

12.52. Work Problem 12.51 if F(x, a) = o’xe .

12.53. If F(x) is bounded and continuous for —co < x < co and
1[(®  yF()dxr
Vix,y)= —J =5 T 3
T)ooy”+ (A —X)
prove that lin}) V(x,y) = F(x).
y—
12.54. Prove (a) Theorem 7 and (b) Theorem 8 on Page 314.

12.55. Prove the Weierstrass M test for uniform convergence of integrals.

00

12.56. Prove that ifJ

I
=]

00
F(x) dx converges, then J e ** F(x) dx converges uniformly for «
0 0

o) 1 -
12.57. Prove that (a) ¢(a) = J ef"xsmT“\dx converges uniformly for ¢ = 0, (b) ¢(a) = E —tan"'q,

() J sin.¥ dx == (compare Problems 12.27 through 12.29).

12.58. State the definition of uniform convergence for improper integrals of the second kind.
12.59. State and prove a theorem corresponding to Theorem 8, Page 314, if « is a differentiable function of «.

EVALUATION OF DEFINITE INTEGRALS

Establish each of the following results. Justify all steps in each case.

0o, —ax —bx

12.60. [ % dx =In(b/a),  a,b>0
JO -

o0 —ax _
12.61. [ e e tan~'(b/r) — tan~"(@/r),  a,b,r>0
0 XCscrx
o0
12.62. [ _sinrx 2a—en rzo
o x(1+x%)
loe} 1 _
12.63. S e =24
0 X 2
1264, | 2 T arz0
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12.65.

12.66.

12.67.

12.68.

12.69.

v

00 - 2 2
(a) Prove that J e <7COS ax — cos bx> dx = 1 In <a+ b ), a=0.

0 X 2 a2+a2

00 —
(b) Use (a) to prove that J cosax — cosbx dx = ln(é)
0 X a
®° F(ax) — F(bx)
— T dx=

[The results of (b) and Problem 12.60 are special cases of Frullani’s integral,
X
b . . , . < F(1)
F(0)In( =), where F(¢) is continuous for ¢ > 0, F'(0) exists and - dt converges.
a 1

00
Given J e dx =4m/a, a > 0. Prove that forp=1,2,3,...,
0
JOO 2p 7ax2d _l 35 (pr 1) \/?r

0 Y7222 2 24@F0R

0 5
If a> 0,b > 0, prove that { (e"’/""2 — e " Ydx = V7b — J7a.
0

00 -1 _ —1
tan” (x/a) — tan” (x/b) . _ 7 ln<g> where a > 0. b > 0.

Prove that J
0 X

00
b 4 .
Prove that J dx il [Hint: Use Problem 12.38.]

o (Pt x+ 1y 33

MISCELLANEOUS PROBLEMS

12.70.

12.71.

12.72.

12.73.

12.74.

12.75.

12.76.

00

In(1 +x))*
Prove thatJ {M} dx converges.
X

0

(n+1)m dx

Prove that J dx 5 and use the fact that

o 14 x3sin*x
(n+1)m dx (n+1)m dx
< L S—
J,,,, 1+ x3sin>x = Jnﬂ 1 + () sin’ x ]

00

o0
converges. Hint: Consider ZJ —
= 14+ X7sin"x

Prove that J X dx 5

— diverges.
o I+ x’sin”x

*In(1 + o’x?)

(a) Prove that J - dx=mln(l+a), o =0.
0 X

/2
(b) Use (a) to show that J Insin6do = —% In2.
0
 sin* x bid
Prove that J T dx =
0o X 3

Evaluate (a) Z{1//x}, (b) Lfcoshax}, (¢) L{(sinx)/x}.

N

Ans. (a) Jn/s, s>0 (b)) 55—, s>la| (¢) tan71<§>, s> 0.

2 —a*’

(a) If L{F(x)} = f(s), prove that L{e” F(x)} = f(s —a), (b) Evaluate Z{e"" sin bx}.

b

Ans. (b)) ————,
ns. (b) (s—ay +b?

§>a
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12.77.

12.78.

12.79.

12.80.

12.81.

12.82.

12.83.

12.84.

IMPROPER INTEGRALS [CHAP. 12

(@) If L{F(x)} = f(s), prove that L{x"F(x)} = (—1)"f"(s), giving suitable restrictions on F(x).

s —1

(b) Evaluate £{xcosx}. Ans.  (b) 2 + 1)2’

s>0

Prove that &~ (s) + g(s)} = L {f(s)} + £ {g(s)}, stating any restrictions.

Solve using Laplace transforms, the following differential equations subject to the given conditions.
(@) Y'(x)+3Y'(x)+2Y(x)=0; Y(0)=3,Y'(0)=0

b Y'(x)—Y'(x)=x; Y(0)=2,Y'(0)=-3

(©) Y'(X)+2Y'(x)+2Y(x)=4; Y(0)=0,Y'(0)=0

Ans. (@) Y(x)=6e =3¢, (b) Y(x)=4—-2¢"—1x"—x, (¢) Y(x)=1—e *(sinx+cosx)

Prove that Z{F(x)} exists if F(x) is piecewise continuous in every finite interval [0, b] where b > 0 and if F(x)
is of exponential order as x — oo, i.e., there exists a constant « such that |e”**F(x)| < P (a constant) for all
x> b.

If 1(s) = Z{F(x)} and g(s) = L{G(x)}, prove that f(s)g(s) = L{H(x)} where
H(x) = Jx F(u)G(x — u)du
0
is called the convolution of F and G, written F*G.
M M
|:Hint: Write f(s)g(s) = lim {J e “F(u) du} “ e *'G(v) d’u}
M—oo| Jo 0

M M
= lim [ J e F() G(v)dudv and then letu—l—v:t.]
Jo Jo

M—o0

(b) Solve Y"(x)+ Y(x) = R(x), Y(0) = Y'(0) = 0.

(a) Find g’*l{

&+
X

(¢) Solve the integral equation Y(x) = x +J Y (u)sin(x — u)du. [Hint: Use Problem 12.81.]
0

Ans. (a) %(sinx —xcosx), (b) Y(x)= J Rw)sin(x — u)du, (¢) Y(x)=x+x/6
0

Let f(x), g(x), and g'(x) be continuous in every finite interval ¢ £ x < b and suppose that g'(x) < 0.

Suppose also that A(x) = J f(x)dx is bounded for all x = a and lin(l)g(x) =0.

(a) Prove that Joof x)g(x)dx = — JOO g'(x) h(x) dx.

a

(b) Prove that the integral on the right, and hence the integral on the left, is convergent. The result is that

under the give conditions on f(x) and g(x), J f(x)g(x)dx converges and is sometimes called Abel’s
integral test. a

b
[Hint: For (a), consider llim J f(x) g(x) dx after replacing f(x) by /'(x) and integrating by parts. For (),
H—> 00

a

b
first prove that if |i(x)| < H (a constant), then J g'(x) h(x) dx

a

< H{g(a) — g(b)}; and then let b — oo.]

00
0

Use Problem 12.83 to prove that (a) J X v and (b) J sinx” dx, p > 1, converge.
0 X



CHAP. 12] IMPROPER INTEGRALS 335

12.85. (@) Given that J sinx? dx = J cosx’ dx = %\/g [see Problems 15.27 and 15.68(«), Chapter 15], evaluate
0 0

J J sin(x> + 1) dx dy
0 Jo

(b) Explain why the method of Problem 12.31 cannot be used to evaluate the multiple integral in («).
Ans. w/4



