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Derivatives

THE CONCEPT AND DEFINITION OF A DERIVATIVE

Concepts that shape the course of mathematics are few and far between. The derivative, the
fundamental element of the differential calculus, is such a concept. That branch of mathematics called
analysis, of which advanced calculus is a part, is the end result. There were two problems that led to the
discovery of the derivative. The older one of defining and representing the tangent line to a curve at one
of its points had concerned early Greek philosophers. The other problem of representing the instanta-
neous velocity of an object whose motion was not constant was much more a problem of the seventeenth
century. At the end of that century, these problems and their relationship were resolved. As is usually
the case, many mathematicians contributed, but it was Isaac Newton and Gottfried Wilhelm Leibniz
who independently put together organized bodies of thought upon which others could build.

The tangent problem provides a visual interpretation of the derivative and can be brought to mind
no matter what the complexity of a particular application. It leads to the definition of the derivative as
the limit of a difference quotient in the following way. (See Fig. 4-1.)

Let Poðx0Þ be a point on the graph of y ¼ f ðxÞ. Let PðxÞ be a nearby point on this same graph of the

function f . Then the line through these two points is called a secant line. Its slope, ms, is the difference

quotient

ms ¼
f ðxÞ� f ðx0Þ

x� x0
¼ �y

�x

Fig. 4-1
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where �x and �y are called the increments in x and y, respectively. Also this slope may be written

ms ¼
f ðx0 þ hÞ� f ðx0Þ

h

where h ¼ x� x0 ¼ �x. See Fig. 4-2.

We can imagine a sequence of lines formed as h ! 0. It is the limiting line of this sequence that is
the natural one to be the tangent line to the graph at P0.

To make this mode of reasoning precise, the limit (when it exists), is formed as follows:

f 0ðxÞ ¼ lim
h!0

f ðx0 þ hÞ� f ðx0Þ
h

As indicated, this limit is given the name f 0ðx0Þ. It is called the derivative of the function f at its
domain value x0. If this limit can be formed at each point of a subdomain of the domain of f , then f is
said to be differentiable on that subdomain and a new function f 0 has been constructed.

This limit concept was not understood until the middle of the nineteenth century. A simple example
illustrates the conceptual problem that faced mathematicians from 1700 until that time. Let the graph
of f be the parabola y ¼ x2, then a little algebraic manipulation yields

ms ¼
2x0hþ h2

h
¼ 2x0 þ h

Newton, Leibniz, and their contemporaries simply let h ¼ 0 and said that 2x0 was the slope of the
tangent line at P0. However, this raises the ghost of a 0

0 form in the middle term. True understanding of
the calculus is in the comprehension of how the introduction of something new (the derivative, i.e., the
limit of a difference quotient) resolves this dilemma.

Note 1: The creation of new functions from difference quotients is not limited to f 0. If, starting
with f 0, the limit of the difference quotient exists, then f 00 may be constructed and so on and so on.

Note 2: Since the continuity of a function is such a strong property, one might think that differ-
entiability followed. This is not necessarily true, as is illustrated in Fig. 4-3.

The following theorem puts the matter in proper perspective:

Theorem: If f is differentiable at a domain value, then it is continuous at that value.

As indicated above, the converse of this theorem is not true.
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RIGHT- AND LEFT-HAND DERIVATIVES

The status of the derivative at end points of the domain of f , and in other special circumstances, is
clarified by the following definitions.

The right-hand derivative of f ðxÞ at x ¼ x0 is defined as

f 0
þðx0Þ ¼ lim

h!0þ
f ðx0 þ hÞ� f ðx0Þ

h
ð3Þ

if this limit exists. Note that in this case hð¼ �xÞ is restricted only to positive values as it approaches
zero.

Similarly, the left-hand derivative of f ðxÞ at x ¼ x0 is defined as

f 0
�ðx0Þ ¼ lim

h!0�
f ðx0 þ hÞ� f ðx0Þ

h
ð4Þ

if this limit exists. In this case h is restricted to negative values as it approaches zero.
A function f has a derivative at x ¼ x0 if and only if f 0

þðx0Þ ¼ f 0
�ðx0Þ.

DIFFERENTIABILITY IN AN INTERVAL

If a function has a derivative at all points of an interval, it is said to be differentiable in the interval.
In particular if f is defined in the closed interval a @ x @ b, i.e. ½a; b�, then f is differentiable in the
interval if and only if f 0ðx0Þ exists for each x0 such that a < x0 < b and if f 0

þðaÞ and f 0
�ðbÞ both exist.

If a function has a continuous derivative, it is sometimes called continuously differentiable.

PIECEWISE DIFFERENTIABILITY

A function is called piecewise differentiable or piecewise smooth in an interval a @ x @ b if f 0ðxÞ is
piecewise continuous. An example of a piecewise continuous function is shown graphically on Page 48.

An equation for the tangent line to the curve y ¼ f ðxÞ at the point where x ¼ x0 is given by

y� f ðx0Þ ¼ f 0ðx0Þðx� x0Þ ð7Þ
The fact that a function can be continuous at a point and yet not be differentiable there is shown

graphically in Fig. 4-3. In this case there are two tangent lines at P represented by PM and PN. The
slopes of these tangent lines are f 0

�ðx0Þ and f 0
þðx0Þ respectively.

DIFFERENTIALS

Let �x ¼ dx be an increment given to x. Then

�y ¼ f ðxþ�xÞ� f ðxÞ ð8Þ
is called the increment in y ¼ f ðxÞ. If f ðxÞ is continuous and has a continuous first derivative in an
interval, then

�y ¼ f 0ðxÞ�xþ ��x ¼ f 0ðxÞdxþ dx ð9Þ
where � ! 0 as �x ! 0. The expression

dy ¼ f 0ðxÞdx ð10Þ
is called the differential of y or f(x) or the principal part of �y. Note that �y 6¼ dy in general. However
if �x ¼ dx is small, then dy is a close approximation of �y (see Problem 11). The quantity dx, called the
differential of x, and dy need not be small.
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Because of the definitions (8) and (10), we often write

dy

dx
¼ f 0ðxÞ ¼ lim

�x!0

f ðxþ�xÞ� f ðxÞ
�x

¼ lim
�x!0

�y

�x
ð11Þ

It is emphasized that dx and dy are not the limits of �x and �y as �x ! 0, since these limits are zero
whereas dx and dy are not necessarily zero. Instead, given dx we determine dy from (10), i.e., dy is a
dependent variable determined from the independent variable dx for a given x.

Geometrically, dy is represented in Fig. 4-1, for the particular value x ¼ x0, by the line segment SR,
whereas �y is represented by QR.

The geometric interpretation of the derivative as the slope of the tangent line to a curve at one of its
points is fundamental to its application. Also of importance is its use as representative of instantaneous
velocity in the construction of physical models. In particular, this physical viewpoint may be used to
introduce the notion of differentials.

Newton’s Second and First Laws of Motion imply that the path of an object is determined by the
forces acting on it, and that if those forces suddenly disappear, the object takes on the tangential
direction of the path at the point of release. Thus, the nature of the path in a small neighborhood
of the point of release becomes of interest. With this thought in mind, consider the following idea.

Suppose the graph of a function f is represented by y ¼ f ðxÞ. Let x ¼ x0 be a domain value at
which f 0 exists (i.e., the function is differentiable at that value). Construct a new linear function

dy ¼ f 0ðx0Þ dx
with dx as the (independent) domain variable and dy the range variable generated by this rule. This
linear function has the graphical interpretation illustrated in Fig. 4-4.

That is, a coordinate system may be constructed with its origin at P0 and the dx and dy axes parallel

to the x and y axes, respectively. In this system our linear equation is the equation of the tangent line to

the graph at P0. It is representative of the path in a small neighborhood of the point; and if the path is

that of an object, the linear equation represents its new path when all forces are released.

dx and dy are called differentials of x and y, respectively. Because the above linear equation is valid

at every point in the domain of f at which the function has a derivative, the subscript may be dropped

and we can write

dy ¼ f 0ðxÞ dx

The following important observations should be made.
dy

dx
¼ f 0ðxÞ ¼ lim

�x!0

f ðxþ�xÞ� f ðxÞ
�x

¼
lim
�x!0

�y

�x
, thus

dy

dx
is not the same thing as

�y

�x
.
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On the other hand, dy and �y are related. In particular, lim
�x!0

�y

�x
¼ f 0ðxÞ means that for any " > 0

there exists � > 0 such that �" <
�y

�x
� dy

dx
< " whenever j�xj < �. Now dx is an independent variable

and the axes of x and dx are parallel; therefore, dx may be chosen equal to �x. With this choice

�"�x < �y� dy < "�x

or

dy� "�x < �y < dyþ "�x

From this relation we see that dy is an approximation to �y in small neighborhoods of x. dy is called
the principal part of �y.

The representation of f 0 by
dy

dx
has an algebraic suggestiveness that is very appealing and will appear

in much of what follows. In fact, this notation was introduced by Leibniz (without the justification
provided by knowledge of the limit idea) and was the primary reason his approach to the calculus, rather
than Newton’s was followed.

THE DIFFERENTIATION OF COMPOSITE FUNCTIONS

Many functions are a composition of simpler ones. For example, if f and g have the rules of
correspondence u ¼ x3 and y ¼ sin u, respectively, then y ¼ sin x3 is the rule for a composite function
F ¼ gð f Þ. The domain of F is that subset of the domain of F whose corresponding range values are in
the domain of g. The rule of composite function differentiation is called the chain rule and is represented

by
dy

dx
¼ dy

du

du

dx
½F 0ðxÞ ¼ g 0ðuÞf 0ðxÞ�.

In the example

dy

dx
� dðsin x3Þ

dx
¼ cos x3ð3x2dxÞ

The importance of the chain rule cannot be too greatly stressed. Its proper application is essential
in the differentiation of functions, and it plays a fundamental role in changing the variable of integration,
as well as in changing variables in mathematical models involving differential equations.

IMPLICIT DIFFERENTIATION

The rule of correspondence for a function may not be explicit. For example, the rule y ¼ f ðxÞ is
implicit to the equation x2 þ 4xy5 þ 7xyþ 8 ¼ 0. Furthermore, there is no reason to believe that this
equation can be solved for y in terms of x. However, assuming a common domain (described by the
independent variable x) the left-hand member of the equation can be construed as a composition of
functions and differentiated accordingly. (The rules of differentiation are listed below for your review.)

In this example, differentiation with respect to x yields

2xþ 4 y5 þ 5xy4
dy

dx

� �

þ 7 yþ x
dy

dx

� �

¼ 0

Observe that this equation can be solved for
dy

dx
as a function of x and y (but not of x alone).
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RULES FOR DIFFERENTIATION

If f , g; and h are differentiable functions, the following differentiation rules are valid.

1:
d

dx
f f ðxÞ þ gðxÞg ¼ d

dx
f ðxÞ þ d

dx
gðxÞ ¼ f 0ðxÞ þ g 0ðxÞ (Addition Rule)

2:
d

dx
f f ðxÞ� gðxÞg ¼ d

dx
f ðxÞ� d

dx
gðxÞ ¼ f 0ðxÞ� g 0ðxÞ

3:
d

dx
fC f ðxÞg ¼ C

d

dx
f ðxÞ ¼ C f 0ðxÞ where C is any constant

4:
d

dx
f f ðxÞgðxÞg ¼ f ðxÞ d

dx
gðxÞ þ gðxÞ d

dx
f ðxÞ ¼ f ðxÞg 0ðxÞ þ gðxÞ f 0ðxÞ (Product Rule)

5:
d

dx

f ðxÞ
gðxÞ

� �

¼
gðxÞ d

dx
f ðxÞ� f ðxÞ d

dx
gðxÞ

½gðxÞ�2
¼ gðxÞ f 0ðxÞ� f ðxÞg 0ðxÞ

½gðxÞ�2
if gðxÞ 6¼ 0 (Quotient Rule)

6: If y ¼ f ðuÞ where u ¼ gðxÞ; then

dy

dx
¼ dy

du
� du
dx

¼ f 0ðuÞ du
dx

¼ f 0fgðxÞgg 0ðxÞ ð12Þ

Similarly if y ¼ f ðuÞ where u ¼ gðvÞ and v ¼ hðxÞ, then

dy

dx
¼ dy

du
� du
dv

� dv
dx

ð13Þ

The results (12) and (13) are often called chain rules for differentiation of composite functions.

7: If y ¼ f ðxÞ; and x ¼ f �1ðyÞ; then dy=dx and dx=dy are related by

dy

dx
¼ 1

dx=dy
ð14Þ

8: If x ¼ f ðtÞ and y ¼ gðtÞ; then

dy

dx
¼ dy=dt

dx=dt
¼ g 0ðtÞ

f 0ðtÞ ð15Þ

Similar rules can be formulated for differentials. For example,

df f ðxÞ þ gðxÞg ¼ d f ðxÞ þ dgðxÞ ¼ f 0ðxÞdxþ g 0ðxÞdx ¼ f f 0ðxÞ þ g 0ðxÞgdx

df f ðxÞgðxÞg ¼ f ðxÞdgðxÞ þ gðxÞd f ðxÞ ¼ f f ðxÞg 0ðxÞ þ gðxÞ f 0ðxÞgdx
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DERIVATIVES OF ELEMENTARY FUNCTIONS

In the following we assume that u is a differentiable function of x; if u ¼ x, du=dx ¼ 1. The inverse
functions are defined according to the principal values given in Chapter 3.

1.
d

dx
ðCÞ ¼ 0 16.

d

dx
cot�1 u ¼ � 1

1þ u2
du

dx

2.
d

dx
un ¼ nun�1 du

dx
17.

d

dx
sec�1 u ¼ � 1

u
ffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 � 1
p du

dx

þ if u > 1
� if u < �1

�

3.
d

dx
sin u ¼ cos u

du

dx
18.

d

dx
csc�1 u ¼ 	 1

u
ffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 � 1
p du

dx

� if u > 1
þ if u < �1

�

4.
d

dx
cos u ¼ � sin u

du

dx
19.

d

dx
sinh u ¼ cosh u

du

dx

5.
d

dx
tan u ¼ sec2 u

du

dx
20.

d

dx
cosh u ¼ sinh u

du

dx

6.
d

dx
cot u ¼ �csc2 u

du

dx
21.

d

dx
tanh u ¼ sech2 u

du

dx

7.
d

dx
sec u ¼ sec u tan u

du

dx
22.

d

dx
coth u ¼ �csch2 u

du

dx

8.
d

dx
csc u ¼ �csc u cot u

du

dx
23.

d

dx
sech u ¼ �sech u tanh u

du

dx

9.
d

dx
loga u ¼ loga e

u

du

dx
a > 0; a 6¼ 1 24.

d

dx
csch u ¼ �csch u coth u

du

dx

10.
d

dx
loge u ¼ d

dx
ln u ¼ 1

u

du

dx
25.

d

dx
sinh�1 u ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ u2
p

du

dx

11.
d

dx
au ¼ au ln a

du

dx
26.

d

dx
cosh�1 u ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 � 1
p du

dx

12.
d

dx
eu ¼ eu

du

dx
27.

d

dx
tanh�1 u ¼ 1

1� u2
du

dx
; juj < 1

13.
d

dx
sin�1 u ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� u2
p du

dx
28.

d

dx
coth�1 u ¼ 1

1� u2
du

dx
; juj > 1

14.
d

dx
cos�1 u ¼ � 1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� u2
p du

dx
29.

d

dx
sech�1 u ¼ 1

u
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� u2
p du

dx

15.
d

dx
tan�1 u ¼ 1

1þ u2
du

dx
30.

d

dx
csch�1 u ¼ � 1

u
ffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ 1
p

du

dx

HIGHER ORDER DERIVATIVES

If f ðxÞ is differentiable in an interval, its derivative is given by f 0ðxÞ, y 0 or dy=dx, where y ¼ f ðxÞ. If

f 0ðxÞ is also differentiable in the interval, its derivative is denoted by f 00ðxÞ, y 00 or
d

dx

dy

dx

� �

¼ d2y

dx2
.

Similarly, the nth derivative of f ðxÞ, if it exists, is denoted by f ðnÞðxÞ, yðnÞ or d
ny

dxn
, where n is called the

order of the derivative. Thus derivatives of the first, second, third, . . . orders are given by f 0ðxÞ, f 00ðxÞ,
f 000ðxÞ; . . . .

Computation of higher order derivatives follows by repeated application of the differentiation rules
given above.
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MEAN VALUE THEOREMS

These theorems are fundamental to the rigorous establishment of numerous theorems and formulas.

(See Fig. 4-5.)

1. Rolle’s theorem. If f ðxÞ is continuous in ½a; b� and differentiable in ða; bÞ and if f ðaÞ ¼ f ðbÞ ¼ 0,
then there exists a point � in ða; bÞ such that f 0ð�Þ ¼ 0.

Rolle’s theorem is employed in the proof of the mean value theorem. It then becomes a
special case of that theorem.

2. The mean value theorem. If f ðxÞ is continuous in ½a; b� and differentiable in ða; bÞ, then there
exists a point � in ða; bÞ such that

f ðbÞ� f ðaÞ
b� a

¼ f 0ð�Þ a < � < b ð16Þ

Rolle’s theorem is the special case of this where f ðaÞ ¼ f ðbÞ ¼ 0.
The result (16) can be written in various alternative forms; for example, if x and x0 are in

ða; bÞ, then
f ðxÞ ¼ f ðx0Þ þ f 0ð�Þðx� x0Þ � between x0 and x ð17Þ

We can also write (16) with b ¼ aþ h, in which case � ¼ aþ �h, where 0 < � < 1.
The mean value theorem is also called the law of the mean.

3. Cauchy’s generalized mean value theorem. If f ðxÞ and gðxÞ are continuous in ½a; b� and differ-
entiable in ða; bÞ, then there exists a point � in ða; bÞ such that

f ðbÞ� f ðaÞ
gðbÞ� gðaÞ ¼

f 0ð�Þ
g 0ð�Þ a < � < b ð18Þ

where we assume gðaÞ 6¼ gðbÞ and f 0ðxÞ, g 0ðxÞ are not simultaneously zero. Note that the special
case gðxÞ ¼ x yields (16).

L’HOSPITAL’S RULES

If lim
x!x0

f ðxÞ ¼ A and lim
x!x0

gðxÞ ¼ B, where A and B are either both zero or both infinite, lim
x!x0

f ðxÞ
gðxÞ is

often called an indeterminate of the form 0/0 or 1=1, respectively, although such terminology is
somewhat misleading since there is usually nothing indeterminate involved. The following theorems,
called L’Hospital’s rules, facilitate evaluation of such limits.

1. If f ðxÞ and gðxÞ are differentiable in the interval ða; bÞ except possibly at a point x0 in this
interval, and if g 0ðxÞ 6¼ 0 for x 6¼ x0, then
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lim
x!x0

f ðxÞ
gðxÞ ¼ lim

x!x0

f 0ðxÞ
g 0ðxÞ ð19Þ

whenever the limit on the right can be found. In case f 0ðxÞ and g 0ðxÞ satisfy the same conditions
as f ðxÞ and gðxÞ given above, the process can be repeated.

2. If lim
x!x0

f ðxÞ ¼ 1 and lim
x!x0

gðxÞ ¼ 1, the result (19) is also valid.

These can be extended to cases where x ! 1 or �1, and to cases where x0 ¼ a or x0 ¼ b in which
only one sided limits, such as x ! aþ or x ! b�, are involved.

Limits represented by the so-called indeterminate forms 0 �1, 10, 00, 11; and 1�1 can be
evaluated on replacing them by equivalent limits for which the above rules are applicable (see Problem
4.29).

APPLICATIONS

1. Relative Extrema and Points of Inflection
See Chapter 3 where relative extrema and points of inflection were described and a diagram is

presented. In this chapter such points are characterized by the variation of the tangent line, and
then by the derivative, which represents the slope of that line.

Assume that f has a derivative at each point of an open interval and that P1 is a point of the graph of
f associated with this interval. Let a varying tangent line to the graph move from left to right through
P1. If the point is a relative minimum, then the tangent line rotates counterclockwise. The slope is
negative to the left of P1 and positive to the right. At P1 the slope is zero. At a relative maximum a
similar analysis can be made except that the rotation is clockwise and the slope varies from positive to
negative. Because f 00 designates the change of f 0, we can state the following theorem. (See Fig. 4-6.)

Theorem. Assume that x1 is a number in an open set of the domain of f at which f 0 is continuous and
f 00 is defined. If f 0ðx1Þ ¼ 0 and f 00ðx1Þ 6¼ 0, then f ðx1Þ is a relative extreme of f . Specifically:

(a) If f 00ðx1Þ > 0, then f ðx1Þ is a relative minimum,

(b) If f 00ðx1Þ < 0; then f ðx1Þ is a relative maximum.

(The domain value x1 is called a critical value.)

This theorem may be generalized in the following way. Assume existence and continuity of
derivatives as needed and suppose that f 0ðx1Þ ¼ f 00ðx1Þ ¼ � � � f ð2p�1Þðx1Þ ¼ 0 and f ð2pÞðx1Þ 6¼ 0 ( p a posi-
tive integer). Then:

(a) f has a relative minimum at x1 if f ð2pÞðx1Þ > 0,

(b) f has a relative maximum at x1 if f ð2pÞðx1Þ < 0.
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(Notice that the order of differentiation in each succeeding case is two greater. The nature of the
intermediate possibilities is suggested in the next paragraph.)

It is possible that the slope of the tangent line to the graph of f is positive to the left of P1, zero at the
point, and again positive to the right. Then P1 is called a point of inflection. In the simplest case this
point of inflection is characterized by f 0ðx1Þ ¼ 0, f 00ðx1Þ ¼ 0, and f 000ðx1Þ 6¼ 0.

2. Particle motion
The fundamental theories of modern physics are relativity, electromagnetism, and quantum

mechanics. Yet Newtonian physics must be studied because it is basic to many of the concepts in
these other theories, and because it is most easily applied to many of the circumstances found in every-
day life. The simplest aspect of Newtonian mechanics is called kinematics, or the geometry of motion.
In this model of reality, objects are idealized as points and their paths are represented by curves. In the
simplest (one-dimensional) case, the curve is a straight line, and it is the speeding up and slowing down
of the object that is of importance. The calculus applies to the study in the following way.

If x represents the distance of a particle from the origin and t signifies time, then x ¼ f ðtÞ designates
the position of a particle at time t. Instantaneous velocity (or speed in the one-dimensional case) is

represented by
dx

dt
¼ lim

�t!0

f ðtþ�tÞ
�t

(the limiting case of the formula
change in distance

change in time
for speed when

the motion is constant). Furthermore, the instantaneous change in velocity is called acceleration and

represented by
d2x

dt2
.

Path, velocity, and acceleration of a particle will be represented in three dimensions in Chapter 7 on
vectors.

3. Newton’s method
It is difficult or impossible to solve algebraic equations of higher degree than two. In fact, it has been

proved that there are no general formulas representing the roots of algebraic equations of degree five and
higher in terms of radicals. However, the graph y ¼ f ðxÞ of an algebraic equation f ðxÞ ¼ 0 crosses the x-
axis at each single-valued real root. Thus, by trial and error, consecutive integers can be found between
which a root lies. Newton’s method is a systematic way of using tangents to obtain a better approx-
imation of a specific real root. The procedure is as follows. (See Fig. 4-7.)

Suppose that f has as many derivatives as required. Let r be a real root of f ðxÞ ¼ 0, i.e., f ðrÞ ¼ 0.
Let x0 be a value of x near r. For example, the integer preceding or following r. Let f 0ðx0Þ be the slope
of the graph of y ¼ f ðxÞ at P0½x0; f ðx0Þ�. Let Q1ðx1; 0Þ be the x-axis intercept of the tangent line at P0

then

0� f ðx0Þ
x� x0

¼ f 0ðx0Þ
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where the two representations of the slope of the tangent line have been equated. The solution of this
relation for x1 is

x1 ¼ x0 �
f ðx0Þ
f 0ðx0Þ

Starting with the tangent line to the graph at P1½x1; f ðx1Þ� and repeating the process, we get

x2 ¼ x1 �
f ðx1Þ
f 0ðx1Þ

¼ x0 �
f ðx0Þ
f 0ðx0Þ

� f ðx1Þ
f 0ðx1Þ

and in general

xn ¼ x0 �
X

n

k¼0

f ðxkÞ
f 0ðxkÞ

Under appropriate circumstances, the approximation xn to the root r can be made as good as
desired.

Note: Success with Newton’s method depends on the shape of the function’s graph in the neighbor-
hood of the root. There are various cases which have not been explored here.

Solved Problems

DERIVATIVES

4.1. (a) Let f ðxÞ ¼ 3þ x

3� x
, x 6¼ 3. Evaluate f 0ð2Þ from the definition.

f 0ð2Þ ¼ lim
h!0

f ð2þ hÞ� f ð2Þ
h

¼ lim
h!0

1

h

5þ h

1� h
� 5

� �

¼ lim
h!0

1

h
� 6h

1� h
¼ lim

h!0

6

1� h
¼ 6

Note: By using rules of differentiation we find

f 0ðxÞ ¼
ð3� xÞ d

dx
ð3þ xÞ� ð3þ xÞ d

dx
ð3� xÞ

ð3� xÞ2
¼ ð3� xÞð1Þ� ð3þ xÞð�1Þ

ð3� xÞ2
¼ 6

ð3� xÞ2

at all points x where the derivative exists. Putting x ¼ 2, we find f 0ð2Þ ¼ 6. Although such rules are
often useful, one must be careful not to apply them indiscriminately (see Problem 4.5).

(b) Let f ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2x� 1
p

. Evaluate f 0ð5Þ from the definition.

f 0ð5Þ ¼ lim
h!0

f ð5þ hÞ� f ð5Þ
h

¼ lim
h!0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9þ 2h
p

� 3

h

¼ lim
h!0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9þ 2h
p

� 3

h
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9þ 2h
p

þ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9þ 2h
p

þ 3
¼ lim

h!0

9þ 2h� 9

hð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9þ 2h
p

þ 3Þ
¼ lim

h!0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9þ 2h
p

þ 3
¼ 1

3

By using rules of differentiation we find f 0ðxÞ ¼ d

dx
ð2x� 1Þ1=2 ¼ 1

2 ð2x� 1Þ�1=2 d

dx
ð2x� 1Þ ¼

ð2x� 1Þ�1=2. Then f 0ð5Þ ¼ 9�1=2 ¼ 1
3.

4.2. (a) Show directly from definition that the derivative of f ðxÞ ¼ x3 is 3x2.

(b) Show from definition that
d

dx

ffiffiffi

x
p Þ ¼ 1

2
ffiffiffi

x
p .
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ðaÞ f ðxþ hÞ� f ðxÞ
h

¼ 1

h
½ðxþ hÞ3 � x3�

¼ 1

h
½x3 þ 3x2hþ 3xh2 þ h3� � x3� ¼ 3x2 þ 3xhþ h2

Then

f 0ðxÞ ¼ lim
h!0

f ðxþ hÞ� f ðxÞ
h

¼ 3x2

ðbÞ lim
h!0

f ðxþ hÞ� f ðxÞ
h

¼ lim
h!0

ffiffiffiffiffiffiffiffiffiffiffi

xþ h
p

� ffiffiffi

x
p

h

The result follows by multiplying numerator and denominator by
ffiffiffiffiffiffiffiffiffiffiffi

xþ h
p

� ffiffiffi

x
p

and then letting h ! 0.

4.3. If f ðxÞ has a derivative at x ¼ x0, prove that f ðxÞ must be continuous at x ¼ x0.

f ðx0 þ hÞ� f ðx0Þ ¼
f ðx0 þ hÞ� f ðx0Þ

h
� h; h 6¼ 0

lim
h!0

f ðx0 þ hÞ� f ðx0Þ ¼ lim
h!0

f ðx0 þ hÞ� f ðx0Þ
h

� lim
h!0

h ¼ f 0ðx0Þ � 0 ¼ 0Then

since f 0ðx0Þ exists by hypothesis. Thus

lim
h!0

f ðx0 þ hÞ� f ðx0Þ ¼ 0 or lim
h!0

f ðx0 þ hÞ ¼ f ðx0Þ

showing that f ðxÞ is continuous at x ¼ x0.

4.4. Let f ðxÞ ¼ x sin 1=x; x 6¼ 0
0; x ¼ 0

�

.

(a) Is f ðxÞ continuous at x ¼ 0? (b) Does f ðxÞ have a derivative at x ¼ 0?

(a) By Problem 3.22(b) of Chapter 3, f ðxÞ is continuous at x ¼ 0.

ðbÞ f 0ð0Þ ¼ lim
h!0

f ð0þ hÞ� f ð0Þ
h

¼ lim
h!0

f ðhÞ� f ð0Þ
h

¼ lim
h!0

h sin 1=h� 0

h
¼ lim

h!0
sin

1

h

which does not exist.

This example shows that even though a function is continuous at a point, it need not have a
derivative at the point, i.e., the converse of the theorem in Problem 4.3 is not necessarily true.

It is possible to construct a function which is continuous at every point of an interval but has a
derivative nowhere.

4.5. Let f ðxÞ ¼ x2 sin 1=x; x 6¼ 0
0; x ¼ 0

�

.

(a) Is f ðxÞ differentiable at x ¼ 0? (b) Is f 0ðxÞ continuous at x ¼ 0?

ðaÞ f 0ð0Þ ¼ lim
h!0

f ðhÞ� f ð0Þ
h

¼ lim
h!0

h2 sin 1=h� 0

h
¼ lim

h!0
h sin

1

h
¼ 0

by Problem 3.13, Chapter 3. Then f ðxÞ has a derivative (is differentiable) at x ¼ 0 and its value is 0.

(b) From elementary calculus differentiation rules, if x 6¼ 0,

f 0ðxÞ ¼ d

dx
x2 sin

1

x

� �

¼ x2
d

dx
sin

1

x

� �

þ sin
1

x

� �

d

dx
ðx2Þ

¼ x2 cos
1

x

� �

� 1

x2

� �

þ sin
1

x

� �

ð2xÞ ¼ � cos
1

x
þ 2x sin

1

x
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Since lim
x!0

f 0ðxÞ ¼ lim
x!0

� cos
1

x
þ 2x sin

1

x

� �

does not exist (because lim
x!0

cos 1=x does not exist), f 0ðxÞ
cannot be continuous at x ¼ 0 in spite of the fact that f 0ð0Þ exists.

This shows that we cannot calculate f 0ð0Þ in this case by simply calculating f 0ðxÞ and putting x ¼ 0,
as is frequently supposed in elementary calculus. It is only when the derivative of a function is
continuous at a point that this procedure gives the right answer. This happens to be true for most

functions arising in elementary calculus.

4.6. Present an ‘‘�; �’’ definition of the derivative of f ðxÞ at x ¼ x0.

f ðxÞ has a derivative f 0ðx0Þ at x ¼ x0 if, given any � > 0, we can find � > 0 such that

f ðx0 þ hÞ� f ðx0Þ
h

� f 0ðx0Þ
























< � when 0 < jhj < �

RIGHT- AND LEFT-HAND DERIVATIVES

4.7. Let f ðxÞ ¼ jxj. (a) Calculate the right-hand derivatives of f ðxÞ at x ¼ 0. (b) Calculate the left-
hand derivative of f ðxÞ at x ¼ 0. (c) Does f ðxÞ have a derivative at x ¼ 0? (d) Illustrate the
conclusions in (a), (b), and (c) from a graph.

ðaÞ f 0
þð0Þ ¼ lim

h!0þ
f ðhÞ� f ð0Þ

h
¼ lim

h!0þ
jhj� 0

h
¼ lim

h!0þ
h

h
¼ 1

since jhj ¼ h for h > 0.

ðbÞ f 0
�ð0Þ ¼ lim

h!0�
f ðhÞ� f ð0Þ

h
¼ lim

h!0�
jhj� 0

h
¼ lim

h!0�
�h

h
¼ �1

since jhj ¼ �h for h < 0.

(c) No. The derivative at 0 does not exist if the right and
left hand derivatives are unequal.

(d) The required graph is shown in the adjoining Fig. 4-8.
Note that the slopes of the lines y ¼ x and y ¼ �x are 1 and �1 respectively, representing the right and

left hand derivatives at x ¼ 0. However, the derivative at x ¼ 0 does not exist.

4.8. Prove that f ðxÞ ¼ x2 is differentiable in 0 @ x @ 1.

Let x0 be any value such that 0 < x0 < 1. Then

f 0ðx0Þ ¼ lim
h!0

f ðx0 þ hÞ� f ðx0Þ
h

¼ lim
h!0

ðx0 þ hÞ2 � x20
h

¼ lim
h!0

ð2x0 þ hÞ ¼ 2x0

At the end point x ¼ 0,

f 0
þð0Þ ¼ lim

h!0þ
f ð0þ hÞ� f ð0Þ

h
¼ lim

h!0þ
h2 � 0

h
¼ lim

h!0þ
h ¼ 0

At the end point x ¼ 1,

f 0
�ð1Þ ¼ lim

h!0�
f ð1þ hÞ� f ð1Þ

h
¼ lim

h!0�
ð1þ hÞ2 � 1

h
¼ lim

h!0�
ð2þ hÞ ¼ 2

Then f ðxÞ is differentiable in 0 @ x @ 1. We may write f 0ðxÞ ¼ 2x for any x in this interval. It is
customary to write f 0

þð0Þ ¼ f 0ð0Þ and f 0
�ð1Þ ¼ f 0ð1Þ in this case.
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4.9. Find an equation for the tangent line to y ¼ x2 at the point where (a) x ¼ 1=3; ðbÞ x ¼ 1.

(a) From Problem 4.8, f 0ðx0Þ ¼ 2x0 so that f 0ð1=3Þ ¼ 2=3. Then the equation of the tangent line is

y� f ðx0Þ ¼ f 0ðx0Þðx� x0Þ or y� 1
9 ¼ 2

3 ðx� 1
3Þ; i:e:; y ¼ 2

3 x� 1
9

(b) As in part (a), y� f ð1Þ ¼ f 0ð1Þðx� 1Þ or y� 1 ¼ 2ðx� 1Þ, i.e., y ¼ 2x� 1.

DIFFERENTIALS

4.10. If y ¼ f ðxÞ ¼ x3 � 6x, find (a) �y; ðbÞ dy; ðcÞ �y� dy.

ðaÞ �y ¼ f ðxþ�xÞ� f ðxÞ ¼ fðxþ�xÞ3 � 6ðxþ�xÞg� fx3 � 6xg
¼ x3 þ 3x2�xþ 3xð�xÞ2 þ ð�xÞ3 � 6x� 6�x� x3 þ 6x

¼ ð3x2 � 6Þ�xþ 3xð�xÞ2 þ ð�xÞ3

(b) dy ¼ principal part of �y ¼ ð3x2 � 6Þ�x ¼ ð3x2 � 6Þdx, since by definition �x ¼ dx.

Note that f 0ðxÞ ¼ 3x2 � 6 and dy ¼ ð3x2 � 6Þdx, i.e., dy=dx ¼ 3x2 � 6. It must be emphasized that

dy and dx are not necessarily small.

(c) From (a) and (b), �y� dy ¼ 3xð�xÞ2 þ ð�xÞ3 ¼ ��x, where � ¼ 3x�xþ ð�xÞ2.
Note that � ! 0 as �x ! 0, i.e.,

�y� dy

�x
! 0 as �x ! 0. Hence �y� dy is an infinitesimal of

higher order than �x (see Problem 4.83).

In case �x is small, dy and �y are approximately equal.

4.11. Evaluate
ffiffiffiffiffi

253
p

approximately by use of differentials.

If �x is small, �y ¼ f ðxþ�xÞ� f ðxÞ ¼ f 0ðxÞ�x approximately.

Let f ðxÞ ¼ ffiffiffi

x3
p

. Then
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xþ�x3
p

� ffiffiffi

x3
p � 1

3x
�2=3�x (where � denotes approximately equal to).

If x ¼ 27 and �x ¼ �2, we have
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

27� 2
3
p

�
ffiffiffiffiffi

27
3
p

� 1
3 ð27Þ

�2=3ð�2Þ; i.e.,
ffiffiffiffiffi

253
p

� 3 � �2=27

Then
ffiffiffiffiffi

253
p

� 3� 2=27 or 2.926.

If is interesting to observe that ð2:926Þ3 ¼ 25:05, so that the approximation is fairly good.

DIFFERENTIATION RULES: DIFFERENTIATION OF ELEMENTARY FUNCTIONS

4.12. Prove the formula
d

dx
f f ðxÞgðxÞg ¼ f ðxÞ d

dx
gðxÞ þ gðxÞ d

dx
f ðxÞ, assuming f and g are differentiable.

By definition,

d

dx
f f ðxÞgðxÞg ¼ lim

�x!0

f ðxþ�xÞgðxþ�xÞ� f ðxÞgðxÞ
�x

¼ lim
�x!0

f ðxþ�xÞfgðxþ�xÞ� gðxÞg þ gðxÞf f ðxþ�xÞ� f ðxÞg
�x

¼ lim
�x!0

f ðxþ�xÞ gðxþ�xÞ� gðxÞ
�x

� �

þ lim
�x!0

gðxÞ f ðxþ�xÞ� f ðxÞ
�x

� �

¼ f ðxÞ d
dx

gðxÞ þ gðxÞ d
dx

f ðxÞ

Another method:

Let u ¼ f ðxÞ, v ¼ gðxÞ. Then �u ¼ f ðxþ�xÞ� f ðxÞ and �v ¼ gðxþ�xÞ� gðxÞ, i.e., f ðxþ�xÞ ¼
uþ�u, gðxþ�xÞ ¼ vþ�v. Thus
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d

dx
uv ¼ lim

�x!0

ðuþ�uÞðvþ�vÞ� uv

�x
¼ lim

�x!0

u�vþ v�uþ�u�v

�x

¼ lim
�x!0

u
�v

�x
þ v

�u

�x
þ �u

�x
�v

� �

¼ u
dv

dx
þ v

du

dx

where it is noted that �v ! 0 as �x ! 0, since v is supposed differentiable and thus continuous.

4.13. If y ¼ f ðuÞ where u ¼ gðxÞ, prove that
dy

dx
¼ dy

du
� du
dx

assuming that f and g are differentiable.

Let x be given an increment �x 6¼ 0. Then as a consequence u and y take on increments �u and �y

respectively, where

�y ¼ f ðuþ�uÞ� f ðuÞ; �u ¼ gðxþ�xÞ� gðxÞ ð1Þ

Note that as �x ! 0, �y ! 0 and �u ! 0.

If �u 6¼ 0, let us write � ¼ �y

�u
� dy

du
so that � ! 0 as �u ! 0 and

�y ¼ dy

du
�uþ ��u ð2Þ

If �u ¼ 0 for values of �x, then (1) shows that �y ¼ 0 for these values of �x. For such cases, we

define � ¼ 0.
It follows that in both cases, �u 6¼ 0 or �u ¼ 0, (2) holds. Dividing (2) by �x 6¼ 0 and taking the limit

as �x ! 0, we have

dy

dx
¼ lim

�x!0

�y

�x
¼ lim

�x!0

dy

du

�u

�x
þ �

�u

�x

� �

¼ dy

du
� lim
�x!0

�u

�x
þ lim

�x!0
� � lim

�x!0

�u

�x

¼ dy

du

du

dx
þ 0 � du

dx
¼ dy

du
� du
dx

ð3Þ

4.14. Given
d

dx
ðsin xÞ ¼ cos x and

d

dx
ðcos xÞ ¼ � sin x, derive the formulas

ðaÞ d

dx
ðtan xÞ ¼ sec2 x; ðbÞ d

dx
ðsin�1 xÞ ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p

ðaÞ d

dx
ðtan xÞ ¼ d

dx

sin x

cos x

� �

¼
cos x

d

dx
ðsin xÞ� sinx

d

dx
ðcos xÞ

cos2 x

¼ ðcos xÞðcos xÞ� ðsin xÞð� sin xÞ
cos2 x

¼ 1

cos2 x
¼2 x

(b) If y ¼ sin�1 x, then x ¼ sin y. Taking the derivative with respect to x,

1 ¼ cos y
dy

dx
or

dy

dx
¼ 1

cos y
¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� sin2 y

q ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p

We have supposed here that the principal value ��=2 @ sin�1 x @ �=2, is chosen so that cos y is

positive, thus accounting for our writing cos y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� sin2 y

q

rather than cos y ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� sin2 y

q

.

4.15. Derive the formula
d

dx
ðloga uÞ ¼

loga e

u

du

dx
ða > 0; a 6¼ 1Þ, where u is a differentiable function of x.

Consider y ¼ f ðuÞ ¼ loga u. By definition,

dy

du
¼ lim

�u!0

f ðuþ�uÞ� f ðuÞ
�u

¼ lim
�u!0

logaðuþ�uÞ� loga u

�u

¼ lim
�u!0

1

�u
loga

uþ�u

u

� �

¼ lim
�u!0

1

u
loga 1þ�u

u

� �u=�u
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Since the logarithm is a continuous function, this can be written

1

u
loga lim

�u!0
1þ�u

u

� �u=�u
( )

¼ 1

u
loga e

by Problem 2.19, Chapter 2, with x ¼ u=�u.

Then by Problem 4.13,
d

dx
ðloga uÞ ¼

loga e

u

du

dx
.

4.16. Calculate dy=dx if (a) xy3 � 3x2 ¼ xyþ 5, (b) exy þ y ln x ¼ cos 2x.

(a) Differentiate with respect to x, considering y as a function of x. (We sometimes say that y is an implicit
function of x, since we cannot solve explicitly for y in terms of x.) Then

d

dx
ðxy3Þ� d

dx
ð3x2Þ ¼ d

dx
ðxyÞ þ d

dx
ð5Þ or ðxÞð3y2y 0Þ þ ðy3Þð1Þ� 6x ¼ ðxÞðy 0Þ þ ðyÞð1Þ þ 0

where y 0 ¼ dy=dx. Solving, y 0 ¼ ð6x� y3 þ yÞ=ð3xy2 � xÞ.

ðbÞ d

dx
ðexyÞ þ d

dx
ðy ln xÞ ¼ d

dx
ðcos 2xÞ; exyðxy 0 þ yÞ þ y

x
þ ðln xÞy 0 ¼ �2 sin 2x:

y 0 ¼ � 2x sin 2xþ xyexy þ y

x2exy þ x lnx
Solving;

4.17. If y ¼ coshðx2 � 3xþ 1Þ, find (a) dy=dx; ðbÞ d2y=dx2.

(a) Let y ¼ cosh u, where u ¼ x2 � 3xþ 1. Then dy=du ¼ sinh u, du=dx ¼ 2x� 3, and

dy

dx
¼ dy

du
� du
dx

¼ ðsinh uÞð2x� 3Þ ¼ ð2x� 3Þ sinhðx2 � 3xþ 1Þ

ðbÞ d2y

dx2
¼ d

dx

dy

dx

� �

¼ d

dx
sinh u

du

dx

� �

¼ sinh u
d2u

dx2
þ cosh u

du

dx

� �2

¼ ðsinh uÞð2Þ þ ðcosh uÞð2x� 3Þ2 ¼ 2 sinhðx2 � 3xþ 1Þ þ ð2x� 3Þ2 coshðx2 � 3xþ 1Þ

4.18. If x2yþ y3 ¼ 2, find (a) y 0; ðbÞ y 00 at the point ð1; 1Þ.
(a) Differentiating with respect to x, x2y 0 þ 2xyþ 3y2y 0 ¼ 0 and

y 0 ¼ �2xy

x2 þ 3xy2
¼ � 1

2
at ð1; 1Þ

ðbÞ y 00 ¼ d

dx
ðy 0Þ ¼ d

dx

�2xy

x2 þ 3y2

� �

¼ � ðx2 þ 3y2Þð2xy 0 þ 2yÞ� ð2xyÞð2xþ 6yy 0Þ
ðx2 þ 3y2Þ2

Substituting x ¼ 1, y ¼ 1; and y 0 ¼ � 1
2, we find y 00 ¼ � 3

8.

MEAN VALUE THEOREMS

4.19. Prove Rolle’s theorem.

Case 1: f ðxÞ � 0 in ½a; b�. Then f 0ðxÞ ¼ 0 for all x in ða; bÞ.
Case 2: f ðxÞ 6� 0 in ½a; b�. Since f ðxÞ is continuous there are points at which f ðxÞ attains its maximum and

minimum values, denoted by M and m respectively (see Problem 3.34, Chapter 3).
Since f ðxÞ 6� 0, at least one of the values M;m is not zero. Suppose, for example, M 6¼ 0 and that

f ð�Þ ¼ M (see Fig. 4-9). For this case, f ð� þ hÞ @ f ð�Þ.
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If h > 0, then
f ð� þ hÞ� f ð�Þ

h
@ 0 and

lim
h!0þ

f ð� þ hÞ� f ð�Þ
h

@ 0 ð1Þ

If h < 0, then
f ð� þ hÞ� f ð�Þ

h
A 0 and

lim
h!0�

f ð� þ hÞ� f ð�Þ
h

A 0 ð2Þ

But by hypothesis f ðxÞ has a derivative at all points

in ða; bÞ. Then the right-hand derivative (1) must be
equal to the left-hand derivative (2). This can happen only if they are both equal to zero, in which case
f 0ð�Þ ¼ 0 as required.

A similar argument can be used in case M ¼ 0 and m 6¼ 0.

4.20. Prove the mean value theorem.

Define FðxÞ ¼ f ðxÞ� f ðaÞ� ðx� aÞ f ðbÞ� f ðaÞ
b� a

.

Then FðaÞ ¼ 0 and FðbÞ ¼ 0.

Also, if f ðxÞ satisfies the conditions on continuity and differentiability specified in Rolle’s theorem, then

FðxÞ satisfies them also.

Then applying Rolle’s theorem to the function FðxÞ, we obtain

F 0ð�Þ ¼ f 0ð�Þ� f ðbÞ� f ðaÞ
b� a

¼ 0; a < � < b or f 0ð�Þ ¼ f ðbÞ� f ðaÞ
b� a

; a < � < b

4.21. Verify the mean value theorem for f ðxÞ ¼ 2x2 � 7xþ 10, a ¼ 2, b ¼ 5.

f ð2Þ ¼ 4, f ð5Þ ¼ 25, f 0ð�Þ ¼ 4� � 7. Then the mean value theorem states that 4� � 7 ¼ ð25� 4Þ=ð5� 2Þ
or � ¼ 3:5. Since 2 < � < 5, the theorem is verified.

4.22. If f 0ðxÞ ¼ 0 at all points of the interval ða; bÞ, prove that f ðxÞ must be a constant in the interval.

Let x1 < x2 be any two different points in ða; bÞ. By the mean value theorem for x1 < � < x2,

f ðx2Þ� f ðx1Þ
x2 � x1

¼ f 0ð�Þ ¼ 0

Thus, f ðx1Þ ¼ f ðx2Þ ¼ constant. From this it follows that if two functions have the same derivative at all

points of ða; bÞ, the functions can only differ by a constant.

4.23. If f 0ðxÞ > 0 at all points of the interval ða; bÞ, prove that f ðxÞ is strictly increasing.

Let x1 < x2 be any two different points in ða; bÞ. By the mean value theorem for x1 < � < x2,

f ðx2Þ� f ðx1Þ
x2 � x1

¼ f 0ð�Þ > 0

Then f ðx2Þ > f ðx1Þ for x2 > x1, and so f ðxÞ is strictly increasing.

4.24. (a) Prove that
b� a

1þ b2
< tan�1 b� tan�1 a <

b� a

1þ a2
if a < b.

(b) Show that
�

4
þ 3

25
< tan�1 4

3
<

�

4
þ 1

6
.

(a) Let f ðxÞ ¼ tan�1 x. Since f 0ðxÞ ¼ 1=ð1þ x2Þ and f 0ð�Þ ¼ 1=ð1þ �2Þ, we have by the mean value
theorem
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tan�1 b� tan�1 a

b� a
¼ 1

1þ �2
a < � < b

Since � > a, 1=ð1þ �2Þ < 1=ð1þ a2Þ. Since � < b, 1=ð1þ �2Þ > 1=ð1þ b2Þ. Then

1

1þ b2
<

tan�1 b� tan�1 a

b� a
<

1

1þ a2

and the required result follows on multiplying by b� a.

(b) Let b ¼ 4=3 and a ¼ 1 in the result of part (a). Then since tan�1 1 ¼ �=4, we have

3

25
< tan�1 4

3
� tan�1 1 <

1

6
or

�

4
þ 3

25
< tan�1 4

3
<

�

4
þ 1

6

4.25. Prove Cauchy’s generalized mean value theorem.

Consider GðxÞ ¼ f ðxÞ� f ðaÞ� 	fgðxÞ� gðaÞg, where 	 is a constant. Then GðxÞ satisfies the conditions
of Rolle’s theorem, provided f ðxÞ and gðxÞ satisfy the continuity and differentiability conditions of Rolle’s

theorem and if GðaÞ ¼ GðbÞ ¼ 0. Both latter conditions are satisfied if the constant 	 ¼ f ðbÞ� f ðaÞ
gðbÞ� gðaÞ.

Applying Rolle’s theorem, G 0ð�Þ ¼ 0 for a < � < b, we have

f 0ð�Þ� 	g 0ð�Þ ¼ 0 or
f 0ð�Þ
g 0ð�Þ ¼

f ðbÞ� f ðaÞ
gðbÞ� gðaÞ ; a < � < b

as required.

L’HOSPITAL’S RULE

4.26. Prove L’Hospital’s rule for the case of the ‘‘indeterminate forms’’ (a) 0/0, (b) 1=1.

(a) We shall suppose that f ðxÞ and gðxÞ are differentiable in a < x < b and f ðx0Þ ¼ 0, gðx0Þ ¼ 0, where

a < x0 < b.
By Cauchy’s generalized mean value theorem (Problem 25),

f ðxÞ
gðxÞ ¼

f ðxÞ� f ðx0Þ
gðxÞ� gðx0Þ

¼ f 0ð�Þ
g 0ð�Þ x0 < � < x

Then

lim
x!x0þ

f ðxÞ
gðxÞ ¼ lim

x!x0þ
f 0ð�Þ
g 0ð�Þ ¼ lim

x!x0þ
f 0ðxÞ
g 0ðxÞ ¼ L

since as x ! x0þ, � ! x0þ.

Modification of the above procedure can be used to establish the result if x ! x0�, x ! x0,
x ! 1, x ! �1.

(b) We suppose that f ðxÞ and gðxÞ are differentiable in a < x < b, and lim
x!x0þ

f ðxÞ ¼ 1, lim
x!x0þ

gðxÞ ¼ 1
where a < x0 < b.

Assume x1 is such that a < x0 < x < x1 < b. By Cauchy’s generalized mean value theorem,

f ðxÞ� f ðx1Þ
gðxÞ� gðx1Þ

¼ f 0ð�Þ
g 0ð�Þ x < � < x1

Hence

f ðxÞ� f ðx1Þ
gðxÞ� gðx1Þ

¼ f ðxÞ
gðxÞ �

1� f ðx1Þ=f ðxÞ
1� gðx1Þ=gðxÞ

¼ f 0ð�Þ
g 0ð�Þ
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from which we see that

f ðxÞ
gðxÞ ¼

f 0ð�Þ
g 0ð�Þ �

1� gðx1Þ=gðxÞ
1� f ðx1Þ=f ðxÞ

ð1Þ

Let us now suppose that lim
x!x0þ

f 0ðxÞ
g 0ðxÞ ¼ L and write (1) as

f ðxÞ
gðxÞ ¼

f 0ð�Þ
g 0ð�Þ� L

� �

1� gðx1Þ=gðxÞ
1� f ðx1Þ=f ðxÞ

� �

þ L
1� gðx1Þ=gðxÞ
1� f ðx1Þ=f ðxÞ

� �

ð2Þ

We can choose x1 so close to x0 that j f 0ð�Þ=g 0ð�Þ� Lj < �. Keeping x1 fixed, we see that

lim
x!x0þ

1� gðx1Þ=gðxÞ
1� f ðx1Þ=f ðxÞ

� �

¼ 1 since lim
x!x0þ

f ðxÞ ¼ 1 and lim
x!x0

gðxÞ ¼ 1

Then taking the limit as x ! x0þ on both sides of (2), we see that, as required,

lim
x!x0þ

f ðxÞ
gðxÞ ¼ L ¼ lim

x!x0þ
f 0ðxÞ
g 0ðxÞ

Appropriate modifications of the above procedure establish the result if x ! x0�, x ! x0,
x ! 1, x ! �1.

4.27. Evaluate (a) lim
x!0

e2x � 1

x
ðbÞ lim

x!1

1þ cos�x

x2 � 2xþ 1

All of these have the ‘‘indeterminate form’’ 0/0.

ðaÞ lim
x!0

e2x � 1

x
¼ lim

x!0

2e2x

1
¼ 2

ðbÞ lim
x!1

1þ cos�x

x2 � 2xþ 1
¼ lim

x!1

�� sin�x

2x� 2
¼ lim

x!1

��2 cos�x

2
¼ �2

2

Note: Here L’Hospital’s rule is applied twice, since the first application again yields the ‘‘indeter-

minate form’’ 0/0 and the conditions for L’Hospital’s rule are satisfied once more.

4.28. Evaluate (a) lim
x!1

3x2 � xþ 5

5x2 þ 6x� 3
ðbÞ lim

x!1
x2e�x

All of these have or can be arranged to have the ‘‘indeterminate form’’ 1=1.

ðaÞ lim
x!1

3x2 � xþ 5

5x2 þ 6x� 3
¼ lim

x!1
6x� 1

10xþ 6
¼ lim

x!1
6

10
¼ 3

5

ðbÞ lim
x!1

x2e�x ¼ lim
x!1

x2

ex
¼ lim

x!1
2x

ex
¼ lim

x!1
2

ex
¼ 0

4.29. Evaluate lim
x!0þ

x2 ln x.

lim
x!0þ

x2 lnx ¼ lim
x!0þ

lnx

1=x2
¼ lim

x!0þ
1=x

�2=x3
¼ lim

x!0þ
�x2

2
¼ 0

The given limit has the ‘‘indeterminate form’’ 0 �1. In the second step the form is altered so as to give
the indeterminate form 1=1 and L’Hospital’s rule is then applied.

4.30. Find lim
x!0

ðcos xÞ1=x2 .
Since lim

x!0
cos x ¼ 1 and lim

x!0
1=x2 ¼ 1, the limit takes the ‘‘indeterminate form’’ 11.
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Let FðxÞ ¼ ðcos xÞ1=x2 . Then lnFðxÞ ¼ ðln cos xÞ=x2 to which L’Hospital’s rule can be applied. We

have

lim
x!0

ln cos x

x2
¼ lim

x!0

ð� sin xÞ=ðcosxÞ
2x

¼ lim
x!0

� sinx

2x cosx
¼ lim

x!0

� cos x

�2x sinxþ 2 cos x
¼ � 1

2

Thus, lim
x!0

lnFðxÞ ¼ � 1
2. But since the logarithm is a continuous function, lim

x!0
lnFðxÞ ¼ lnðlim

x!0
FðxÞÞ. Then

lnðlim
x!0

FðxÞÞ ¼ � 1
2 or lim

x!0
FðxÞ ¼ lim

x!0
ðcos xÞ1=x2 ¼ e�1=2

4.31. If FðxÞ ¼ ðe3x � 5xÞ1=x, find (a) lim
x!0

FðxÞ and (b) lim
x!0

FðxÞ.

The respective indeterminate forms in (a) and (b) are 10 and 11.

Let GðxÞ ¼ lnFðxÞ ¼ lnðe3x � 5xÞ
x

. Then lim
x!1

GðxÞ and lim
x!0

GðxÞ assume the indeterminate forms 1=1
and 0/0 respectively, and L’Hospital’s rule applies. We have

ðaÞ lim
x!1

lnðe3x � 5xÞ
x

¼ lim
x!1

3e3x � 5

e3x � 5x
¼ lim

x!0

9e3x

3e3x � 5
¼ lim

x!1
27e3x

9e3x
¼ 3

Then, as in Problem 4.30, lim
x!1

ðe3x � 5xÞ1=x ¼ e3.

ðbÞ lim
x!0

lnðe3x � 5xÞ
x

¼ lim
x!0

3e3x � 5

e3x � 5x
¼ �2 and lim

x!0
ðe3x � 5xÞ1=x ¼ e�2

4.32. Suppose the equation of motion of a particle is x ¼ sinðc1tþ c2Þ, where c1 and c2 are constants.
(Simple harmonic motion.) (a) Show that the acceleration of the particle is proportional to its
distance from the origin. (b) If c1 ¼ 1, c2 ¼ �, and t 
 0, determine the velocity and acceleration
at the end points and at the midpoint of the motion.

ðaÞ dx

dt
¼ c1 cosðc1tþ c2Þ;

d2x

dt2
¼ �c21 sinðc1tþ c2Þ ¼ �c21x:

This relation demonstrates the proportionality of acceleration and distance.

(b) The motion starts at 0 and moves to �1. Then it oscillates between this value and 1. The absolute value

of the velocity is zero at the end points, and that of the acceleration is maximum there. The particle

coasts through the origin (zero acceleration), while the absolute value of the velocity is maximum there.

4.33. Use Newton’s method to determine
ffiffiffi

3
p

to three decimal points of accuracy.
ffiffiffi

3
p

is a solution of x2 � 3 ¼ 0, which lies between 1 and 2. Consider f ðxÞ ¼ x2 � 3 then f 0ðxÞ ¼ 2x.

The graph of f crosses the x-axis between 1 and 2. Let x0 ¼ 2. Then f ðx0Þ ¼ 1 and f 0ðx0Þ ¼ 1:75.

According to the Newton formula, x1 ¼ x0 �
f ðx0Þ
f 0ðx0Þ

¼ 2� :25 ¼ 1:75.

Then x2 ¼ x1 �
f ðx1Þ
f 0ðx1Þ

¼ 1:732. To verify the three decimal point accuracy, note that ð1:732Þ2 ¼ 2:9998

and ð1:7333Þ2 ¼ 3:0033.
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MISCELLANEOUS PROBLEMS

4.34. If x ¼ gðtÞ and y ¼ f ðtÞ are twice differentiable, find (a) dy=dx; ðbÞ d2y=dx2.

(a) Letting primes denote derivatives with respect to t, we have

dy

dx
¼ dy=dt

dx=dt
¼ f 0ðtÞ

g 0ðtÞ if g 0ðtÞ 6¼ 0

ðbÞ d2y

dx2
¼ d

dx

dy

dx

� �

¼ d

dx

f 0ðtÞ
g 0ðtÞ

� �

¼

d

dt

f 0ðtÞ
g 0ðtÞ

� �

dx=dt
¼

d

dt

f 0ðtÞ
g 0ðtÞ

� �

g 0ðtÞ

¼ 1

g 0ðtÞ
g 0ðtÞf 00ðtÞ� f 0ðtÞg 00ðtÞ

½g 0ðtÞ�2
� �

¼ g 0ðtÞf 00ðtÞ� f 0ðtÞg 00ðtÞ
½g 0ðtÞ�3

if g 0ðtÞ 6¼ 0

4.35. Let f ðxÞ ¼ e�1=x2 ; x 6¼ 0
0; x ¼ 0

�

. Prove that (a) f 0ð0Þ ¼ 0; ðbÞ f 00ð0Þ ¼ 0.

ðaÞ f 0
þð0Þ ¼ lim

h!0þ
f ðhÞ� f ð0Þ

h
¼ lim

h!0þ
e�1=h2 � 0

h
¼ lim

h!0þ
e�1=h2

h

If h ¼ 1=u, using L’Hospital’s rule this limit equals

lim
u!1

ue�u2 ¼ lim
u!1

u=eu
2 ¼ lim

u!1
1=2ueu

2 ¼ 0

Similarly, replacing h ! 0þ by h ! 0� and u ! 1 by u ! �1, we find f 0
�ð0Þ ¼ 0. Thus

f 0
þð0Þ ¼ f 0

�ð0Þ ¼ 0, and so f 0ð0Þ ¼ 0.

ðbÞ f 00
þ ð0Þ ¼ lim

h!0þ
f 0ðhÞ� f 0ð0Þ

h
¼ lim

h!0þ
e�1=h2 � 2h�3 � 0

h
¼ lim

h!0þ
2e�1=h2

h4
¼ lim

u!1
2u4

eu
2 ¼ 0

by successive applications of L’Hospital’s rule.

Similarly, f 00
� ð0Þ ¼ 0 and so f 00ð0Þ ¼ 0.

In general, f ðnÞð0Þ ¼ 0 for n ¼ 1; 2; 3; . . .

4.36. Find the length of the longest ladder which can be carried around the corner of a corridor, whose
dimensions are indicated in the figure below, if it is assumed that the ladder is carried parallel to
the floor.

The length of the longest ladder is the same as the shortest
straight line segment AB [Fig. 4-10], which touches both outer

walls and the corner formed by the inner walls.

As seen from Fig. 4-10, the length of the ladder AB is

L ¼ a sec � þ b csc �

L is a minimum when

dL=d� ¼ a sec � tan � � b csc � cot � ¼ 0

a sin3 � ¼ b cos3 � or tan � ¼
ffiffiffiffiffiffiffiffi

b=a3
p

i.e.;

sec � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2=3 þ b2=3
p

a1=3
; csc � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2=3 þ b2=3
p

b1=3
Then

L ¼ a sec � þ b csc � ¼ ða2=3 þ b2=3Þ3=2so that

Although it is geometrically evident that this gives the minimum length, we can prove this analytically
by showing that d2L=d�2 for � ¼ tan�1

ffiffiffiffiffiffiffiffi

b=a3
p

is positive (see Problem 4.78).
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Supplementary Problems

DERIVATIVES

4.37. Use the definition to compute the derivatives of each of the following functions at the indicated point:
(a) ð3x� 4Þ=ð2xþ 3Þ; x ¼ 1; ðbÞ x3 � 3x2 þ 2x� 5;x ¼ 2; ðcÞ ffiffiffi

x
p

; x ¼ 4; ðdÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6x� 43
p

; x ¼ 2:
Ans. (a) 17/25, (b) 2, (c) 1

4, (d) 1
2

4.38. Show from definition that (a)
d

dx
x4 ¼ 4x3; ðbÞ d

dx

3þ x

3� x
¼ 6

ð3� xÞ2
; x 6¼ 3

4.39. Let f ðxÞ ¼ x3 sin 1=x; x 6¼ 0
0; x ¼ 0

�

. Prove that (a) f ðxÞ is continuous at x ¼ 0, (b) f ðxÞ has a derivative at

x ¼ 0, (c) f 0ðxÞ is continuous at x ¼ 0.

4.40. Let f ðxÞ ¼ xe�1=x2 ; x 6¼ 0
0; x ¼ 0

�

. Determine whether f ðxÞ (a) is continuous at x ¼ 0, (b) has a derivative at

x ¼ 0:

Ans. (a) Yes; (b) Yes, 0

4.41. Give an alternative proof of the theorem in Problem 4.3, Page 76, using ‘‘�; � definitions’’.

4.42. If f ðxÞ ¼ ex, show that f 0ðx0Þ ¼ ex0 depends on the result lim
h!0

ðeh � 1Þ=h ¼ 1.

4.43. Use the results lim
h!0

ðsin hÞ=h ¼ 1, lim
h!0

ð1� cos hÞ=h ¼ 0 to prove that if f ðxÞ ¼ sinx, f 0ðx0Þ ¼ cos x0.

RIGHT- AND LEFT-HAND DERIVATIVES

4.44. Let f ðxÞ ¼ xjxj. (a) Calculate the right-hand derivative of f ðxÞ at x ¼ 0. (b) Calculate the left-hand
derivative of f ðxÞ at x ¼ 0. (c) Does f ðxÞ have a derivative at x ¼ 0? (d) Illustrate the conclusions in ðaÞ,
(b), and (c) from a graph.
Ans. (a) 0; (b) 0; (c) Yes, 0

4.45. Discuss the (a) continuity and (b) differentiability of f ðxÞ ¼ xp sin 1=x, f ð0Þ ¼ 0, where p is any positive
number. What happens in case p is any real number?

4.46. Let f ðxÞ ¼ 2x� 3; 0 @ x @ 2
x2 � 3; 2 < x @ 4

�

. Discuss the (a) continuity and (b) differentiability of f ðxÞ in

0 @ x @ 4.

4.47. Prove that the derivative of f ðxÞ at x ¼ x0 exists if and only if f 0
þðx0Þ ¼ f 0

�ðx0Þ.

4.48. (a) Prove that f ðxÞ ¼ x3 � x2 þ 5x� 6 is differentiable in a @ x @ b, where a and b are any constants.
(b) Find equations for the tangent lines to the curve y ¼ x3 � x2 þ 5x� 6 at x ¼ 0 and x ¼ 1. Illustrate

by means of a graph. (c) Determine the point of intersection of the tangent lines in (b). (d) Find
f 0ðxÞ; f 00ðxÞ; f 000ðxÞ; f ðIVÞðxÞ; . . . .
Ans. (b) y ¼ 5x� 6; y ¼ 6x� 7; ðcÞ ð1;�1Þ; ðdÞ 3x2 � 2xþ 5; 6x� 2; 6; 0; 0; 0; . . .

4.49. If f ðxÞ ¼ x2jxj, discuss the existence of successive derivatives of f ðxÞ at x ¼ 0.

DIFFERENTIALS

4.50. If y ¼ f ðxÞ ¼ xþ 1=x, find (a) �y; ðbÞ dy; ðcÞ �y� dy; ðdÞ ð�y� dyÞ=�x; ðeÞ dy=dx.

Ans: ðaÞ �x� �x

xðxþ�xÞ ; ðbÞ 1� 1

x2

� �

�x; ðcÞ ð�xÞ2
x2ðxþ�xÞ ; ðdÞ �x

x2ðxþ�xÞ ; ðeÞ 1� 1

x2
:

Note: �x ¼ dx.
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4.51. If f ðxÞ ¼ x2 þ 3x, find (a) �y; ðbÞ dy; ðcÞ �y=�x; ðdÞ dy=dx; and (e) ð�y� dyÞ=�x, if x ¼ 1 and

�x ¼ :01.
Ans. (a) .0501, (b) .05, (c) 5.01, (d) 5, (e) .01

4.52. Using differentials, compute approximate values for each of the following: (a) sin 318; ðbÞ lnð1:12Þ,
(c)

ffiffiffiffiffi

365
p

.

Ans. (a) 0.515, (b) 0.12, (c) 2.0125

4.53. If y ¼ sinx, evaluate (a) �y; ðbÞ dy. (c) Prove that ð�y� dyÞ=�x ! 0 as �x ! 0.

DIFFERENTIATION RULES AND ELEMENTARY FUNCTIONS

4.54. Prove: (a)
d

dx
f f ðxÞ þ gðxÞg ¼ d

dx
f ðxÞ þ d

dx
gðxÞ; ðbÞ d

dx
f f ðxÞ� gðxÞg ¼ d

dx
f ðxÞ� d

dx
gðxÞ,

ðcÞ d

dx

f ðxÞ
gðxÞ

� �

¼ gðxÞ f 0ðxÞ� f ðxÞg 0ðxÞ
½gðxÞ�2

; gðxÞ 6¼ 0:

4.55. Evaluate (a)
d

dx
fx3 lnðx2 � 2xþ 5Þg at x ¼ 1; ðbÞ d

dx
fsin2ð3xþ �=6Þg at x ¼ 0.

Ans. (a) 3 ln 4; ðbÞ 3
2

ffiffiffi

3
p

4.56. Derive the formulas: (a)
d

dx
au ¼ au ln a

du

dx
; a > 0; a 6¼ 1; ðbÞ d

dx
csc u ¼ �csc u cot u

du

dx
;

ðcÞ d

dx
tanh u ¼ sech2 u

du

dx
where u is a differentiable function of x:

4.57. Compute (a)
d

dx
tan�1 x; ðbÞ d

dx
csc�1 x; ðcÞ d

dx
sinh�1 x; ðdÞ d

dx
coth�1 x, paying attention to the

use of principal values.

4.58. If y ¼ xx, computer dy=dx. [Hint: Take logarithms before differentiating.]
Ans. xxð1þ ln xÞ

4.59. If y ¼ flnð3xþ 2Þgsin�1ð2xþ:5Þ, find dy=dx at x ¼ 0:

Ans:
�

4 ln 2
þ 2 ln ln 2

ffiffiffi

3
p

� �

ðln 2Þ�=6

4.60. If y ¼ f ðuÞ, where u ¼ gðvÞ and v ¼ hðxÞ, prove that dy
dx

¼ dy

du
� du
dv

� dv
dx

assuming f , g; and h are differentiable.

4.61. Calculate (a) dy=dx and (b) d2y=dx2 if xy� ln y ¼ 1.

Ans. (a) y2=ð1� xyÞ; ðbÞ ð3y3 � 2xy4Þ=ð1� xyÞ3 provided xy 6¼ 1

4.62. If y ¼ tanx, prove that y000 ¼ 2ð1þ y2Þð1þ 3y2Þ.

4.63. If x ¼ sec t and y ¼ tan t, evaluate (a) dy=dx; ðbÞ d2y=dx2; ðcÞ d3y=dx3, at t ¼ �=4.
Ans. (a)

ffiffiffi

2
p

; ðbÞ � 1; ðcÞ 3
ffiffiffi

2
p

4.64. Prove that
d2y

dx2
¼ � d2x

dy2



dx

dy

� �3

, stating precise conditions under which it holds.

4.65. Establish formulas (a) 7, (b) 18, and (c) 27, on Page 71.

MEAN VALUE THEOREMS

4.66. Let f ðxÞ ¼ 1� ðx� 1Þ2=3, 0 @ x @ 2. (a) Construct the graph of f ðxÞ. (b) Explain why Rolle’s theorem is
not applicable to this function, i.e., there is no value � for which f 0ð�Þ ¼ 0, 0 < � < 2.
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4.67. Verify Rolle’s theorem for f ðxÞ ¼ x2ð1� xÞ2, 0 @ x @ 1.

4.68. Prove that between any two real roots of ex sin x ¼ 1 there is at least one real root of ex cos x ¼ �1. [Hint:

Apply Rolle’s theorem to the function e�x � sin x:�
4.69. (a) If 0 < a < b, prove that ð1� a=bÞ < ln b=a < ðb=a� 1Þ

(b) Use the result of (a) to show that 1
6 < ln 1:2 < 1

5.

4.70. Prove that ð�=6þ
ffiffiffi

3
p

=15Þ < sin�1 :6 < ð�=6þ 1=8Þ by using the mean value theorem.

4.71. Show that the function FðxÞ in Problem 4.20(a) represents the difference in ordinants of curve ACB and line

AB at any point x in ða; bÞ.
4.72. (a) If f 0ðxÞ@ 0 at all points of ða; bÞ, prove that f ðxÞ is monotonic decreasing in ða; bÞ.

(b) Under what conditions is f ðxÞ strictly decreasing in ða; bÞ?
4.73. (a) Prove that ðsin xÞ=x is strictly decreasing in ð0;�=2Þ. (b) Prove that 0 @ sinx @ 2x=� for

0 @ x @ �=2.

4.74. (a) Prove that
sin b� sin a

cos a� cos b
¼ cot �, where � is between a and b.

(b) By placing a ¼ 0 and b ¼ x in (a), show that � ¼ x=2. Does the result hold if x < 0?

L’HOSPITAL’S RULE

4.75. Evaluate each of the following limits.

(a) lim
x!0

x� sinx

x3
(e) lim

x!0þ
x3 ln x (i) lim

x!0
ð1=x� csc xÞ (m) lim

x!1
x ln

xþ 3

x� 3

� �

(b) lim
x!0

e2x � 2ex þ 1

cos 3x� 2 cos 2xþ cosx
( f ) lim

x!0
ð3x � 2xÞ=x ( j) lim

x!0
xsin x (n) lim

x!0

sinx

x

� �1=x2

(c) lim
x!1þ

ðx2 � 1Þ tan�x=2 (g) lim
x!1

ð1� 3=xÞ2x ðkÞ lim
x!0

ð1=x2 � cot2 xÞ (o) lim
x!1

ðxþ ex þ e2xÞ1=x

(d) lim
x!1

x3e�2x (h) lim
x!1

ð1þ 2xÞ1=3x (l) lim
x!0

tan�1 x� sin�1 x

xð1� cos xÞ (p) lim
x!0þ

ðsin xÞ1= lnx

Ans. (a) 1
6 ; ðbÞ � 1; ðcÞ � 4=�; ðdÞ 0; ðeÞ 0; ð f Þ ln 3=2; ðgÞ e�6; ðhÞ 1; ðiÞ 0; ð jÞ 1,

(k) 2
3 ; ðlÞ 1

3 ; ðmÞ 6; ðnÞ e�1=6; ðoÞ e2; ð pÞ e

MISCELLANEOUS PROBLEMS

4.76. Prove that

ffiffiffiffiffiffiffiffiffiffiffi

1� x

1þ x

r

<
lnð1þ xÞ
sin�1 x

< 1 if 0 < x < 1.

4.77. If �f ðxÞ ¼ f ðxþ�xÞ� f ðxÞ, (a) Prove that �f�f ðxÞg ¼ �2f ðxÞ ¼ f ðxþ 2�xÞ� 2f ðxþ�xÞ þ f ðxÞ,

(b) derive an expression for �nf ðxÞ where n is any positive integer, (c) show that lim
�x!0

�nf ðxÞ
ð�xÞn ¼ f ðnÞðxÞ

if this limit exists.

4.78. Complete the analytic proof mentioned at the end of Problem 4.36.

4.79. Find the relative maximum and minima of f ðxÞ ¼ x2, x > 0.

Ans. f ðxÞ has a relative minimum when x ¼ e�1.

4.80. A train moves according to the rule x ¼ 5t3 þ 30t, where t and x are measured in hours and miles,
respectively. (a) What is the acceleration after 1 minute? (b) What is the speed after 2 hours?

4.81. A stone thrown vertically upward has the law of motion x ¼ �16t2 þ 96t. (Assume that the stone is at

ground level at t ¼ 0, that t is measured in seconds, and that x is measured in feet.) (a) What is the height of
the stone at t ¼ 2 seconds? (b) To what height does the stone rise? (c) What is the initial velocity, and
what is the maximum speed attained?
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4.82. A particle travels with constant velocities v1 and v2 in mediums I and II,

respectively (see adjoining Fig. 4-11). Show that in order to go from point
P to point Q in the least time, it must follow path PAQ where A is such
that

ðsin �1Þ=ðsin �2Þ ¼ v1=v2

Note: This is Snell’s Law; a fundamental law of optics first discovered
experimentally and then derived mathematically.

4.83. A variable 	 is called an infinitesimal if it has zero as a limit. Given two
infinitesimals 	 and 
, we say that 	 is an infinitesimal of higher order (or the same order) if lim	=
 ¼ 0 (or

lim 	=
 ¼ l 6¼ 0). Prove that as x ! 0, (a) sin2 2x and ð1� cos 3xÞ are infinitesimals of the same order,
(b) ðx3 � sin3 xÞ is an infinitesimal of higher order than fx� lnð1þ xÞ� 1þ cos xg.

4.84. Why can we not use L’Hospital’s rule to prove that lim
x!0

x2 sin 1=x

sinx
¼ 0 (see Problem 3.91, Chap. 3)?

4.85. Can we use L’Hospital’s rule to evaluate the limit of the sequence un ¼ n3e�n2 , n ¼ 1; 2; 3; . . . ? Explain.

4.86 (1) Determine decimal approximations with at least three places of accuracy for each of the following
irrational numbers. (a)

ffiffiffi

2
p

; ðbÞ
ffiffiffi

5
p

; ðcÞ 71=3

(2) The cubic equation x3 � 3x2 þ x� 4 ¼ 0 has a root between 3 and 4. Use Newton’s Method to
determine it to at least three places of accuracy.

4.87. Using successive applications of Newton’s method obtain the positive root of (a) x3 � 2x2 � 2x� 7 ¼ 0,
(b) 5 sin x ¼ 4x to 3 decimal places.
Ans. (a) 3.268, (b) 1.131

4.88. If D denotes the operator d=dx so that Dy � dy=dx while Dky � dky=dxk, prove Leibnitz’s formula

DnðuvÞ ¼ ðDnuÞvþ nC1ðDn�1uÞðDvÞ þ nC2ðDn�2uÞðD2vÞ þ � � �þ nCrðDn�ruÞðDrvÞ þ � � �þ uDnv

where nCr ¼ ðnrÞ are the binomial coefficients (see Problem 1.95, Chapter 1).

4.89. Prove that
dn

dxn
ðx2 sinxÞ ¼ fx2 � nðn� 1Þg sinðxþ n�=2Þ� 2nx cosðxþ n�=2Þ.

4.90. If f 0ðx0Þ ¼ f 00ðx0Þ ¼ � � � ¼ f ð2nÞðx0Þ ¼ 0 but f ð2nþ1Þðx0Þ 6¼ 0, discuss the behavior of f ðxÞ in the neighborhood
of x ¼ x0. The point x0 in such case is often called a point of inflection. This is a generalization of the
previously discussed case corresponding to n ¼ 1.

4.91. Let f ðxÞ be twice differentiable in ða; bÞ and suppose that f 0ðaÞ ¼ f 0ðbÞ ¼ 0. Prove that there exists at least

one point � in ða; bÞ such that j f 00ð�Þj A 4

ðb� aÞ2
f f ðbÞ� f ðaÞg. Give a physical interpretation involving

velocity and acceration of a particle.
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Fig. 4-11


