Chapter 29

Antiderivatives

29.1 DEFINITION AND NOTATION

Definition: An antiderivative of a function f is a function whose derivative is f.

EXAMPLES

(@) x?is an antiderivative of 2x, since D (x?) = 2x.

(b) x*/4is an antiderivative of x3, since D (x*/4) = x>.

(¢) 3x® —4x® + 5is an antiderivative of 9x? — 8x, since D (3x> — 4x? + 5) = 9x? — 8x.
(d) x? + 3 is an antiderivative of 2x, since D (x? + 3) = 2x.

(e) sin x is an antiderivative of cos x, since D (sin x) = cos x.

Examples (a) and (d) show that a function can have more than one antiderivative. This is true for all
functions. If g(x) is an antiderivative of f(x), then g(x) + C is also an antiderivative of f(x), where C is
any constant. The reason is that D (C) = 0, whence

D.(9(x) + C) = D (9(x))
Let us find the relationship between any two antiderivatives of a function.
Theorem 29.1: If F'(x) = O for all x in an interval .#, then F(x) is a constant on .#.

The assumption F'(x) = O tells us that the graph of F always has a horizontal tangent. It is then
obvious that the graph of F must be a horizontal straight line; that is, F(x) is constant. For a rigorous
proof, see Problem 29.4.

Corollary 29.2: 1If g'(x) = h(x) for all x in an interval #, then there is a constant C such that
g(x) = h(x) + C for all x in .#.
Indeed,

D.(g(x) — h(x)) = g'(x) — K(x) = 0

whence, by Theorem 29.1, g(x) — h(x) = C, or g(x) = h(x) + C.
According to Corollary 29.2, any two antiderivatives of a given function differ only by a constant.
Thus, if we know one antiderivative of a function, we know them all.

NOTATION | f(x) dx stands for any antiderivative of . Thus,

Dx(f Jf(x) dx) =f(x)

OTHER TERMINOLOGY Sometimes the term indefinite integral is used instead of antiderivative, and the process of
finding antiderivatives is termed integration. In the expression j' f(x) dx, f(x) is called the integrand. The motive for
this nomenclature will become clear in Chapter 31.
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222 ANTIDERIVATIVES [CHAP. 29

EXAMPLES

3
(@ |x*dx= %— + C. Since D,(x*/3) = x?, we know that x3/3 is an antiderivative of x2. By Corollary 29.2, any

other antiderivative of x? is of the form (x3/3) + C, where C is a constant.

.
() jcosxdx=sinx+C

(c) sin x dx = —cos x + C

.

d |sec?xdx=tanx+C

(e) J‘de=C

f) -[ldx=x+C

29.2 RULES FOR ANTIDERIVATIVES

The rules for derivatives—in particular, the sum-or-difference rule and the chain rule—yield corre-
sponding rules for antiderivatives.

RULE 1 I a dx = ax + C for any constant a.

EXAMPLE
J3 dx=3x+C

+1

RULE 2. Ix' dx = rx’ + C for any rational number r other thanr = —1.

+1

NoTE The antiderivative of x ™! will be dealt with in Chapter 34.

Rule 2 follows from Theorem 15.4, according to which

xr+ 1
D(x"*HY=(@+1Dx" or D,( ) =x

r+1
EXAMPLES
3/2 2
(@ J‘\/;dx=J‘x”2dx=§%—+C=§x3/2+C
1 B x~2 1 1
b) J;gdx=jx 3dx=~:-2-+C=—§x 2+C=_5;5+C

RULE 3. faf (x)dx=a f f(x) dx for any constant a.

This follows from D,(a . J f(x) dx) =a- Dx( J. f(x) dx) = af(x).
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x3 5x3
EXAMPLE 5x2dx =5 xzdx=5? +C=T+C

RULE 4. (i) J [f(x) + g0)] dx = | f(x) dx + j g(x) dx

v

(1) j[f (x) —g(x)] dx = | f(x) dx — jdﬂ dx

o

For Dx(J' f(x)dx J'g(x) dX) = Dx< ” J) dx) + D;(f g(x) dX) =f(x)  g(x).

4

3
EXAMPLE f(xz+x3)dx=J-x2dx+jx3dx=%+.);_+C

Notice that we find a specific antiderivative, x3/3 + x*/4, and then add the “arbitrary” constant C.

Rules 1 through 4 enable us to compute the antiderivative of any polynomial.

1 6 1 5 3 2
EXAMPLE f(sxs—5x4+7x2+x—3)dx=3(%)—5("?)+7(%)+f2——3x+c
2
7x3+x—‘—3x+C

t3 2

x¢ x5
2710

The next rule will prove to be extremely useful.

_ (gley™?

r+1 +C

RULE 5 (Quick Formula I). J (g(x))"g'(x) dx

The power chain rule implies that

(gy*ty 1 DS o iy
Dx( —— )—r+1Dx(g(x) )—r+1 (r + Yg(x))g'(x) = (g(x))g'(x)

which yields quick formula I.

EXAMPLES
(a) J<1x2+5)7xdx-—l(lx2+58+c
2 T 8\2
_&\3/2
() }‘ 2x—5dx=%J.(2x—5)”2(2)dx=%(2)C—%5)—+C=%(2x_5)3/1+c

RULE 6 (Substitution Method). Deferring the general formulation and justification to Problem 29.18,
we illustrate the method by three examples.

(i) Find | x? cos x* dx. Let x* = u. Then, by Section 21.3, the differential of u is given by
du=D[(x*)dx=3x*dx or x*dx= % du
Now substitute u for x> and 4du for x? dx,

szcosx3dx=f§cosudu=%Icosudu=§sinu+C=§sinx3+C
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(i) Find | (x? 4+ 3x — 5)*2x + 3) dx. Let u = x? + 3x — 5, du = (2x + 3) dx. Then

o u4

j(x2+3x—5)3(2x+3)dx= ud du=?+C=%(x2+3x—S)‘*+C
(iti) Find { sin® x cos x dx. Let u = sin x. Then du = cos x dx, and

o

sin3 x
3

Notice that quick formula I (Rule $) is a special case of Rule 6, corresponding to the substitution
u = g(x). The beauty of quick formula I is that, when it is applicable, it allows us to avoid the bother of
going through the substitution process.

+C

3
) u
jsmzxcosxdx= uzdu=—3—+C=

Solved Problems
29.1 Find the following antiderivatives:

(@) j(’x—sz)dx (b) J(4x+\/F—2)dx

() f(xz —sec2 x)dx  (d) JZ x + 3x° dx

X

(@) f(e/i — 5x?) dx = f(x‘/’ — 5x%) dx

x4/3 x3
= _T}_ — 5(?) +C [by Rules 2 and 4]
5
=%x‘/3~—§x3+C
r 2 7/2
®) (4x+,/x5—2)dx=j(4x+x5/2—2)dx=4(~x2—>+x—.,——2x+C
o I

2
=2x2+—7-x7’2——2x+C

¢ 3
© (xz—seczx)dx=J.x2dx-fmczxdx=x?—tanx+c

. 2
() ______2\/)—:+3x dx=J‘(%+3x)dx=2JAx’”2 dx+3J.xdx [by Rules 1 and 4]

x X

X112 2 3
=2—T+3+-+C=4 x+-x2+C
3 2 2

29.2 Find the following antiderivatives:

(@) f(Zx’ —x)*6x2—1)dx (b) J.E/ 5x2 — 1 xdx
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(@) Notice that D,(2x? — x) = 6x2 — 1. So, by quick formula I,
J.(Zx3 — x)46x% — 1) dx = é 2 —xp+C

(b) Observe that D (5x? — 1) = 10x. Then, by Rule 1,

I.’/sz —1xdx= I(sz - DB xdx = T16 f(sz — 1)}3 10x dx
1 (5x2 — 1P

3
5x2-1)*?+C =4io(.’/5x2 -D*+C

=% Y6x*—1* +C

(For manipulations of rational powers, review Section 15.2.)

+C [by quick formula I]

8w 3|

29.3 Use the substitution method to evaluate:
(a) J‘sui/_x dx (b I xsec 3x2—1dx (¢ J. x3/x +2dx
x

(@ Letu= \/; Then,

du = D,(\/x) dx = D(x"/?) dx = % X712 dx = L dx

2/x

Hence, Sm\/;cdx=2J‘sinudu=-—2cosu+C=—-Zcos\/)_c+C

N

(b) Letu = 3x?>— 1. Then du = 6x dx, and

1 1
wac2(3xz—l)dx=g-[sw2udu=gtanu+C=%tan(3x2—1)+C

(c) Letu=x+ 2 Then du =dx and x = u — 2. Hence,

Ixz,/x +2dx = J(u - 2)2ﬁ du = f(u’ —4u + 4u'’? du

= f @2 — 42 4 4u'?) du by W' =]

_2 7/2 8 5/2 8 3/2 _2 7/2 8 52 8 3/2
=zu Su +3u +C—7(x+2) —5(x+2) +3(x+2) +C

The substitution ¥ = . /x + 2 would also work.

294 Prove Theorem 29.1.

Let a and b be any two numbers in #. By the mean-value theorem (Theorem 17.2), there is a number ¢
between a and b, and therefore in .#, such that
F(b) — F(a)

Flo= b-a

But by hypothesis, F'(c) = 0; hence, F(b) — F(a) = 0, or F(b) = F(a).
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A rocket is shot straight up into the air with an initial velocity of 256 feet per second. (a) When
does it reach its maximum height? (b) What is its maximum height? (c) When does it hit the
ground again? (d) What is its speed when it hits the ground ?

In free-fall problems, v = | a dt and s = | v dt because, by definition, a = dv/dt and v = ds/dt. Since
a = — 32 feet per second per second (when up is positive),

v=‘[—32dt= -32t+C,
t2
s= J.(—32t + C,)dt=(-32) 0 +Cit+C,= 162+ C,t + C,
in which the values of C, and C, are determined by the initial conditions of the problem. In the present
case, it is given that v(0) = 256 and s(0) = 0. Hence, 256 =0+ C, and 0 =0 + 0 + C,, so that
v= —32t + 256 (1)
s = —16t% + 256t 2

(@) For maximum height, ds/dt = v = —32t + 256 = 0. So,

= 8 seconds

32
when the maximum height is reached.
(b) Substituting ¢t = 8 in (2),
5(8) = —16(8)> + 256(8) = — 1024 + 2048 = 1024 feet
(¢) Setting s =0in (2),

—16¢* + 256t = 0
—16t(t — 16) =0
t=0 or t=16

The rocket leaves the ground at ¢ = 0 and returns at ¢t = 16,

(d) Substituting ¢ = 16 in (1), v(16) = —32(16) + 256 = —256 feet per second. The speed is the magnitude
of the velocity, 256 feet per second.

Find an equation of the curve passing through the point (2, 3) and having slope 3x* — 2x + 5 at
each point (x, y).

The slope is given by the derivative. So,

dy

=3x3 —
dx—3x 2x+5

Hence, y=I(3x3—2x+5)dx=%x‘——x2+5x+C
Since (2, 3) is on the curve,
3=%(2)‘—(2)2+5(2)+C=12—4+10+C=18+C

Thus, C = —15, and

y=2x*—x*+5x—15
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29.7

298

29.9

29.10

29.11

29.12

Supplementary Problems

Find the following antiderivatives:
@ J‘(2x3 —5x% 4+ 3x + 1) dx (b) (5 - J-) dx (© Jzﬁ dx
Jx
() J 59/x% dx () % dx 2} J(x2 — 1)\/x dx
9 _[(;1‘5 - ;15) dx 1)) —_3x2 —2x+1 dx (1) J(?) sin x + 5 cos x) dx

f)) J(7 sec? x —sec x tan x) dx (k) | (csc? x + 3x?) dx 0 J.x 3x dx

%

(m) J‘—l— dx (n) | tan? x dx {0) Jx(x‘ + 2)% dx
sec x J

[Hint: Use Theorem 28.3 in (n).)

Evaluate the following antiderivatives by using Rule 5 or Rule 6. [In (m), a # 0.]

@ |7x+4dx (b) J.

! dx (c) J(3x — 5)12 dx
o x—1

@ |sin (3x —1)dx @© | sec? ; dx ) J' cos - x4

7
X dx
JVx+1
r r
G | —2x+1dx ® |x*+D"x"dx () | ——dx
(m) f x/ax + b dx (n) cos 3x dx (o) \/Tt; x2 dx

in2
J sin® 3x J

o o

) p
@ |@—297a W |[2/FT5dx 0 f
g

»

® f(3x — 5)12%x dx @ |@—=72tdt ¢ |Snlxcosdm

x2

1 3
®) JF sec? e dx

A rocket is shot vertically upward from a tower 240 feet above the ground, with an initial velocity of 224
feet per second. (@) When will it attain its maximum height? (b)) What will be its maximum height? (c} When
will it strike the ground? (d) With what speed will it hit the ground?

(Rectilinear Motion, Chapter 18) A particle moves along the x-axis with acceleration a = 2t — 3 feet per
second per second. At time t =0, it is at the origin and moving with a speed of 4 feet per second in the
positive direction. (a) Find a formula for its velocity v in terms of t. (b) Find a formula for its position x in
terms of ¢. (¢) When and where does the particle change direction? (d) At what times is the particle moving
toward the left?

Rework Problem 29.10 if a = t2 — 12 feet per second per second.

A rocket shot straight up from ground level hits the ground 10 seconds later. (a) What was its initial
velocity ? (b) How high did it go?
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29.13

29.14

29.15

29.16

29.17

29.18

ANTIDERIVATIVES [CHAP. 29

A motorist applies the brakes on a car moving at 45 miles per hour on a straight road, and the brakes cause
a constant deceleration of 22 feet per second per second. (a) In how many seconds will the car stop? (b)
How many feet will the car have traveled after the time the brakes were applied? [Hint: Put the origin at
the point where the brakes were initially applied, and let ¢t = O at that time. Note that speed and deceler-
ation involve different units of distance and time; change the speed to feet per second.]

A particle moving on a straight line has acceleration a = 5 — 3¢, and its velocity is 7 at time ¢t = 2. If s(t) is
the distance from the origin at time ¢, find s(2) — s(1).

(@) Find the equation of a curve passing through the point (3, 2) and having slope 2x? — 5 at point (x, y).
(b) Find the equation of a curve passing through the point (0, 1) and having slope 12x + 1 at point (x, y).

A ball rolls in a straight line, with an initial velocity of 10 feet per second. Friction causes the velocity to
decrease at a constant rate of 4 feet per second per second until the ball stops. How far will the ball roll?
[Hint: a = —4 and v, = 10.]

A particle moves on the x-axis with acceleration a(t) = 2t — 2 for 0 < ¢t < 3. The initial velocity v, at t = 0
is 0. (@) Find the velocity v(¢t). (b)) When is (t) < 0? (c) When does the particle change direction? (d) Find the
displacement between ¢t = 0 and t = 3. (Displacement is the net change in position.) (e} Find the total dis-
tance traveled fromt =0tot = 3.

Justify the following form of the substitution method (Rule 6):
J‘ Sfg(x))g'(x) dx = If (u) du

where u is replaced by g(x) after integration on the right. The “substitution” would be applied to the
left-hand side by letting u = g(x) and du = g'(x) dx. [Hint: By the chain rule,

Dx( J S () du) = D..( J S du) * (du/dx) = f (u)du/dx) = f(g(x)g'(x).]



Chapter 30

The Definite Integral

30.1 SIGMA NOTATION

The Greek capital letter X is used in mathematics to indicate repeated addition.

EXAMPLES

99
(@ Yi=14+2+4+3+---+99

i=1

that is, the sum of the first 99 positive integers.

6
® YQRi-1D=1+3+5+7+9+11

i=1

that is, the sum of the first six odd positive integers.

5 5
© Y3i=6+9+12+15=32+3+4+5=3Yi

i=2 i=2

15

¢l 2j2=12+22+32+-'-+152=1+4+9+...+225
=1

5

() sin jr = sin © + sin 2% + sin 37 + sin 47 + sin 5%
i=1

In general, given a function f defined on the integers, and given integers k and n > k,

310 =10 45+ 1+ + 10

30.2 AREA UNDER A CURVE

Let f'be a function such that f(x) > 0 for all x in the closed interval [a, b]. Then its graph is a curve
lying on or above the x-axis (see Fig. 30-1). We have an intuitive idea of the area A of the region & lying
under the curve, above the x-axis, and between the vertical lines x = a and x = b. Let us set up a
procedure for finding the value of the area A.

Select points x,, x5, ..., X,_ inside [a, b] (see Fig. 30-2). Let x, = aand x, = b,

A=Xg<X; <X <" <X,y <X,=b

These divide [a, b] into the n subintervals [x,, x;]1, [X;, X321, -.., [Xa—1, X,]- Let the lengths of these
subintervals be A;x, A, x, ..., A, x, where

Ajx=x— Xy

Draw vertical lines x = x; from the x-axis up to the graph, thereby dividing the region 2 into n strips. If
A; A is the area of the ith strip, then
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Fig. 30-1

414 14,A] 4:A | 4A a,A
4,x A}X Asxx A,,X
X0 X, X2 X3 Xy X
a b

Fig. 30-2

[CHAP. 30

Approximate the area A; A as follows. Choose any point x} in the ith subinterval [x;_,, x;] and draw
the vertical line segment from the point x* up to the graph (see the dashed lines in Fig. 30-3); the length
of this segment is f(x}). The rectangle with base A;x and height f(x}) has area f(x}) A, x, which is
approximately the area A; A of the ith strip. So, the total area 4 under the curve is approximately the

sum

;1 SO Aix =f(x1) Ayx +f(x3) Agx + -+ +f(x7) A, x

(30.1)

The approximation becomes better and better as we divide the interval [a, b] into more and more
subintervals and as we make the lengths of these subintervals smaller and smaller. If successive approx-
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imations get as close as one wishes to a specific number, then this number is denoted by

b
f f(x) dx

and is called the definite integral of f from a to b. Such a number does not exist for all functions f, but it
does exist, for example, when the function fis continuous on [a, b].

y
’ /
t ZIF
1R A |
‘B AN
11 I ARIN
/f 1! | THIR
| 1] | TN
ALl
i
N /}! 1! o]
N_/}| |} : :::
I: :I o]
o Pf TN
bl P! AN
Ll 111 Ll sl d .
a xi x3 xi xi x; b x
Fig. 30-3

EXAMPLE Approximating the definite integral by a small number n of rectangular areas does not usually give
1

good numerical results. To see this, consider the function f(x) = x2 on [0, 1]. Then j x2 dx is the area under the
0

parabola y = x2, above the x-axis, between x = 0 and x = 1. Divide [0, 1] into n = 10 equal subintervals by the

points 0.1, 0.2, ..., 0.9 (see Fig. 30-4). Thus, each A, x equals 1/10. In the ith subinterval, choose x}* to be the

left-hand endpoint (i — 1)/10. Then,

1 n 10 i—1 2 1 10 (i_l)z 1
e e £ (- £ 58 )
Lx xx XSG A ‘§l< 0 )\16)= % 10 \10

1 10
=—— Y (i—-1? [by example (c) above]
1000 E,

1 1
= Toop @+ 1+4++ +81) = - (285) = 0285

As will be shown in Problem 30.2, the exact value is
! 1
J x?dx =-=0333...
o 3

So the above approximation is not too good. In terms of Fig. 30-4, there is too much unfilled space between the
curve and the tops of the rectangles.

Now, for an arbitrary (not necessarily nonnegative) function f on [a, b], a sum of the form (30.1) can
be defined, without any reference to the graph of f or to the notion of area. The precise epsilon—delta
procedure of Problem 8.4(a) can be used to determine whether this sum approaches a limiting value as n
approaches co and as the maximum of the lengths A, x approaches 0. If it does, the function f is said to
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o @l 02 0Y 04 0% OA O 0n DY ' b ]

Fig. 304
be integrable on [a, b], and the limit is called the definite integral of f on [a, b] and is denoted by’

ff (x) dx

In the following section, we shall state several properties of the definite integral, omitting any proof that
depends on the precise definition in favor of the intuitive picture of the definite integral as an area
[when f(x) > 0].

303 PROPERTIES OF THE DEFINITE INTEGRAL

Theorem 30.1: If fis continuous on [a, b], then fis integrabie on [a, b].

(]
Theorem 30.2: -[I:j(x) dx = ¢ [ Jf(x) dx for any constant c.

Obviously, since the respective approximating sums ¢njoy this relationship [example (¢) above], the
limits enjoy it as well.
EXAMPLE Supposc that f(x) < 0 for all x in [a, ] The graph of f—along with its mirror image, the graph of
— f—1s shown in Fig 30-5. Since —f{x) 2 0,

f—ﬂxldx-nmﬂ

! The definite integral is also called the Riemann integral of fon [, b) and the sums (30.1) ase called Riemann sums for fon [a, b).
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But by symmetry, area B = area A; and by Theorem 30.2, with ¢ = —1,
J‘b —f(x)dx = — J.bf(x) dx
It follows that
r f(x) dx = —(area A)

In other words, the definite integral of a nonpositive function is the negative of the area above the graph of the
function and below the x-axis.

Theorem 30.3: If fand g are integrable on [a, b], then so are f + g and f — ¢, and
b b b
'[ (f(®) £ g(x)) dx = f S(x)dx £ L g(x) dx

Again, this property is implied by the corresponding property of the approximating sums,

S1P0 001 = PO+ 300

i=1
Theorem 30.4: 1f a < ¢ < b and if f is integrable on [a, c] and on [c, b], then f is integrable on [q, b],
and

J'bf(x) dx = J’cf(x) dx + Ib f(x) dx

For f(x) > 0, the theorem is obvious: the area under the graph from a to b must be the sum of the areas
from a to ¢ and from c to b.

EXAMPLE Theorem 304 yields a geometric interpretation for the definite integral when the graph of f has the
appearance shown in Fig. 30-6. Here,

b c1 €2 3 c4
Jf(x)dx=J f(x)dx+f f(x)dx+J‘ f(x)dx+J' f(x)dx+fbf(x)dx
m A Ayt Ay — A+ Ay 3 )

That is, the definite integral may be considered a total area, in which areas above the x-axis are counted as positive,
and areas below the x-axis are counted as negative. Thus, we can infer from Fig. 27-2(b) that

2n
f sinxdx=0
0
because the positive area from 0 to = is just canceled by the negaive area from = to 2x.

r)’

ﬁ‘ .\ As /:\
T C A C2 c;\\/c‘ b x

Fig. 30-6

Arbitrary Limits of Integration

In defining [} f(x) dx, we have assumed that the limits of integration a and b are such that a < b.
Extend the definition as follows:
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() fsfix)dx=0.
(2) Ifa>b,let [ f(x)dx = — [; f(x) dx (with the definite integral on the right falling under the
original definition).

Under this extended definition, interchanging the limits of integration in any definite integral reverses
the algebraic sign of the integral. Moreover, the equations of Theorems 30.2, 30.3, and 30.4 now hold for
arbitrary limits of integration g, b, and ¢.

Solved Problems

®
30.1 Show that .[ ldx=b—a.
For any subdivisiona = x, < X, < X3 < - € X,_, < X, = bof [a, b), the approximating sum (30.1) is

i fix?) Ax= ).:, A x  [since f(x) =1 for all x]

im] i=]
=, =X+ (X, — X))+ =X+ -+ (x, - %X, )=X,—Xg=b—a

Since every approximating sum is equal 1o b — a,
'»
I ldx=b-a

As an alternative, intuitive proof, note that [2 1 dx is equal to the arca of a rectangle with base of length
b—a and height 1, since the graph of the constant function 1 is the line y = 1. This area is
(b ~ aX1) = b — a (see Fig. 30-7),

Fig. 30-7

‘u(n+ IX2n + 1)

6 which

1
302 Calculate L x? dx. [You may assume the formula 12 + 22 + --- 4+ n?
is established in Problem 30.12(a. iﬂ.]

Divide the interval [0, 1] into n equal parts, as indicated in Fig. 30-8, making each A,x = 1/a. In the
ith subinterval [{(i — 1)/n, i/n], let x? be the right endpoint i/n. Then (30.1) becomes

.i:, fx) Ax= --i; (i) -= nl“ ‘;i;
=$'1u+ 1:2u+ ||_£(,,: .)(2,,: ,)

(I
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30.3

p ¥

-
am
a
a\_.'
=

Fig. 30-8

We can make the subdivision finer and finer by letting n approach infinity. Then,

! 1 1 1 1 1
24 . X
J:, ,,h..w 6 (1 n)(z n) 6 (X2 3

This kind of direct calculation of a definite integral is possible only for the very simplest functions f(x).
A much more powerful method will be explained in Chapter 31.

Let f(x) and g(x) be integrable on [q, b].
(@ Iff(x) =0 on [a, b], show that

j ’ f(x)dx >0
(b) Iff(x) < g(x)on [a, b], show that a
r f(x)dx < rg(x) dx
(¢) Ifm<f(x) < M on [a, b], show tha: "
mb — a) < f f(x) dx < M(b — a)

(a) The definite integral, being the area under the graph of f, cannot be negative. More fundamentally,
every approximating sum (30.1) is nonnegative, since f(x¥) >0 and A;x > 0. Hence (as shown in
Problem 9.10), the limiting value of the approximating sums is also nonnegative.

(b) Because g(x) — f(x) = 0 on [a, b],

b
f (g(x) - f(x) dx 20  [by(a)]

b ‘ b
J' g(x) dx — J f(x)dx =0 [by Theorem 30.3]

a a 5 »

f g(x) dx > l f(x) dx
b *b ) b
(©) J mdx < | f(x)dx < J M dx [by (b)1

b b b
mf ldx < J- fx)dx< M f 1dx [by Theorem 30.2]
F

mib — a) < ' f(x)dx<M(b—a)  [by Problem 30.1]

a
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30.6

30.7

308

309

30.10
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| Supplementary Problems

Evaluate:

(@) j 58 dx (b J:sz dx (o) I l(x2 +4) dx
2 o

[Hint: Use Problems 30.1 and 30.2.]

s
For the function f graphed in Fig. 30-9, express J. f(x) dx in terms of the areas A, 4,, 4,.
o

y
A
N a \/ g
A;
Fig. 30-9
b b? n(n + 1) .
(a) Show that | x dx = TR You may assume the formula14+2+ .-+ n= 2 proved in Problem
0

30.12(a). Check your result by using the standard formula for the area of a triangle. [Hint: Divide the
interval [0, b] into n equal subintervals, and choose x} = ib/n, the right endpoint of the ith subinter-
val.}

b —a?

b
(b) Show that L x dx = . [Hint: Use (a) and Theorem 30.4.}

3
(c) Evaluate .[ 5x dx. [Hint: Use Theorem 30.2 and (b).]
1

Show that the equation of Theorem 30.4,

J.cf(x) dx + be(x) dx = ibf(x) dx

holds for any numbers a, b, ¢, such that the two definite integrals on the left can be defined in the extended
sense. [Hint: Consider all six arrangements of distinct a, b, c:a<b<c,a<c<b b<a<c, b<c<a,
¢ < a < b, c < b < a. Also consider the cases where two of the numbers are equal or all three are equal.]

2
Show that 1 < j x? dx < 8. [Hint: Use Problem 30.3(c).]

1

2
(@ Find | /4 —~x?*dx by using a formula of geometry. [Hint: What curve is the graph of

y=.4-x7]
(b) From part (a) infer that 0 < n < 4. (Much closer estimates of n are obtainable this way.)

Evaluate:

3 4
@ Y@i—-1) () Y(Gk+9

i=1 k=0

3 S (1) . _1
(©) jz:,osmg (@] "; f (;) ifflx) =~
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30.11 Iffis continuous on [a, b}, f(x) = 0 on [a, b], and f(x) > O for some x in [a, b], show that

J.bf(x) dx >0

[Hint: By continuity, f(x) > K >0 on some closed interval inside [a, b]. Use Theorem 30.4 and
Problem 30.3(c).]

30.12 (a) Use mathematical induction (see Problem 12.2) to prove:

1
() 1+2+--~+n=1(”—2+—) ) 124224 +n?

_nn+ 1)2n+1)
- 6

(b) By looking at the cases when n = 1, 2, 3, 4, 5, guess a formula for 13 + 23 + - - - 4+ n® and then prove it
by mathematical induction. [ Hint : Compare the values of formula (i) in part (@) forn =1, 2, 3, 4, 5.]

30.13 If the graph of f between x = 1 and x = 5 is as shown in Fig. 30-10, evaluate j'f f(x) dx.

Fig. 30-10

30.14 Let f(x) =3x+ 1 for 0 < x < 1. If the interval [0, 1] is divided into five subintervals of equal length, what
is the smallest corresponding Riemann sum (30.1)?



Chapter 31

The Fundamental Theorem of Calculus

311 CALCULATION OF THE DEFINITE INTEGRAL
We shall develop a simple method for calculating

J.b f(x) dx

a method based on a profound and surprising connection between differentiation and integration. This
connection, discovered by Isaac Newton and Gottfried von Leibniz, the co-inventors of calculus, is
expressed in the following:

Theorem 31.1: Let fbe continuous on [a, b]. Then, for x in [a, b],

r f(t) dt

Dx(I f@) dl) =f(x)
A proof may be found in Problem 31.5.

Now for the computation of the definite integral, let F(x) = | f(x) dx denote some known anti-

is a function of x such that

derivative of f(x) (for x in [a, b]). According to Theorem 31.1, the function f(t) dt is also an anti-

la

derivative of f(x). Hence, by Corollary 29.2,
J.xf(t) dt = F(x)+ C
for some constant C. When x = a,
0=.[af(t) dt = Fa)+ C or C = —F(a)
Thus, when x = b,
rf(t) dt = F(b) — F(a)

and we have proved:

Theorem 31.2 (Fundamental Theorem of Calculus): Let f be continuous on [a, b], and let
F(x) = | f(x) dx. Then,

Ibf(X) dx = F(b) — F(a)

NoTATION The difference F(b) — F(a) will often be denoted by F(x)]2, and the fundamental theorem notated as

b b
j f(x)dx = If(x) dx:l

238
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EXAMPLES

1

(@) Recall the complicated evaluation J. x? dx = 4 in Problem 30.2. If, instead, we choose the antiderivative x*/3
0

and apply the fundamental theorem,

(b) Let us find the area A under one arch of the curve y =sin x; say, the arch from x =0 to x = n. With
| sin x dx = —cos x + \/3 the fundamental theorem gives

A=j sin x dx = (— cosx+\/_):| =(- cosn+\/—)—( cos0+\/-)
=[(=D+SS -1+ =1+1+/5-5=2

Observe that the \/g-terms canceled out in the calculation of A. Ordinarily, we pick the “simplest” anti-
derivative (here, —cos x) for use in the fundamental theorem.

31.2 AVERAGE VALUE OF A FUNCTION
The average or mean of two numbers a, and a, is

4 ta
2

For n numbers a,, a,, ..., a,, the average is

a1+az+"'+a,,
n

Now consider the function f defined on an interval [a, b]. Since f may assume infinitely many values, we
cannot directly use the above definition to talk about the average of all the values of £ However, let us
divide the interval [a, b] into n equal subintervals, each of length
b—a
n

Ax =

Choose an arbitrary point x} in the ith subinterval. Then the average of the n numbers f(x¥), f(x%), ...,

fxn)is
S+ D+ -+ f(xp)

n

12 .
=;i§,1f(xi)

If n is large, this value should be a good estimate of the intuitive idea of the “average value of f on
[a, b].” But,

12 1 " ) 1 1
. i; f(x® = = i;l f(x¥® Ax [smce =y Ax]

b
As n approaches infinity, the sum on the right approaches I f(x) dx (by definition of the definite

integral), and we are led to:

Definition: The average value of fon [a, b] is

1 b
b—a_[ f(x) dx.
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EXAMPLES

(a) The average value ¥V of sin x on [0, n] is

1 "
V= J sin x dx = 1 (2) [by example (b) above]
n—0J n

1 a1t 4 4
V=J‘x3 dx=-x—] LA,
o 4

With the mean value of a function defined in this fashion, we have the following useful

Theorem 31.3 (Mean-Value Theorem for Integrals): If a function fis continuous on [a, b], it assumes
its mean value in [q, b]; that is,

1 b
mJ: f(x)dx =f(c)

for some c such thata < c < b.

For the proof, see Problem 31.4. Note that, by contrast, the average of a finite set of numbers
a,, a,, ..., a, in general does not coincide with any of the a;.

31.3 CHANGE OF VARIABLE IN A DEFINITE INTEGRAL

To evaluate a definite integral by the fundamental theorem, an antiderivative | f(x) dx is required.
It was seen in Chapter 29 that the substitution of a new variable u may be useful in finding { f(x) dx.
When the substitution is made in the definite integral too, the limits of integration a and b must be
replaced by the corresponding values of u.

EXAMPLE Let us compute

J‘l,/Sx + 4 dx
o

Let u=5x + 4; then du =35 dx. Consider the limits of integration: when x =0, u=4; when x=1, u=9.
Therefore,

Voe— ° ~1 1(° ., 1/2 ..\
J; 5x+4dx=J;ﬁ§du=-5-J;u du=§<-j-u )]

2 2
=507~ 87 = S [/ - (/9]

38

2 a2 2 B
_15(3 2)_15(27 8)_15(19)_15

See Problem 31.6 for a justification of this procedure.

Solved Problems

31.1 Calculate the area 4 under the parabola y = x? + 2x and above the x-axis, between x = 0 and
x=1
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Since x2 + 2x > 0 for x > 0, we know that the graph of y = x? + 2x is on or above the x-axis between
x =0 and x = 1. Hence, the area A is given by the definite integral

1
j (x* + 2x) dx
o

Evaluating by the fundamental theorem,

1 3 1 13 03 1 4
= 2 == i- 2 =[|—-— 12 —_— -— 2 = - 1=—
A J;(x + 2x) dx (3+x)]o (3+ > (3+0) 3+ 3

a+t+2x
31.2 Compute [ sin x dx. (Compare the example following Theorem 30.4, where a = 0.)

By the fundamental theorem,

a+2n a+2x
sin x dx = —cos X =0
a

a

since the cosine function has period 2x.

31.3 Compute the mean value V of ﬁ on [0, 4]). For what x in [0, 4] does the value occur (as
guaranteed by Theorem 31.3)?

=— 4\/; dx = ! -rx”z dx = (g xm):r
4-0 0 4 0 ]
__1_ 32 _ n3/2 _1 3 _1 3_8_4
=g @R -0 =L (/A - 0= @)= =3

This average value, %, is the value of \/; when x = ($)2 = 1£. Note that 0 < 4¢ < 4.

314 Prove the mean-value theorem for integrals (Theorem 31.3).

1 b
Wri =——
rite | 4 b—aJ; f(x)dx

Let m and M be the minimum and maximum values of f on [a, b]. (The existence of m and M is guaranteed
by Theorem 14.2.) Thus, m < f(x) < M for all x in [a, b], so that Problem 30.3(c) gives

b
m(b—a)sjf(x)dst(b—a) or m<V<M
But then, by the intermediate-value theorem (Theorem 17.4), the value V is assumed by f somewhere in

[a, b].

31.5 Prove Theorem 31.1.

(x

Write g = | ft)dt
Then, g(x + h) — g(x) = djx“f(t) dt — J;x £ dt
= :f(t) dr + :Hf(t) dr — £ ) f(®ydt  [by Theorem 30.4]
= ”W’f (t) dt
Jx
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By the mean-value theorem for integrals, the last integral is equal to hf(x*) for some x* between x and
x + h. Hence,

o+ )t _
and D,( J "1 dt) — D (g = lim TEFXP =D _ o rn)
a k=0 h k-0

Now as h — 0, x + h — x, and so x* — x (since x* lies between x and x + h). Since fis continuous,

lim f(x*) = f(x)

h-0

and the proof is complete.

b
(Change of Variablesy Consider J: f(x) dx. Let x = g(u), where, as x varies from a to b, u

increases or decreases from c to d. [See Fig. 31-1; in effect, we rule out g'(u) = 0 in [c, d].] Show
that

b d
'[ f(x) dx =j S(g(w)g'(w) du

[The right-hand side is obtained by substituting g(u) for x, g'(u) du for dx, and changing the
limits of integration from g and b to ¢ and d.]

{ X
bl
< = 8w

al-
1 1 -
c d u

Fig. 31-1

Let F(x) = J‘ f(x) dx or F'(x) = f(x)

The chain rule gives

D(F(g(w) = F'(gw)g'(w) = f(g(u))g'(w)
Hence, J. J(9(w)yg'(u) du = F(g(w)
By the fundamental theorem,
J; ‘ S(g(u)g'(u) du = F(g(u))]‘: = Flg(d)) — F(g(c))

= F(b) ~ F(a) = f ' £0x) dx

1
31.7 Calculate J Jx2+ 1xdx.
0
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31.8

Let us find the antiderivative of \/x2 + 1 x by making the substitution u = x> + 1. Then, du = 2x dx,
and

1 u3/2

Vo Ry 1 1
J‘ xz+1de=Jl\/;~2-du=5J.u”2du=§—%—.
1
= % u3/2 ___%(xz + 1)3/2 = 3( /xz + 1)3
Hence, by the fundamental theorem,

J',/xz +1x dx =§(,/x2 + 1)3]1 =31;-((,/12 +1) - (/02 +1)?)
0 0
1 N !
= (D~ =32/2~-1

ALGEBRA W2*=W2*"/2=2/2 and (JI)P=13=1

Alternate Method: Make the same substitution as above, but directly in the definite integral, changing the
limits of integration accordingly. When x =0, u =02 + 1 = 1; when x = 1, u = 12 + 1 = 2. Thus, the first
line of the computation above yields

1 1 (2 a2 2
IxE+1xdx =~ 12 gy==2_1] =232
L x“+1x 2J;u u 373 ]1 3 ]

2z 1

1 1
=3 (W2 - WM =302/2-1)

(@) Iffis an even function (Section 7.3), show that, for any a > 0,
J-a f(x)dx =2 J:f(x) dx
(b) Iffis an odd function (Section 7.3), show that, for any a > 0,
Ja f(x)dx=0
If u = —x, then du = —dx. Hence, for any int:grable function f(x),

0 0 (1] a
J‘— S dX=j S(—u)(—du) = —f f(—u) du=J; S(—u) du

NOTATION Renaming the variable in a definite integral does not affect the value of the integral:

b b b
fg(x)dx=fg(t)dt=fg(8)d8=---

Thus, changing u to x,

J‘_ S(x) dX=J; J(=x)dx (1

(O

and so 'r fx)dx=| f(x)dx+ J'a f(x) dx [by Theorem 30.4]
—-a —-a 0

i

L (=) dx + f foydx oy ()]

= a(f (x) + f(—x)) dx [by Theorem 30.3]
0
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(@) For an even lunction. f(x) + f(— x) = 2f(x), whence,

j f(x)dx = .[y(-x)dx = 2-[')'(3)‘3
(b) For an odd function, f(x) + f(—x) = 0, whence,

I- Sfix) dx -‘[-0‘1=0L-‘3 =)

NOTATION One usually writes

» '»
[ dx instcad of Ildx

(@) Letf(x) =0 on [a, b], and let [a, b] be divided into n equal parts, of length Ax = (b — a)/n,
by means of points x,, x,,..., X, [see Fig. 31-2(a)]. Show that

» a-1
I fix) dx z% (f(a] +23 f(x) +f(bl) trapezoidal rule
i=1
(b) Use the trapezoidal rule, with n = 10, to approximate
1
'[ x?dx (=0333..)

(@) The area in the strip over the interval [x,_,, x,] is approximately the area of trapezoid ABCD in
Fig. 31-2(b), which is

& Utei 0 +1050)

GeoMETRY The arca of a trapezoid of height s and bases b, and b, is

1
3 hib, + b,)

where we understand x,, = a, x, = b. The area under the curve is then approximated by the sum of the
trapezoidal areas,

L]
I S(x) dx *% {Ufxg) + 0 ) 4 () + £ + =+ + (%)) + S(x))]

a=t
= % (.f(a) +23 fix)+ (&)

a JI l.-_. I) £

" |

la] 2]

Fig. 31-2
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(b) By the trapezoidal rule, with n = 10,a = 0, b = 1, Ax = 1/10, x, = i/10,

1
N e 2 —
Ix dx ~ 2o (0 +2z 100+1) 20<100‘le +1)

-216 (— (285) + 1) [by arithmetic or Problem 30.12(a, ii)]

285 1
= 1000 20—0285+0050 0.335

whereas the exact value is 0.333....!

Supplementary Problems

31.10 Use the fundamental theorem to compute the following definite integrals:
3 x/4 n/3
(@) Bx*—2x+1dx (b f cos x dx )] j sec? x dx
-1 0 0

d) J.wxm dx (e) J‘s (—2— — x) dx  (f) J‘l. /x* — 6x + 9 dx
1 4 \/; 0

31.11 Calculate the areas under the graphs of the following functions, above the x-axis and between the two
indicated values a and b of x. [In part (g), the area below the x-axis is counted negative.]

@ f(x)=sin x (a=g,b=§) b) f)=x*+4x (a=0b=3)
© f)=—= @=1,b=8) @ fO)=ax+1 (@=0b=2)

Ix
€ fx)=x*-3x (@=3,b=05) () f(x) =sin? x cos x (a=0,b=§)
@ f)=x*(x*-2) (@=1,b=2) () f(x)=4x—x* @=0,b=23)

31.12 Compute the following definite integrals:

(@) J:/z cos x sin x dx ) ::M tan x sec? x dx () llm (Bx —1)dx
@) ‘[m, iy Ticosxde © | Vx4 2x% dx ) J‘ 5\/?3_—_4 X dx
015 u”—ll . zs .
@ J; IxT=9x3 dx ) | ey dx @ ey dx
0 f Ix — 1] dx (k) f——ﬁ—t—ldx 0 fz(x+2) X + 3 dx
(m) J‘ \/x———‘ixs dx (n) :/8 sec? 2x tan® 2x dx

[Hint: Apply Theorem 30.4 to part (j).]

(]
! When f has a continuous second derivative, it can be shown that the error in approximating{ f(x) dx by the trapezoidal rule is

at most (b — a)/12n*)M, where M is the maximum of | f*(x)| on (4, b] and n is the number of subintervals.
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31.13 Compute the average value of each of the following functions on the given interval:

@ f(x)=/xonl0,1] (b) f(x)=sec? x on [0, ;]
(© fx)=x*—2x—10on[—-2,3] (d f(x)=sin x + cos x on [0, ]

31.14 Verify the mean-value theorem for integrals in the following cases:

@ f)=x+2on[1,2] (b fx)=x*on[0,1] () f(x)=x*+5on[0,3]

31.15 Evaluate by the change-of-variable technique:

3 x/2
(a) j J2x +3x2dx (b) J. sin® x cos x dx
112 o

31.16 Using only geometric reasoning, calculate the average value of f(x) = ./2x — x* on [0, 2]. [Hint: If
y = f(x), then (x — 1)> + y? = 1. Draw the graph.]

31.17 If, in a period of time T, an object moves along the x-axis from x, to x,, calculate its average velocity.
[Hint: [ v dt = x.]

31.18 Find:

@ D,( J‘ x. /5 + 1t* dt) ® D,(J
2

X

1 x
sin® ¢ dt) ©) D"(J Yt + 1 dt)
[Hint: In part (c), use Problem 31.8(a).]

3
31.19 Evaluate J x? sin x dx.

-3
3x2 "

3120 (@) Find D,(I Je+1 dt). [Hint: With u = 3x2, the chain rule yields D,(J. Ve +1 dt)=
1 1

N d
D,,(J J+1 dt) . i, and Theorem 31.1 applies on the right side.]
1

h(x)
(b) Find a formula for D ( f(@) dt).

(c) Evaluate D,‘( J' > \/E dt) and D,,(J-l (t% + 1) dt).
o Sx

b
31.21 Solve for b: I x""1dx =
1

SN

5
3122 If J f(x — k) dx = 1, compute
3

[Hint: Let x = u — k.]
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31.23

31.24

31.25

31.26

31.27

31.28

31.29

31.30

3131

31.32

3133

31.34

1

sinx forx<0
, find dx.
W forxz0 M4 SO

Iff(x)={

Given that 2x? — 8 = J f(¢) dt, find: (a)a formula for f(x); (b) the value of a.

* 1
Define H(x) = J; T:—t; dt.
(@) Find H(1) () Find H(1) (c) Show that H4)— HQ) < %

If the average value of f(x) = x> + bx — 2 on [0, 2] is 4, find b.

2+h
Find lim (% j Ix2 42 dx).
h-0 2

If g is continuous, which of the following integrals are equal?

(a) fg(x) dx ) f ng(x —1)dx (¢ .[ b_ag(x + a) dx
a+ 1 0

The region above the x-axis and under the curve y = sin x, between x = 0 and x = =, is divided into two
parts by the line x = c. The area of the left part is 4 the area of the right part. Find c.

Find the value(s) of k for which

*2 2
fﬂdx:J’(Z—xfdx
0 0

The velocity v of an object moving on the x-axis is cos 3t. It is at the origin at ¢t = 0. (@) Find a formula for
the position x at any time ¢. (b) Find the average value of the position x over the interval 0 <t < #/3.
(c) For what values of ¢ in [0, #/3] is the object moving to the right? (d) What are the maximum and
minimum x-coordinates of the object?

An object moves on a straight line with velocity v = 3t — 1, where v is measured in meters per second. How
far does the object move in the period of 0 < ¢t < 2 seconds? [Hint: Apply the fundamental theorem.]

Evaluate:
. Y. = | 2= . hm
(@ lim -{sin—+sin—+ -+ +sin —
-+ o n n n/J

im {sect (2 ) 4 sec? (25 ) 4 - 4 sec (= 1) %) 420 &
(b ,.Einm {sec (4n)+scc (2 4n)+ + sec ((n 1) 4n)+2} ™

n
(Midpoint Rule) In a Riemann sum (30.1), Y. f(x¥) A;x, if we choose x} to be the midpoint of the ith
i=1
subinterval, then the resulting sum is said to be obtained by the midpoint rule. Use the midpoint rule to
1
approximate | x? dx, using a division into five equal subintervals, and compare with the exact result

0
obtained by the fundamental theorem.
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31.35 (Simpson’s Rule) If we divide [a, b] into n equal subintervals by means of the points a = x,, x,, x;, .
b

x, = b, and n is even, then the approximation to | f(x) dx given by

a

ey

b—a
3n

(f(xo) + 4 (x1) + 21 (x3) + 4 (x3) + 2 (xg) + -+ + 4 (x,- ) + f(x,)

is said to be obtained by Simpson’s rule. Aside from the first and last terms, the coefficients consist of

alternating 4’s and 2’s. (The underlying idea is to use parabolas as approximating arcs instead of line
x

segments as in the trapezoidal rule.)> Apply Simpson’s rule to approximate j sin x dx, with n = 4, and
0
compare the result with the exact answer obtained by the fundamental theorem.

1

31.36 Consider the integral '[ x3 dx.
0

(@) Use the trapezoidal rule [Problem 31.9(a)], with n = 10, to approximate the integral, and compare the
result with the exact answer obtained by the fundamental theorem. [Hint: You may assume the
formula 13 + 23 + -+ - + n® = (n(n + 1)/2)*.]

(b) Approximate the integral by the midpoint rule, with n = 10.
© Approximate the integral by Simpson’s rule, with n = 10.

2 Simpson’s rule is usually much more accurate than the midpoint rule or the trapezoidal rule. If f has a continuous fourth
L]
derivative on [a, b], then the error in approximating J: f(x) dx by Simpson’s rule is at most (b — a)°/180n*)M,, where M, is the

maximum of | f*(x)| on [a, b] and n is the number of subintervals.



Chapter 32

Applications of Integration |: Area and Arc Length

321 AREA BETWEEN A CURVE AND THE )-AXIS

We have learned how to find the area of a region like that shown in Fig. 32-1. Now let us consider

what happens when x and y are interchanged.

(a)

{b)

The graph of x = y? + 1 is a parabola. with its “nosc™ at (1, 0) and the posilive x-axis as its axis of symmetry
(see Fig. 32-2). Consider the region @ consisting of all points to the left of this graph, to the right of the y-axis,
and between y = — 1 and y = 2. If we apply the reasoning used (o calculate the area of a region like that
shown in Fig 32-1, but with x and y interchanged, we must integrate “along the y-axis.” Thus, the area of & is
given by the definite integral

2
I 7 4 1)dy
-1

The fundamental theorem gives
2 3 3 3 3
2 =2 (= (=, )
[orena (3”)]-‘ (5+2) (3 .
8 1 9
-(§+2)—(—§—1)=3+3-3+3-6

Find the area of the region above the line y = x — 3 in the first quadrant and below the line y = 4 (the shaded
region of Fig. 32-3). Thinking of x as a function of y, namely, x = y + 3, we can express the area as

[osnar-(F+»)[

2 2
-(%+3(4))-— 0—2-+3(0))-l36-+12=20

Check this result by computing the area of trapezoid OBCD by the geometrical formula given in Problem 31.9.

Fig. 32-1 Fig. 32-2
249
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Fig. 32-3 Fig. 324

322 AREA BETWEEN TWO CURVES

Assume that 0 < g(x) < f(x) for x in [a, b]. Let us find the area A of the region # consisting of all
points between the graphs of y = g(x) and y = f(x), and between x = a and x = b. As may be seen from
Fig. 32-4, A is the area under the upper curve y = f(x) minus the area under the lower curve y = g(x);
that is,

L] » L]
A= -[ J(x)dx — .[ glx) dx = [(f{xl — g(x)) dx (32.1)

EXAMPLE Figure 32-5 shows the region # under the line y = $x + 2, above the parabola y = x?, and between
the y-axis and x = 1. [ts area is

f((%wz)—ﬂ)d,:(gw_,_{)l

Formula (32.1) is still valid when the condition on the two functions is relaxed to

g(x) < f(x)

that is, when the curves are allowed to lie partly or totally below the x-axis, as in Fig. 32-6. See Problem
32.3 for a proof of this statement.
Another application of (32.1) is in finding the area of a region enclosed by two curves.

¥

¥

Fig. 32-5
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EXAMPLE Find the area of the region bounded by the parabola y = x* and the line y = x + 2 (see Fig. 32-7)
The limits of integration @ and b in (32.7) must be the x-coordinates of the intersection points P and Q,
respectively. These are found by solving simultancously the equations of the curves y = x? and y = x + 2. Thus,

x*mx+2 or x*-x-2=0 or (x—=2x+1)=0

whence, x =a = — ] and x = b = 2. Thus,

| 3 4
[{x+2]—x’]d,t=(x—+21—i—):|
1
2? 2 (—1)? (-1
N B Gy

4 3 1 I 3 9
'(5*“'3)‘(5—“5)'5”—3

2
A=

3 3 J+6 9
-—~|-6--3=5-t-3-T-=5

323 ARC LENGTH

Consider a differentiable (not just continuous) function f on a closed intervai [a, b). The graph of f
is a curve running from (a, f(a)) to (b, f(b)). We shall find a formula for the length L of this curve.

Divide [a, b] into n equal parts, each of length Ax. To each x, in this subdivision corresponds the
point P{x;, f(x)) on the curve (see Fig. 32-8). For large n, the sum P, P, + P, P, +--- +P,_,P, =
Y74 P, P; of the lengths of the line segments P, _ P, is an approximation to the length of the curve,
Now, by the distance formula (2.7),

PP = J(x;— xo) + (f(x) = fix,- )P
But x; — x;_, = Ax; also, by the mean-value theorem (Theorem 17.2),
Sx) = flx ) = (x, = x, ) f(xP) = (Ax) f(xF)
for some x?® in (x; _,, x,. Hence,
PP = V(AP + (A GD) = UL+ (PP} Ax)?
= 1+ (7@ Va0 = JT+(f () Ax

and Y P\ Pi=% J1+(f1(x" Ax
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Fig. 32-8

The right-hand sum approximates the definite integral
b b
J 1+ (f'(x)?* dx =I 1+ (y)? dx
Therefore, letting n — oo, we obtain

b
= f 1+ (y)*dx  arc-length formula (32.2)

EXAMPLE Find the arc length of the graph of y = x*2 from (1, 1) to (4, 8).
We have

9
and (y)=>x

4
J‘ /1+ x dx

Let u'—1+4x u=z
When x = 1, u = 4; when x = 4, u = 10. Thus,

42 10
—d 1/2 du=-1-= 3/2
Jlsmﬁ 4= Jls/A y 9 (3 “ )]13/4
8 13)? _ 8 J13)?
=7 (mm (4) ) _((*/1—0’3"(7))
=5 (10 10 — 13‘/_) (sof 13,/13)

where, in the next-to-last step, we have used the identity (\/2)3 = (\/2)2(\/5) = cﬁ.

g

y =%x1/z

Hence, by the arc-length formula,

dx dx =—=du

O | &

Solved Problems

32.1 Find the area A of the region to the left of the parabola x = —y? + 4 and to the right of the
y-axis.
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The region is shown in Fig. 32-9. Notice thai the parabola cuts the y-axis at y = + 2. (Set x =0 in the
equation of the curve.) Hence,

A= J.:l—y‘ +4)dy= Zfi—.v’ +4)dy  [by Problem 31.8(a)]
Ao (33
) 524

322 Find the arca of the region between the curves y = x* and y = 2x, between x = 0 and x = 1 (see
Fig. 32-10).

For0<x<1,
22— x* = X2 — x) = /24 N2 -x20
since all three factors are nonnegative. Thus, y = x? is the lower curve, and y = 2x is the upper curve. By

32.),
’ T 1 0 13
O G G B

Fig. 329 Fig. 32-10

]
323 Prove that the formula for the arca A = [ (f(x) — g(x)) dx holds whenever g(x) < f(x) on [a, b].

Let m < 0 be the absolute minimum of g on [a, b] [see Fig. 32-11(a)]. (If m = 0, both curves lic above
or on the x-axis, and this case is already known.) “Raisc”™ both curves by |m| units; the new graphs, shown
in Fig. 32-11(b), arc on or above the x-axis and include the same area A as the original graphs. Thus, by
(3.,

b
A= .[ {(f(x) + |m]) = (g(x} + |m|)} dx

»
- [(flxl —glx)+ 0 dx = f(f(!) — g(x)) dx
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¥ =flx) + {m)

@) )
Fig. 32-11

324 Find the area A between the parabolas y = x> — land y = —(x* — 1).
~ From the symmetry of Fig. 32-12 it is clear that A will be equal to four times the area of the shaded

R SRR )
A(-9-6-9-0

325 Find the area between the parabola x = y? and the line y = 3x — 2 (see Fig. 32-13).
Find the intersection points. x = y* and y = 3x — 2 imply

y=3y' -2
3 —y—2=0
Gy+2y-1)=0
Jy+2=0 or y—1=0

y==3 o

y=—(2-1)

Fig. 32-12 Fig. 32-13
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Notice that we cannot find the area by integrating “along the x-axis” (unless we break the region into two
parts). Integration along the y-axis is called for (which requires only the ordinates of the intersection

points),
1 1
y+2 y 2 .,
A= (__.___yz)dy=J. <_+__y dy
.L/a 3 -23\3 3

Here the “upper” curve is the line y = 3x — 2. We had to solve this equation for x in terms of y, obtaining
x = (y + 2)/3. Evaluating by the fundamental theorem,

(2.2, 2\ _(i.2_1 _(l(;‘) 3<_Z)_1(_Z)3)
A_(6+3’v 3)]_2,3" 6§t373) 6\ 3 73/ 7373
(LN _(2_ 4.8\ _1 (6 §+£)_l_<:2

“\6 '3 27 9 81/ 2 \81 81 81) 2 81

22 81 +44 125

1
32,6 Find the length of the curve y = X +—fromx=1tox=2.

6 2x
_x +lx°‘ ,_xz 1 _Z_x_2 1
Y=%712 Y=772% T2 7
x* 1 1
2 X _ -4
Then, )y = 7 2+x“
4 2 2
2 X 1.1 (¥ 1
HOY =F+3+ 5 <2+2x2)
x? 1 x* 1
1 12=_ —_— = — 2
VIHOY =5 45a=75+3%
Hence, the arc-length formula gives
2
= -2 d =
j(x +x" %) dx 2 ]1

v/—\
[} wlx
N | = |
><|
NI'— N—""
\_/
Nl‘-‘
y—
>3
N——"
I
P L
NI\)

-3(6-3)-G-

Supplementary Problems

32.7 Sketch and find the area of: (a) the region to the left of the parabola x = 2y?, to the right of the y-axis,
and between y = 1 and y = 3; (b) the region above the line y = 3x — 2, in the first quadrant, and below the
line y = 4; (c) the region between the curve y = x* and the lines y = —xand y = 1.
328  Sketch the following regions and find their areas:
(@) The region between the curves y = x? and y = x3.
(b) The region between the parabola y = 4x2 and the line y = 6x — 2.
(c) The region between the curves y = \/)—c, y=1,and x =4.
(d) The region under the curve \/; + \/:v_ = | and in the first quadrant.
(e) The region between the curves y = sin x, y = cos x, x = 0, and x = /4.
(f) The region between the parabola x = — y? and the line y = x + 6.

)]

The region between the parabola y = x2 — x — 6 and the line y = —4.
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(h) The region between the curves y = \/; and y = x3.

()  The region in the first quadrant between the curves 4y + 3x = 7and y = x 2.
(). The region bounded by the parabolas y = x2 and y = —x? + 6x.

(k) The region bounded by the parabola x = y* + 2 and the line y = x — 8.

(D  The region bounded by the parabolas y = x> — x and y = x — x2.

(m) The region in the first quadrant bounded by the curves y = x? and y = x*.

(n) The region between the curve y = x> and the lines y = —x and y = 1.

329 Find the lengths of the following curves:

xA

(a) y=—8—+-4x—2fromx=1tox=2.

b y=3x—-2fromx=0tox=1.
() y=x*fromx=1tox=38.
d x*P4+y**=4fromx=1tox=38.
5
X

1
(e) y=-l—5+z)?fromx=ltox=2.

N y=§\/;(3—x)fromx=0tox=3.
(99 24xy=x*+48fromx=2tox =4.

(h) y=§(1+x2)3”fromx=0tox=3.

32.10 Use Simpson’s rule with n = 10 to approximate the arc length of the curve y = f(x) on the given interval.

(@@ y=x*on[0,1] (b) y =sin x on [0, n] (¢) y=x3on[0,5]



Chapter 33

Applications of Integration Il: Volume

The volumes of certain kinds of solids can be calculated by means of definite integrals.

331 SOLIDS OF REVOLUTION

Disk and Ring Methods

Let f be a continuous function such that f(x) = 0 for @ < x < b. Consider the region & under the
graph of y = f(x}, above the x-axis, and between x = a and x = b (see Fig. 33-1). If # is revolved about
the x-axis, the resulting solid is called a solid of revolution. The generating regions # for some familiar
solids of revolution are shown in Fig. 33-2.

y

Fig. 331

(@) Cone (b} Cylinder i€) Sphere

Fig. 33-2

Theorem 33.1: The volume V of the solid of revolution obtained by revolving the region of Fig. 33-1
about the x-axis is given by

b
V=n-[{f(x)}’dx-xfy‘dx disk formula
An argument for the disk formula is sketched in Problem 33.4.

If we interchange the roles of x and y and revolve the arca “under™ the graph of x = g(y) about the
y-axis, then the same reasoning leads to the disk formula

d d
V=:I(W))’dy-nj-x’dy

257
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EXAMPLE Applying the disk formula to Fig. 33-2{(a). we obtain
L] r 2 L] r! .
l/=r:.[. (;x) dx=lL mx dx
= [ ) e
CUREY S ¥ B
which is the standard formula for the volume of a cone with height h and radius of base r.

Now let f and g be two functions such that 0 < g(x) < f(x) for @ < x < b, and revolve the region #
between the curves y = f(x) and y = g(x) about the x-axis (see Fig. 33-3). The resulting solid of revolu-
tion has a volume V which is the difference between the volume of the solid of revolution generated by
the region under y = f(x) and the volume of the solid of revolution generated by the region under
y = g(x). Hence, by Theorem 33.1,

»
Van I {(f(x)? — (g(x)?*} dx  washer formula®

EXAMPLE Consider the region # bounded by the curves y = \.f’; and y = x (see Fig. 33-4). The curves obviously
intersect in the points (0, 0) and (1, 1). The bowl-shaped solid of revolution generated by revolving # about the

x-axis has volume
J ' 1 n
V'l‘[(l\/;}z—x’]b:-x‘[’[x—x']dx- %_%):L

A{-5)-0)-

T .“I
| v=fx)
|
‘ v = gix)
| " ‘
Fig. 33-3 Fig. 334
Cylindrical Shell Method

Let f be a continuous function such that f{x) = 0 for a < x < b, where a > 0. As usual, let # be the
region under the curve y = f(x), above the x-axis, and between x = a and x = b (see Fig. 33-5). Now,
however, revolve & about the y-axis. The resulting solid of revolution has volume

» B
V=2n [ xf(x) dx = 2n £ xy dx  cylindrical shell formula

For the basic idea behind this formula and its name, see Problem 33.5.

1 8o termed because the cross section obtained by revalving a vertical segment has Lhe shape of a plumber's washer.
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¥

.

Fig 335 Fig. 33-6

EXAMPLE Consider the function f(x) = /> — x* for 0< x < r. The graph of f is the part of the circle
x? 4 y* = r? that lies in the first quadrant. Revelution about the y-axis of the region # under the graph of f (see
Fig. 33-6) produces a solid heinisphere of radius r. By the cylindrical shell formula,

Vm2e ’[:x\/? — x? dx

To evaluate ¥ substitutc u = #* — x*. Then du = —2x dx, and the limits of integration x =0 and x=r
become u = r? and u = 0, respectively,

a el
V=21 fu“’(- % du) -—x Lu”’ du=nx L u'? du
2

(This result is more easily obtained by the disk formula V = = L x*dy. Tryit)

332 VOLUME BASED ON CROSS SECTIONS

Assume that a solid (not necessarily a solid of revolution) lies entirely between the plane perpen-
dicular to the x-axis at x = a and the plane perpendicular to the x-axis at x = b. For a < x < b, let the
plane perpendicular to the x-axis at that value of x intersect the solid in a region of area A(x), as
indicated in Fig. 33-7. Then the volume V of the solid is given by

»
V= I A(x) dx cross-section formula

For a derivation, scec Problem 33.6.

Fig. 33-7
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(@) Assume that half of a salami of length f is such that a cross section perpendicular Lo the axis of the salami at a
distance x from the end O is a circle of radius \/E (see Fig. 33-8). Thus,

Aix) = nl/kx)* = nkx
and the cress-section formula gives

! ] 2 2
Vc'['nkxdx=lk-[,xlx-ak%l-%

Notc that for this solid of revolution the disk formula would give the same expression for V.

(b) Assume that a solid has a base which is a circle of radius r. Assume that there is a diameter D such that all
plane sections of the solid perpendicular to diameter D are squares (see Fig 33-9). Find the volume.
Let the origin be the center of the circle and let the x-axis be the special diameter D. For a given value of
x, with —r < x < r, the side s{x) of the square cross section is obtained by applying the Pythagorean theorem
1o the right triangle with sides x, s/2, and r (see Fig. 33-9),

3
x? + (%) =r?
b 4
2+ % =7
s myr? - xY) = A(x)
Then, by the cross-section formula,
v =I'ﬂﬁ — x%) dx

-2 L’ﬂﬁ —x%)dx  [since 4(r* — x*) is an even function]

e oo )-o-ofoir)- 4

Solved Problems

331 Find the volume of the solid generated by revolving the given region about the given axis.

(@) The region under the parabola y = x? above the x-axis, between x = 0 and x = 1; about
the x-axis.

(b) The same region as in part (a), but about the y-axis. The region is shown in Fig. 33-10.
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!

Fig. 33-10 Fig. 33-11

{a) Use the disk formula,

S O o SO

(b) Use the cylindrical shell formula,

V=2n J:x(xﬂ dx = 2% le’ dx = 2.("{)]: - 2.(%) -3

obtained by revolving # around: (a) the x-axis; (b) the y-axis.
The curves intersect at (0, 0) and (1, 1).
{a) By the washer [ormula,

.

Let & be the region between y = x? and y = x (see Fig. 33-11). Find the volume of the solid

] | 3 A\
_ Y 2 _ N . | . 1_.1)=2_'
V—xL{x (xlldx—lL[x x*) dx 3 5)-° 1(3 3 s

(b) (Meihod 1) Use the washer formula along the y-axis,

1 1 3 nm 1 1
- [urraes [o-rar=dZ-5)] - 403

(Method 2} We can integrate along the x-axis and use the difference of two cylindrical shell formulas,

1 1 '
V= Zn(L x(x) dx — -[ x(x?) dx) = 2n L (x} - xY dx

R (RO

The formula used in method 2 can be formulated as lollows:

L]
V=1Ix .[ xglx) — fi(x)) dx difference of cylindrical shells

where V is the volume of the solid obtained by revolving about the y-axis the region bounded above

by y = g(x), below by y = f(x), and lying between x = aand x = b, withO € a < b.
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333 Find the volume of the solid whose base is a circle of radius r and such that cvery cross section
perpendicular to a particular fixed diameter D is an equilateral triangle.

Let the center of the circular base be the origin. and let the x-axis be the diameter D. The area of the
cross seclion at x is A(x) = ks/2 (sec Fig. 33-12). Now, in the horizontal right triangle,

2
s
x4+ (i) =7 or - /r—x!

rlta

and in the vertical right tnangie,

h=\/3 ; = ASF=3
Hence, A(x) = \ﬁ[r’ — x?}—an even function—and the cross-section formula gives
L v _ ! '
V= V’G -[ (r* — x¥) dx = 2\;@ L{rl — xY)dx = 2\/'3(91 N %):I

o
s /3
= 2\5(!-’ - %) = 2»5(% r’) = 233-2 r

(]
334 Establish the disk formula V = = I (f(xN? dx.
2

We assume as valid the expression =7k for the volume of a cylinder of radius » and height k. Divide
the interval [a. b) into n equal subintervals, cach of length Ax = (b — a)/n (sce Fig. 33-13). Consider the
volume ¥ obtained by revolving the region #, above the ith subinterval about the x-axis. If m; and M,
denote the absolute minimum and the absolute maximum of f on the ** subinterval, it is plain that ¥, must
lie between the volume of a cylinder of radius m, and height Ax and the volume of a cylinder of radius M,
and height Ax,

|
xmiAx <V, <aM?Ax  or ml<——<M!?
n Ax

The intermediate-value theorem for the continuous funclion (f(x))? guarantees the existence of some point
x%¥ in the i* subinterval such that

Vo 2 _ 2
o= or V= mf(xM) Ax
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Hence, V= i V= :ii}'[x,“}]’ Ax
=1

i=1
Since this relation holds (for suitable numbers x?) for arbitrary », it must hold in the limil as n — oo,
D b
V ==z lim (Z(ﬂx.-"])’ Ax) =-x I (f(x)* dx
A i=1 L]

which is the disk formula. The name derives from the usc of cylindrical disks (of thickness Ax) to approx-
imate the §.

[ S T TR
O ewrrre e . - -

Y R N———

Fig. 33-13 Fig. 3314

»
335 Establish the cylindrical shell formula V = 2n [ xf(x) dx.

Divide the interval [a, b] into n equal subintervals, each of length Ax, Let #, be the region above the
i subinterval (see Fig. 33-14). Let x? be the midpoint of the i*® subinterval, x* = (x,_, + x)/2.

Now the solid obtained by revolving the region #, about the y-axis is approximately the solid obtained
by revolving the rectangle with base Ax and height y? = f(x?). The latter solid is a eylindrical shell; that is,
it is the difference between the cylinders obtained by rotating the rectangles with the same height f(x?) and
with bases [0, x,_,] and [0, x,]. Hence, it has volume

XS ?) — mxly f(xP) = af (xPAx] = X 0) = AN+ X NX = X, )
= af (x?A2x?NAx) = 2=x? f(xF) Ax

Thus, the total V is approximated by

20Y xfixt) Ax

i=1

L
which in wurn approximates the definite integral 2= -[ xf(x) dx.

b
336 Establish the cross-section formula V = [ A(x) dx.

Divide the interval (o, b] into n equal subintervals [x,_,, x,], each of length Ax. Choose a point x? in
[xi— s xJ. If n is large, making Ax small, the picce of the solid between x,_, and x, will b¢ very nearly a
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(noncircular) disk, of thickness Ax and base area A(x}) (see Fig. 33-15). This disk has volume A(x}) Ax.
Thus,

V= i A(x¥) Ax — J‘bA{x} dx
=1

w?

Fig. 33-15

(Solids of Revolution about Lines Parallel to a Coordinate Axis) If a region is revolved about a
line parallel to a coordinate axis, we translate the line (and the region along with it) so that it
goes over into the coordinate axis. The functions defining the boundary of the region have to be
recalculated. The volume obtained by revolving the new region around the new line is equal to
the desired volume.

(@)

(b)

(a)

(b)

Consider the region # bounded above by the parabola y = x?, below by the x-axis, and
lying between x = 0 and x = 1 [see Fig. 33-16(a)]. Find the volume obtained by revolving #
around the horizontal line y = — 1.

Find the volume obtained by revolving the region # of part (a) about the vertical line
x= -2

Move @ vertically upward by one unit to form a new region #*. The line y = —1 moves up to become
the x-axis. #* is bounded above by y = x* + 1 and below by the line y = 1. The volume we want is
obtained by revolving #* about the x-axis. The washer formula applies,

1 1
V=1:J‘((x’+1)2-lz}dx=n-L(x‘+2x2)dx
0

_,,(x_s+zx3) l_ﬂ(l+_2_)-£§_’i
T\5 '3 o \5 3] 15

Move # two units to the right to form a new region #* [see Fig. 33-16(b)]. The line x = —2 moves
over to become the y-axis. #* is bounded above by y = (x — 2)* and below by the x-axis and lies

y Y ¥

(a) (b)
Fig. 33-16
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between x = 2 and x = 3. The volume we want is obtained by revolving #° about the y-axis. The
cylindrical shell formula applics,

) 3 )
V—Z:J‘s{x-—Zl‘dx=2:Jl[x’—4x’+dx)dx=2!(%x‘-;x’+2x’)]
2 2 2

~uf(ror-dap Y L a))- H)_&
—2-((4(»' 3:3}+z31=) (4121 3@+ 22 )) =2 5 ) ==

Supplementary Problems

Strategy: In caiculating the volume of a solid of revolution we usually apply either the disk formula (or the
washer formula) or the cylindrical shells formula (or the difference of cylindrical shells formula). To decide which
formula to use:
(1) Decide along which axis you are going to integrate. This depends on the shape and position of the region #
that is revolved.
(2) (1) Use the disk formula (or the washer formula) if the region # is revolved perpendicular to the axis of
integration.

{1) Use the cylindrical shells formula (or the difference of cylindrical shells formula) if the region ® is
revolved parailel to the axis of intcgration.

338  Find the volume of the solid generated by revolving the given region aboul the given axis.

(a)

b
(<)
)
(e}

9]

(9)
(k)

The region above the curve y = x?, under the line y = 1, and between x = 0 and x = 1; about the
X-axis.

The region of part {a); about the y-axis.

The region below the line y = 2x, above the x-axis, and between x = 0 and x = |; about the y-axis.
The region between the parabolas y = x* and x = y?; about either the x-axis or the y-axis.

The region (see Fig. 33-17) inside the circle x? + y? = r?, with 0 < x < a < r; about the )-axis. (This
gives the volume cut from a sphere of radius r by a pipe of radius a whose axis is a diameter of the
sphere.)

The region (sce Fig 33-18) inside the circle x* + y* = r?, with x > 0 and y > 0, and above the line
y = a, where 0 < a < r; about the y-axis. {This gives the volume of a polar cap of a sphere.)

The region bounded by y = | + x? and y = §; about the x-axis.

The region (sec Fig 33-19) inside the circle x? + (y — b)* = a*, with 0 < g < b, about the x-axis.

[Hint: When you obtain an integral of the form I ,.-’a’ — x? dx notice that this is the arca of a

semicircle of radius a] This problem gives the volume of a dowghnut-shapod solid.
The region bounded by x? = 4y and y = x/2: about the y-axis.

Fig. 33-17 Fig. 33-18 Fig. 33-19
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(/))¢. The region bouaded by y = 4/x and y = {x — 3)?; about the x-axis. (Noticc that the curves intersect
when x = 1 and x = 4. Whalt is special about the intersection at x = 17)

(k) The region of part (j); aboul the y-axis.

() The region bounded by xy = 1, x = 1, x = 3, y = 0; about the x-axis.

{m) The region of pant (/); about the y-axis.

Use the cross-section formula to find the volume of the following solids.

{a) The solid has a base which is a circle of radius r. Each cross section perpendicular to a fixed diameter
of the circle is an isosceles triangle with altitude equal to one-half of its base.

(» The solid is a wedge, cut from a perfectly round tree of radius r by two planes, one perpendicular to
the axis of the tree and the other intersecting the first plane at an angle of 30° along a diameter (see
Fig. 33-20).

(¢) A square pyramid with a height of h units and a base of side r units. [Hint: Locate the x-axis as in Fig.
33-21. By similar right triangles,

d h—x
e h

Ax)  (dY?
and T = (;)

which determines A(x).]
(d) The tetrahedron (see Fig. 33-22) formed by three mutually perpendicular faces and three mutually
perpendicular edges of lengths a, b, ¢. [ Hint : Another pyramid; proceed as in part (c).]
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33.10

3.1

33.12

33.13

33.14

(a) Let # be the region between x = 0 and x = 1 and bounded by the curves y = x* and y = 2x. Find the
volume of the solid obtained by revolving # about the y-axis. (b) Let # be the region between the curves
y = 2x — x? and y = 4x. Find the volume of the solid obtained by revolving # about the y-axis.

Let # be the region in the first quadrant bounded by y = x3 + x, x = 2, and the x-axis. (a) Find the volume
of the solid obtained by revolving # about the line y = —3. (b) Find the volume of the solid obtained by
revolving # about the line x = —1.

Let # be the region in the first quadrant bounded by x = 4 — y? and y? = 4 — 2x. (a) Sketch #. (b) Find
the volume of the solid obtained by revolving & about: (i) the x-axis; (ii) the y-axis.

Let % be the region in the second quadrant bounded by y = 2x2, y = x* + x + 2, and the y-axis. (a) Sketch
2. (b) Find the volume of the solid obtained by revolving & about the y-axis.

Let # be the region in the second quadrant bounded by y = 1 + x? and y = 10. (a) Sketch . Then find the
volume of the solid obtained by revolving # about: (b) the x-axis; (c) the y-axis; (d) the line y = —1;
(e) the line x = 1.



Chapter 38

Integration by Parts

In this chapter, we shall learn one of the most useful techniques for finding antiderivatives. Let fand
¢ be differentiable functions. The product rule tells us that

£ (1)) = /(g ) + g9 09)
or, in terms of antiderivatives,

S (x)g(x) = ~f(f (x)g'(x) + g(x)f"(x)) dx = If (x)g'(x) dx + Ig(x)f (x) dx

The substitutions u = f(x) and v = g(x) transform this into!

uv=Judv+fvdu

Iu dv=uv — Jv du integration by parts

from which we obtain

1)

The idea behind integration by parts is to replace a “difficult” integration | u dv by an “easy’
integration | v du.

EXAMPLES
(a) Find f xe* dx. This will have the form Ju dv if we choose

u=x and dv = ¢* dx

Since dv = v'(x) dx and dv = e* dx, we must have v'(x) = e*. Hence,

v=Je"dx=e"+C

and we take the simplest case, C = 0, making v = ¢*.
Since du = dx, the integration by parts procedure assumes the following form:

J‘udv=uv——J‘vdu
Jxe‘ dx = xe* —J.e" dx

=xe*—e*+C=ex—1)+C

U For example, | f(x)g'(x) dx = | u dv, where, in the result of the integration on the right, we replace u by f(x) and v by g(x). In
fact, by the chain rule,

d d o d L d )

o (J“ dv) =% U“ dv) Zx = 4 7 BN =S (x)g () = ™ (Jf(xk(x) dx)
Hence, { u dv = | f(x)g'(x) dx. Similarly, { v du = § g(x) f"(x) dx.

305
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Integration by parts can be made easier to apply by setting up a box such as the following one for
example (a) above:

u=x dv = e* dx

du = dx v=e¢

In the first row, we put u and dv. In the second row, we write du and v. The result uv — j vduis
obtained from the box by first multiplying the upper left corner u by the lower right corner v and then
subtracting the integral | v du of the two entries in the second row.

Notice that everything depends on a wise choice of u and ». If we had instead picked u = ¢* and
dv = x dx, then v = | x dx = x?/2 and we would have obtained

X xxz xz X
~"xe dx = e > _J‘Z e* dx

which is true enough, but of little use in evaluating | xe* dx. We would have replaced the “difficult”
integration | xe* dx by the even more “difficult” integration { (x*/2) ¢* dx.

) FindJ.x In x dx. Let us try u = In x and dv = x dx:

u=Inx d

<
I

<
I
%, ¥

du=ldx
X

Then, v = fx dx = x%/2. Thus,

J-udv=uu—Jvdu

2 21
fxlnxdx:(lnx)%—j%;dx

2 1
=%lnx~5‘[xdx
x? 1 x?
=7lnx—-§7+C
x2
=T(21nx—1)+C
(o) FindJ‘ln x dx. Let us try u = In x and dv = dx:
u=Inx dv = dx
1
du = - dx v=2x
x

Then,v = de = x. Thus,

J-udv=uv—J‘vdu
1
Jlnxdx:xlnx~J'x;dx

=x1nx-—J.dx

=xlnx—x+C
=x(nx—-1)+C
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(d) Sometimes two integrations by parts are necessary. Consider J e cos x dx. Let u = ¢* and dv = cos x dx:

u=¢e" dv = cos x dx
du = e* dx v=sin x
Thus, je" cos x dx = €* sin x — Je’ sin x dx 1))

Let us try to find If sin x dx by another integration by parts. Let u = ¢* and dv = sin x dx:

u=e* dv = sin x dx
du = e* dx = — COS X
o
Thus, e*sin x dx = —e* cos X — I(——e" cos x) dx
LY

= —e"cosx+J-e"cosxdx

Substitute this expression for fe" sin x dx in (1) and solve the resulting equation for the desired antiderivative,

r

e* cosxdx=fsinx—(—e’cosx+je’ cosxdx)

"
e"cosxdx=e"sinx+e"cosx—J’e"cosxdx

.
2 | €* cos x dx = € sin x + &* cos x = e*(sin x + cos x)

eX(sin x + cos x)

) +C

e* cos x dx =

Solved Problems

381 Find J‘xe"‘ dx.
Let

Integration by parts gives

Jxe"‘ dx = —xe * — j(—e"‘) dx = —xe™* + Je“" dx
=—xe*—e *+C=—-e"x+1)+C

Another method would consist in making the change of variable x = —t and using example (a) of this
chapter.
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382 (a) Establish the reduction formula
fx"e" dx = x"e* —n J.x""‘e" dx 2
for Ix"e" dx n=123,..)

(b)) Compute sze‘ dx.

(@) Let

and integrate by parts,
J.x"e‘ dx = x"e* — Je"(nx"") dx=x"e—n Jx""e" dx
() Forn=1,(2)gives
Jxe"dx=xe"—J.e"dx=xe"—e"=(x—l)e"
as in example (a). We omit the arbitrary constant C until the end of the calculation. Now let n = 2 in (2),
J.xze" dx = x%e* -2 jxe" dx = x%e* — 2((x — 1)e)
=(x?—2x—1))e*=(x*—2x+2)*+C

383 Find J'tan“l x dx.

Let
u=tan"!x dv = dx
du=T:;3dx V=X
Hence,
Itan”xdx:xtan"x—j xzdx
1+x
=xtan"! x 1 Rid X
B 2)1+4+x?

1
=xtan"! x — 3 In|l+x2|+C [by quick formula II, Problem 34.5]

1
=xtan“x—§1n(l+x2)+C {since 1 + x? > 0]

384 Find Jcosz x dx.

Let

u=Cos x dv = cos x dx
du = —sin x dx v =sin x
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.
Then, fcosz x dx = cos x sin x — | (sin x) —sin x) dx

.
= cos x sin x + | sin? x dx

o
.~

=cos x sin x + | (1 — cos? x) dx

v

R
= cos x sin x + ldx—fcoszxdx

o

Solving this equation for J.cos2 x dx,

ZIcoszxdx=cosxsinx+fldx=cosxsinx+x
2 1 :
cos xdx=§(cosxsmx+x)+C

This result is more easily obtained by use of Theorem 26.8,

l sin 2x
2 2

1
J.coszxdx=ij(cos2x+l)dx= +x>+C

_1 2 sin x cos x
2 2

1
+x>+C=5(sinxcosx+x)+C

385 Find J‘x tan~! x dx.

Let
u=tan"!x dv=x dx
xz
du = dx v=—
1+x? 2
2 1 2
Then, fxtan"xdx=%tan“x-5fﬁ—;dx
x2 A+x)—1 1+x* 1 1
But 2= 3 = 2— 2= —_ )
1+x 14+x 1+x 1+x 1+x
and so
¥ =14 L x—x—tan'x+C
—_—dx = X — | ——dx=x— X
1+ x? 1+ x?
2 1
Hence, jxtan“xdx=——tan"x——5(x—tan"x)+C‘

(x*tan"! x — (x —tan"! x)) + C,

(x*tan"! x — x + tan"?! x) + C,

]
= NI= = )%

((tan™! x)x® + 1) — x) + C,

309
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386

38.7

388

389

38.10

38.12

38.13

INTEGRATION BY PARTS [CHAP. 38

Supplementary Problems

Compute:
r r
(a) Jx’e"‘ dx (b) e sin x dx () J.x3e" dx (d |sin~!xdx
. N
(e j‘x cos x dx (f) | x?sin x dx 9 J‘cos Inx)dx (B | xcos(5x—1)dx
P r~
(i) J‘ e"* cos bx dx ) sin? x dx (k) J- cos? x dx D | cos* x dx
UF o
(m) fxe" dx (n) | xsec? x dx (0) fx cos? x dx ) I(ln x)? dx
Y
. . In x
@ J‘x sin 2x dx 3] Ix sin x2 dx (s) = dx o J-x2 e3* dx

() J.x2 tan"! xdx () jm(x1+l) dx (%) Jx’ In x dx

x3 p
®) f?rz_?? x

[Hint: Integration by parts is not a good method for part (r).]

Let ® be the region bounded by the curve y = In x, the x-axis, and the line x = e. (a) Find the area of 2.
(b) Find the volume generated by revolving # about (i) the x-axis; (ii) the y-axis.

Let & be the region bounded by the curve y = x ! In x, the x-axis, and the line x = e. Find: (a) the area
of ®; (b) the volume of the solid generated by revolving # about the y-axis; (c) the volume of the solid
generated by revolving # about the x-axis. [Hint: In part (c), the volume integral, let u = (In x)?, v = —1/x,
and use Problem 38.6(s).]

Derive from Problem 38.8(c) the (good) bounds: 2.5 < e < 2.823. [Hint: By Problem 30.3(c),

¢ (In x\? —1 S e—1
OsJ. (ﬁ) dx<i~ o 0<2-2g<°
L\ X e e

e?

The left-hand inequality gives e > ; the right-hand inequality gives e < (3 + ﬁ)/z.]

Let # be the region under one arch of the curve y = sin x, above the x-axis, and between x = 0 and x = .
Find the volume of the solid generated by revolving # about: (a) the x-axis; (b) the y-axis.

If n is a positive integer, find:

2n 2=
(a) J X cos nx dx b J- x sin nx dx
o o

Forn=2,3,4,..., find reduction formulas for:
(a) J.cos'l x dx ()] f sin" x dx
(c) Use these formulas to check the answers to Problems 38.4, 38.6(k), 38.6(/), and 38.6(j).

(a) Find a reduction formula for j sec" x dx (n =2, 3, 4, ...). (b) Use this formula, together with Problem
34.7, to compute: (i) | sec® x dx; (ii) | sec* x dx.



Chapter 39

Trigonometric Integrands and
Trigonometric Substitutions

39.1 INTEGRATION OF TRIGONOMETRIC FUNCTIONS

We already know the antiderivatives of some simple combinations of the basic trigonometric func-
tions. In particular, we have derived all the formulas given in the second column of Appendix B. Let us
now look at more complicated cases.

EXAMPLES

(@) Consider | sin* x cos” x dx, where the nonnegative integers k and n are not both even. If, say, k is odd
(k = 2j + 1), rewrite the integral as

.[sin“ x cos” x sin x dx = J(sin’ x) cos” x sin x dx
= I(l — cos? x) cos" x sin x dx

Now the change of variable u = cos x, du = —sin x dx, produces a polynomial integrand. (For n odd, the
substitution # = sin x would be made instead.) For instance,

.
jcos’ x sin® x dx = | cos? x sin* x sin x dx

o
r

= | cos? x(1 — cos? x)? sin x dx

= | u?(l —u?)*(—~1) du= —-'[uz(l —2u’ + u*) du

u? W
—_— 2 4 6 = —|— =2 — —_
J(u 2u* + u®) du (3 25+7)+C

1 2 1
—gcos3x+§cos’x—7cos7x+c

(b) Consider the same antiderivative as in part (a), but with k and n both even; say, k = 2p and n = 2q. Then, in
view of the half-angle identities

cos? x = _l__t_czgs_Zj and sin®x= !—:-529-5—2-{

we can write
J.sin" x cos" x dx = I(sin’ x)P(cos? x)? dx ‘
_ 1 —cos 2x\?{1 + cos 2x 'dx
B 2 2

! I(l — cos 2x)P(1 + cos 2x)? dx

= opte

311
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When the binomials are multiplied out, the integrand will appear as a polynomial in cos 2x,
1 + (g — pXcos 2x) + -+ £ (cos 2x)?*4

and so

-[sin" x cos" x dx = -2:—” [J.l dx +(q—p) J‘(cos 2x)dx + - + f(cos 2x)?*e dx] 1)

On the right-hand side of (I) are antiderivatives of odd powers of cos 2x, which may be evaluated by the
method of example (a), and antiderivatives of even powers of cos 2x, to which the half-angle formula may be
applied again. Thus, if the sixth power were present, we would write

1 3
I(cos 2x)8 dx = j (cos? 2x)® dx = J ( + (;os 4x) ix

and expand the polynomial in cos 4x, and so forth. Eventually the process must end in a final answer, as is
shown in the following specific case:

J‘cos2 x sin* x dx = | (cos? x)sin? x)? dx

N 1+cos2x)(1—c052x zdx
o) 2 2

"(1 + cos Zx)(l — 2 cos 2x + cos? 2x) ix

J 2 4
1 d
=3 (11 — 2 cos 2x + cos? 2x) + (cos 2xX1 — 2 cos 2x + cos? 2x)) dx
1 ~
=3 (1 — 2 cos 2x + cos? 2x + cos 2x — 2 cos? 2x + cos® 2x) dx
1 I
=3 (1 — cos 2x — cos? 2x + cos® 2x) dx
= % (J.l dx — Jcos 2x dx — J‘cos2 2x dx + Icos’ 2x dx)
1 in 2 1 4
o (x_Smax | lAcostx + | (cos 2xX1 — sin? 2x) dx
8 2 2
1 sin 2x 1 sin 4x 1 2 . .
—s(x— 3 -2(x+ 2 )+Icos2xdx—iju du) [letting u = sin 2x]
_1f sin2x x sindx + sin 2x 1 sin® 2x c
A K
_1(x sin4x sin® 2x +C
8 \2 8 6
_x _sindx sin® 2x +C
16 64 48

(¢) From Problem 34.6(a), we know how to integrate the first power of tan x,
Jtan xdx=In|sec x|+ C
Higher powers are handled by means of a reduction formula. We have, forn=2,3, ...,

J.tan" x dx =
o

= | tan"" 2 x sec? x dx — J\tan"‘2 x dx

v

tan"~ 2 x(tan® x) dx = jtan"'z x(sec? x — 1) dx

,

= u”‘zdu—jtan"‘zxdx {let u = tan x]

L
tan" ! x
n —

- J‘tan"‘2 x dx (39.1)
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Similarly, from
J‘secxdx =In |sec x +tan x| + C

and the reduction formula of Problem 38.13(a), we can integrate all powers of sec x.

(d) Antiderivatives of the forms { sin Ax cos Bx dx, { sin Ax sin Bx dx, { cos Ax cos Bx dx can be computed by
using the identities

1

sin Ax cos Bx = 3 (sin (A + B)x + sin (4 — B)x)
1

sin Ax sin Bx = 3 (cos (A — B)x — cos (A + B)x)
1

cos Ax cos Bx = 2 (cos (A — B)x + cos (4 + B)x)

For instance,

. . 1 1 (sin 5x  sin 11x
J‘sm8xsm3xdx—J'5(cosSx—cosllx)dx—i( T )+C

39.2 TRIGONOMETRIC SUBSTITUTIONS
To find the antiderivative of a function involving such expressions as \/aZ + x> or \/a? — x* or
/x* — a?, it is often helpful to substitute a trigonometric function for x.

EXAMPLES

(a) Evaluate J‘ x? + 2 dx.

None of the methods already available is of any use here. Let us make the substitution x = \/5 tan 0,
where —7/2 < 0 < n/2. Equivalently, 6 = tan™! (x/ﬁ). Figure 39-1 illustrates the relationship between x
and 6, with @ interpreted as an angle. We have dx = \/5 sec? 6 d and, from Fig. 39-1,

2
—————V):/;2=sec9 or /2 +2=./2sec8

where sec 8 > 0 (since —n/2 < 0 < n/2). Thus,
J-./x2+2dx=j(\/§sec6)(ﬁsec20)d0=2J.sec36d6
=secOtan O +1Injisecf +tan @) + C [by Problem 38.13(b)]
2
2 x 2 x
NN 5 A
_x/x*+2 ./x2+2+x|+c [
2

In +C

= -*-lnI

2 V2
2
AL S 24 x]—InJ24C

2

2
=x————""2”+1n|,/x2+2+x|+c,

Note how the constant —In /2 was absorbed in the constant term in the last step. The absolute value signs in
the logarithm may be dropped, since /x> + 2 + x > 0 for all x. This follows from the fact that \/x* + 2 >
Ixt=]x|=> —x

This example illustrates the following general rule: If \/x2 + a® occurs in an integrand, try the
substitution x = a tan 0 with —(n/2) < 6 < (n/2).
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— 2
(b) Evaluate j 25—:—"— dx.

Make the substitution x = 2 sin 8, where —n/2 < 0 < =n/2; that is, 6 = sin™ ! (x/2). The angle interpreta-
tion of @ is shown in Fig. 39-2. Now dx = 2 cos 6 46 and

ﬂ—x’_\/4—4sin20_2\ﬂ——sin’B_cosG_cto
x  2sn6  2smn6 s

Note that \/ 1—sin? 0= \/ cos? 0 = |cos 0] = cos 6, since cos § = 0 when —n/2 < 0 < /2. Thus,
— .2
f 4x X dx = J‘(cot )2 cos 6) dd =2 J.(Eﬂ cos 0) do

sin 6

2  ein2
=2 °‘Tsoda=2fﬂdo=z csc 0 do — | sin 0 df
sin 0 sin 8

=2(n|csc @ —cotfB|+cos )+ C

— y2 32
=2<ln 2_JA-x L A x)+c
X x 2

2 4 — x?
=2l i X+ Sa—x+cC

This example illustrates the following general rule: If \/a? — x? occurs in an integrand, try the
substitution x = a sin 0 with —n/2 < 0 < n/2.

2 —
(©) Evaluate JV x —4

dx.
xJ

Let x = 2 sec 6, where 0 < 6 < m/2 or 7 < 8 < 3n/2; that is, 8 = sec™! (x/2). Then dx = 2 sec 0 tan 8 d6 and
VX2 —4=/dsec? 0 —4=2/sec? § — 1 =2,/tan? § = 2|tan 0| =2 tan 0
Note that tan 6 > 0, since @ is in the first or third quadrant. Then

7 _
J'./xx3 4dx=JZtan

0
8 sec’ 0 (2 sec 6 tan 6) 46

1 (tan® @ 1 sin2 9
== ——d0=" —————— = in?
Zfsmle ZJcosleseczado jsm 6 8
1 . 1 X x2—-42
_4(0-smecos0)+C-—4(sec 3~ x)+c

x
2_
=-‘1i(scc“f 2\‘);2 4)+C

[ SRR

ST

The general rule illustrated by this example is: If . /x2 — a? occurs in an integrand, try the substitu-
tionx = a sec 0, with0 < 0 <(n/2)orn < 6 < 3m/2.
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Solved Problems

391 Find Isin’ x cos? x dx.
The exponent of sin x is odd. So, let u = cos x. Then, du = —sin x dx, and
fsin’ x cos? x dx = J.sinz x cos? x sin x dx

= f(l — cos? x) cos? x sin x dx

—I(l —uu? du = J(u‘ —u?) du

cos® x cos® x

5 3+C

w ou
2 _Zic=
5737

A

392 Find fcos‘ x sin* x dx.

315

The exponents are both even; in addition, they are equal. This allows an improvement on the method

of Section 39.1, example (b).

in 2x\* 1
fcos‘ x sin* x dx = J'(smz x) dx = T Jsin‘ 2x dx

_ 2
J'(l 020s 4x) dx
J(l — 2 cos 4x + cos? 4x) dx
( 1

2 8
_i 2_ sin4x+sin8x +C
T 64

1 .
= (x— sin4x+§+___sm4xcos4x)+c

2 2 16

I
—
|._.
0
VS

3x — sin 4x + s’"ssx) +C

393 Find: (a) Icoss x dx; (b) Jsin‘ x dx.

(a) J‘coss x dx = J.cos‘ x(cos x) dx = f(cos’ x)*(cos x) dx
= I(l — sin? x)*(cos x) dx = J(l — 2 sin? x + sin* x)cos x) dx

Let u = sin x. Then du = cos x dx, and

23 5
jcossxdx=f(l—2u2+u‘)du=u—%+u?
) 2sin® x  sin® x
=sin x — +C

3 T s
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(b) This antiderivative was essentially obtained in Problem 39.2,

Jsin‘ xdx =2 Jsin‘ (2u) du [let u= %:l

=2-12(h-4m4u+“2&)+c

128
1/3x sin 4x
—1(7—81 2x + 8 )+C
394 Find J'tans x dx.
From the reduction formula (39.1),
n? x
J‘tarfxdx— }.tanxdx— —In |sec x|
t t tan?

jtan’xdx—an Jtan’xdx— at:tx_ an2x+ln|secx|+C

395

Show how to find | tan® x sec? x dx: (a) when g is even; (b) when p is odd. (c) Illustrate both
techniques with | tan® x sec* x dx and show that the two answers are equivalent.

(@)

(b)

Letg=2r(r=1,23,...). Then
Jtan" x sec® x dx = Jtan" x sec?"™ Y x(sec? x) dx
= J tan? x(1 + tan? x)’ ~(sec? x) dx
since 1 + tan? x = sec?> x. Now the substitution u = tan x, du = sec? x dx, produces a polynomial
integrand.
Letp=2s+1(s=0,1,2,...). Then,
Jtanz’“x sec? x dx = Jtanz’ x sec?™! x(sec x tan x) dx
= J.(secz x — 1) sec?™ ! x(sec x tan x) dx

since tan? x = sec? x — 1. Now let v = sec x, dv = sec x tan x dx, to obtain a polynomial integrand.
By part (a),

Jtan’ x sec* x dx = J‘tan3 x(1 + tan? x)sec? x) dx

= J‘u3(l +u?) du=J‘(u3 + u%) du

6 tan* x tan® x
+C= +

u
6 4 s T¢

+

w
4
By part (b),

~[tan3 x sec* x dx = J(secz x — 1) sec? x(sec x tan x) dx

I(v — 1 dv—f(v — 03 dv

SCC X sec X
=———4C= +C

4+ 6 4
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Since 1 + u? = %,

40° —6v* 41 + 4P — 61 + uP)’
24 24

v ot
6 4

317

ALGEBRA A+P=1+3+3*+1

40+ 30?4 3ut + u®) — 6(1 + 20 + )

24
4 + 12u* + 12u* + 4u® — 6 — 12u* — 6u*
- 24
6ut+4u® -2 uwt W 1
B Rt

and so the two expressions for { tan® x sec* x dx are equivalent. (The — 5 is soaked up by the arbi-

trary constant C.)

39.6 Find j tan? x sec x dx.

Problem 39.5 is of no help here.

ftan’ X sec x dx=J.(sec2 x — 1)secxdx=J‘(s¢c3 x — sec x) dx

39.7 Prove the trigonometric identity sin Ax cos Bx = 4(sin (4 + B)x + sin (4 — B)x).

39.8

The sum and difference formulas of Theorem 26.6 give

sin (A + B)x = sin (Ax + Bx) = sin Ax cos Bx + cos Ax sin Bx
sin (A — B)x = sin (Ax — Bx) = sin Ax cos Bx — cos Ax sin Bx

and so, by addition, sin (4 + B)x + sin (4 — B)x = 2 sin Ax cos Bx.

2n

Compute the value of f sin nx cos kx dx for positive integers n and k.
0

Case 1: n # k. By Problem 39.7, with A = nand B =k,

2n 2x
J- sin nx cos kx dx = % J (sin (n + k)x + sin (n — k)x) dx
0 0

1 cos (n+k)x+cos (n~—k)x) 2=
2 n+k n—k

=0

0

because cos px is, for p an integer, a periodic function of period 2x.

Case 2: n = k. Then, by the double-angle formula for the sine function,

2=n 2% q ) oe
f Sinnxcosnxdx:—l- sin 2nx dx = — = Cos nx -0
° 2 Jo 2 2n o
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39.9

39.10

39.11
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dx

JE+9
The presence of ./x + 9 suggests letting x = 3 tan 8. Then dx = 3 sec? 8 d6, and
VX2 +9=./9tan? 0 + 9 =./9tan? 6 + 1) = 3,/sec> 6 = 3 sec 8

Find

29
So, J. dx =J3sec d0=fsec0d0=1n|sec0+tan0l+C
VX249 3secd
2 2
=In "—3+3+§ +C=1n ———-""+39+" e
=ln|/x*+9+x|+K=In(/x*+9+x)+K
2
NOTE In ————"’“;9“ =t/ +9+x|—1In3

and the constant —In 3 can be absorbed in the arbitrary constant K. Furthermore,

VX +9+x>0

dx
Find j————
x%/3 — x?
The presence of \/3 — x? suggests the substitution x = \/3 sin 0. Then, dx = /3 cos 6 d6.

V3 —x*=/3-3sin? § = /31 — sin? 0)=\/§./cos20=\/’3-cos0

1
and I b . /3 cos 0 df =1I,df =—Icsczﬂd0
x2/3-x2 J(@sin? ) /3cosg) 3Jsin’6 3
= - % cot@+C
cos 6 \/3Tx_2/\/§ \/3_?;5
But cot=——= =
sin 0 x/\/i x
— 2
Hence, - 3-x +C

dx _
x3 /3 — x? - 3x

2
x
Find J‘——— dx.
Jx2 -4
The occurrence of \/x? — 4 suggests the substitution x = 2 sec 6. Then dx = 2 sec 8 tan 8 d6.

VXt —4=/dsec? § — 4= /Hsec’ 0 — 1) =2,/tan? § =2 tan 6

2 4 2 0
and j X dx=j( sec” OX2 sec 6 tan )d8=4-[sec30d8
/x2 — 4 2 tan 6
=2secOtan O+ In|secf +tan O|) + C [by Problem 38.13(b)]
2 __ 2 _
P VL Mk JTY LI VL ed | PP
2 2 2 2
z _ 7 _
e L i ‘/2"4|+c

2 _
X 8 mix+ SR 4K

2
where K = C — 2 In 2 (compare Problem 39.9).
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39.12

39.13

39.14

39.15

39.16

39.17

39.18

39.19

39.20

Supplementary Problems

Find the following antiderivatives:
o

) sin x cos? x dx
o

) J-cosz 3x dx

N Jtan’%dx

) .[ cos® x sin? x dx

) tan? x sec* x dx 0] Itan’ x sec® x dx
v

(m) J.sin nx cos 3nx dx (n) Isin 5x sin 7x dx

Prove the following identities:

(@) sin Ax sin Bx = % (cos (A — B)x — cos (A + B)x)

(b) cos Ax cos Bx = % (cos (A — B)x + cos (A + B)x)

() fsin‘ x cos® x dx ) Jcos‘ x dx
(9) Jtan" x dx (h) J sec® x dx
(k) jtan‘ x sec x dx 0 J.sin 2x cos 2x dx

(0) J‘ cos 4x cos 9x dx

Calculate the following definite integrals, where the positive integers n and k are distinct:

2n 2n
(@) J‘ sin nx sin kx dx  (b) J; sin? nx dx
0

Evaluate:

(a) J‘@ dx

2

) J‘\/:T,?d"
d

0 [

(e) J'_dx_
x2/x* -9

© J L4
X

dx
@ I =+ 9

x
@ f 2—x2dx

) j_L
x/16 — 9x?

. X X ———d
@ fxz 1-x*dx () je’ 1-edx (0 J‘(x2—6;+13)2

[Hint: In part (k), complete the square.)

Find the arc length of the parabola y = x? from (0, 0) to (2, 4).
Find the arc length of the curve y = In x from (1, 0) to (e, 1).
Find the arc length of the curve y = ¢* from (0, 1) to (1, e).

Find the arc length of the curve y = In cos x from (0, 0) to (n/3, —In 2).

2 2
Find the area enclosed by the ellipse % + yz =1



Chapter 40

Integration of Rational Functions;
The Method of Partial Fractions

This chapter will give a general method for evaluating indefinite integrals of the type

N(x)
,[ Do)

where N(x) and D(x) are polynomials. That is to say, we shall show how to find the antiderivative of any
rational function f(x) = N(x)/D(x) (see Section 9.3). Two assumptions will be made, neither of which is
really restrictive: (i) the leading coefficient (the coefficient of the highest power of x) in D(x) is +1;
(ii) N(x) is of lower degree than D(x) [that is, f(x) is a proper rational function].

EXAMPLES

8x* -7 8x* —~56x*

@ o 311 7 i 43— 11 xP = 20x + 77

4
7
(b)) Consider the improper rational function f(x) = x z+ lx Long division (see Fig. 40-1) yields
x

Ix +1
xz—1

f=x*+1+

Consequently,
7 1 3 7 1
fde= |2+ Ddx+ | 2F—dx =% 4 x+ | 2t dx
x?—1 3 xt—1

and the problem reduces to finding the antiderivative of a proper rational function.

x2+1
x2—1|x*+7x
x* - x?
x? + Tx
x?—1
Ix +1
Fig. 40-1

The theorems that follow hold for polynomials with arbitrary real coefficients. However, for sim-
plicity we shall illustrate them only with polynomials whose coefficients are integers.

Theorem 40.1: Any polynomial D(x) with leading coefficient 1 can be expressed as the product of
linear factors, of the form x — a, and irreducible quadratic factors (that cannot be fac-
tored further), of the form x? + bx + c, repetition of factors being allowed.

As explained in Section 7.4, the real roots of D(x) determine its linear factors.

320
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EXAMPLES
(a) x2—1=(x—1)x+1)

Here, the polynomial has two real roots (+ 1) and, therefore, is a product of two linear factors.
(b) X342 —8x -2l =(x=3)x*+5x+7)

The root x = 3, which generates the linear factor x — 3, was found by testing the divisors of 21. Division of
D(x) by x — 3 yielded the polynomial x? + 5x + 7. This polynomial is irreducible, since, by the quadratic
formula, its roots are

x_—bi- b2 —4c —5+./-3
B 2 B 2

which are not real numbers.

Theorem 40.2 (Partial Fractions Representation): Any (proper) rational function f(x) = N(x)/D(x) may
be written as a sum of simpler, proper rational functions. Each summand has as denomi-
nator one of the linear or quadratic factors of D(x), raised to some power.

By Theorem 40.2, j f(x) dx is given as a sum of simpler antiderivatives—antiderivatives which, in
fact, can be found by the techniques already known to us.

It will now be shown how to construct the partial fractions representation and to integrate it term
by term.

Case 1: D(x) is a product of nonrepeated linear factors.

The partial fractions representation of f(x) is

N(x) _ A, + A, oot A,
(x—a)x—ay) - (x—a) x—a, X—a, x —a,

The constant numerators 4, ..., A, are evaluated as in the following example.

2x+1 A A
EXAMPLE =1 2
(x + 1Xx — 1) x+1 7 x-1

Clear the denominators by multiplying both sides by (x + 1)}(x — 1),

2x + 1 A A
N — 1) —2+ 2 _ _ 1 _ 2
(x + 1)x )(x+l)(x—1) (x + 1)x 1)x+l+(x+1)(x l)x_1
W+ 1=A(x—1)+A4,x+1) 1))
In (1), substitute individually the roots of D(x). With x = —1,
1
—1=4,(~-2)+0 or A1=5
and with x = 1,
3

3=0+4,2) or Az=2

With all constants known, the antiderivative of f(x) will be the sum of terms of the form

A
J dx=Aln|x — a|
X—a

Case 2: D(x) is a product of linear factors, at least one of which is repeated.
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This is treated in the same manner as in Case 1, except that a repeated factor (x — a)* gives rise to a
sum of the form
A A A
1 2 et k
x—a (x—a) (x — a)t

3x+1 A . A, L As
x=1%(x—-2) x—1 (x—12 x-2

EXAMPLE

Multiply by (x — 1)%(x — 2),
3x + 1= A (x — 1)(x — 2) + Ay(x — 2) + As(x — 1)? @)
Letting x = 1,
4=0+A(—1)+0 or A,=-4
Letting x = 2,
T=0+0+ A5(1) or Ay =1

The remaining numerator, A, is determined by the condition that the coefficient of x? on the right side of (2) be
zero (since it is zero on the left side). Thus,

A +A4;=0 or A =—-A3=-7
[More generally, we use all the roots of D(x) to determine some of the A’s, and then compare coefficients—of as
many powers of x as necessary—to find the remaining A’s.]

Now the antiderivatives of f(x) will consist of terms of the form In | x — a| plus at least one term of
the form

A B .

Case 3: D(x) has irreducible quadratic factors, but none is repeated.
In this case, each quadratic factor x + bx + ¢ contributes a term

Ax + B
x2+bx+c
to the partial fractions representation.
x2—1 A, Ayx+ A,

XAMPLE =
e G+ Dx+2 x+2  x*+1

Multiply by (x2 + 1)x + 2),
x2—1=A;(x2+ 1) + (A, x + A3)x + 2) 3)
Letx = -2,

3=4,5+0 or A,=%
Comparing coefficients of x° (the constant terms),
1/8 4
—I—Al+2A3 or As—__(l+Al)—_5(g)—-§
Comparing coefficients of x2,

1=A4A,+4;, or A,=1—-A, =<
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The sum for { f(x) dx will now include, besides terms arising from any linear factors, at least one
term of the form

-
Ax + B A(x+5)+C CEB-—A?b
fx2+bx+cdx_,[ A , b2
x+=) +90 =c——>0
2 | 4
Au+ C [ b
—-J"mdll blctu—x-'l-i]

u du du
‘AIFT?+CJF??

A st Cian-t ¥
—zln(u +6)+6tan 5

(For a guarantee that 4 is a real number, see Problem 40.7.)
Case 4: D(x) has at least one repeated irreducible quadratic factor.

A repeated quadratic factor (x> + bx + c)* contributes to the partial fractions representation the
expression

Alx + Az A3x + A4 R Az,‘_lx + AZk
ax* + bx + ¢ (ax* + bx + c)* (ax? + bx + ¢t

The computations in this case may be long and tedious.

x*+1 _A1x+A2+A3x+A4
2+12 x2+1 (2 + 17

EXAMPLE

Multiply by (x2 + 1)?,

B+ 1l=(Ax+ AN+ 1)+ A;x + A, @
Compare coefficients of x3,
1=4,
Compare coefficients of x2,
0= 4,

Compare coefficients of x,

0=A4,+4, or Ay=—A,= -1
Compare coefficients of x°,

1=A,+4, or A,=1-4,=1

The new contribution to | f(x) dx will consist of one or more terms of the form

Ax + B u du du .
Imdx—/i m+CJm [as in Case 3]

___E_. 2(-1) _
_(u2+52)j_1+FJ‘cos 0 doé [let u = & tan 6]

and we know how to evaluate the trigonometric integral [see Problem 38.12(a) or example (b) of Section
39.1].
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Solved Problems
2x3 4+ x2 ~6x + 7
40.1 Evaluate j 3 dx.
x“+x—6
The numerator has greater degree than the denominator. Therefore, divide the numerator by the
denominator,
2x—1
xX24+x—612x3+x2— 6x+7
2x3 + 2x% — 12x
—x*4+ 6x+7
—xt—~ x+46
Tx + 1
234+ x2—-6x+17 Tx + 1
=2x — —_
Thus, x2+x—6 x 1+x2+x—6

Next, factor the denominator, x?> + x — 6 = (x + 3 x — 2). The partial fractions decomposition has the
form (Case 1)

Tx + 1 A, A,

G1hx—2) x+3 x-2

Multiply by the denominator (x + 3)x — 2),

ITx+1=A,(x —2)+ A,(x + 3)

Let x =2, 15=0+ 54, or A, =3
Let x = —3, —20=—54,+0 or A =4
Ix + 1 4 3
Thus, x+3x—2) x+3 x-2
23+ x2—6x+7 4 3
and J. e r— dx—f(Zx-l)dx+Jlx+3dx+fx_2dx

=x*=x+4In|x+3|+3In|x-2|+C

x? dx
x3 —3x2 - 9x + 27

40.2 Find J'

Testing the factors of 27, we find that 3 is a root of D(x). Dividing D(x) by x — 3 yields
x3—3x2 —9x +27T=(x—3)Yx> - 9) = (x — 3)x — 3¥x + 3) = (x — 3)*(x + 3)
and so the partial fractions representation is (Case 2)

x2 A + A, 4 A,
c—3Px+3) x-3 (x—3P2 x+3

Multiply by (x — 3)(x + 3),
x2 = A,(x — 3)Xx + 3) + Ay(x + 3) + A3(x — 3)?

3
Let x = 3, 9=0+64,40 or A=>
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Let x = —3, 9=0+0+ Ay(—6)* or A3=Z
Compare coefficients of x2,
3
1=A4,+ A4, or A1=1_A3=Z
™ x? _3.t 3 1 11
us, X _3x2_9x+27 4x—3 2(x—37 4x+3
x? dx 3 31 1
= Injx-3|—=——+-In|x+3|+C
and Jx3—3x2—9x+27 giRlx=3l-yoT3+ghnlx+3l

. x+1
403 Find jx(x’ T2 dx.

This is Case 3,
x + 1 Al Azx + A3

XZ+2) x x2+2

Multiply by x(x? + 2),
X+ 1=A,x*+2)+x(4,x + A3)
Let x =0, 1=24,+0 or A=

Compare coefficients of x2,

1
0=A4,+ 4, or A2=—A1=—5
Compare coefficients of x,
1=4,
x+1 11\ (-dHx+1
Thus, x(x2+2)—2(x>+ x? +2
x+1 11 1 [ xdx dx
d ————dx==|-dx - | 5—= —_—
an _[x(x1+2) x 2.[x x 2,fx2+2+Ix2+2

Because the quadratic factor x2 + 2 is a complete square, we can perform the integrations on the right
without a change of variable,

1 1 1 1
IL—dx=—ln|x|——ln(x2+2)+-——tan“—x—+C

x(x? + 2) 2 4 V2 ﬁ

1
1 —sin x + cos x

40.4 Evaluate J

Observe that the integrand is a rational function of sin x and cos x. Any rational function of the six
trigonometric functions reduces to a function of this type, and the method we shall use to solve this
particular problem will work for any such function.

Make the change of variable z = tan (x/2); that is, x = 2 tan~! z. Then,

2
dx=——d
12
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and, by Theorem 26.8,

. X x tan (x/2)
smx=2sm-2-cos5=2m

_ ., tan(x2) 2z
T 1 +tan? (x/2) 1422
e pan2 X _ o 80t (x/2)
cosx=1 2sm2 1 2sec2(x/2)
tan® (x/2) 222 1-22
1+tan? (x/2) 1422 142z

When these substitutions are made, the resulting integrand will be a rational function of z (because com-
positions and products of rational functions are rational functions). The method of partial fractions can

then be applied,
) 2z 1-2z3\"t 2
— s -1 = —-—
J‘(l sin x + cos x)~ ! dx ~(1 1_‘h22+1+z2 1+z2dz
Cf(a+)-2z+(1 -2\ 2 dz
) 1+ 2% 1+22
2=\t 2, _f1x22 2
I+ 1+ J2-2214 22
= ! dz=~-Inj|l-z|+C
J1-—z2
x
=—In|l—tan=|(+C
In an2+
x dx
Find .
j‘(x+l)(x2+2x+2)2
This is Case 4 for D(x), and so
x Ay Ay x + A,y Agx + Ag

AN +2x+ 2P x+1 x242x+2 (2 +2x+ 27
Multiply by (x + 1)x® + 2x + 2)%,
Xx=A(x>+2x+ 2% + (A, x + As)x + Ix2 + 2x + 2) + (A, x + Ag)x + 1)
or, partially expanding the right-hand side,
X =A,(x* +4x3 + 8x2 + 8x + 4) + (A, x + ANx® +3x2 + 4x + 2) + (A x + Ag)x + 1)

In (1), let x = —1, —1=4,1)= 4,
Compare coefficients of x*,
0=A,+4, or Ay=-A=1

Compare coefficients of x>,
0=44, +34,+ A, or A= —44,—34,=1

Compare coefficients of x?,
0 = 8A1 + 4A2 + 3A3 + A4 or A4

—84, — 44, — 34, =1

Compare coefficients of x°,
0=44, +24,+ A; or A,= —44, —24,=2

0]
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Therefore,

x dx -1 dx (x+ 1) dx (x +2)dx
x4+ D2 +2x+27 x+1 Jx*+2x+2 J(x? +2x+2)2

= —ln|x+1]+ u du udu J’
= n|x uz + 1 (u + 1)2 (u + 1)2
[by quick formulas II and I]

1
_—ln|x+1I+ In (W?+1)— 1(2+1)+jwszodﬂ
[Case 4: let u = tan 6]

1 1 @ sin 26
Now 0=tan“u=tan“(x+l)

and (see Problem 40.4)

2tan 0 2Ax+1)

in 20 = = -
sin 26 1+tan? 0 x>+2x+2

so that we have, finally,

x dx 1 1
(x+1)(x2+2x+2)2 ln|x+ll+ ln(x2+2x+2) (—x2+2x+2)
) 1 x+1
+§tan (x+l)+2(x2+2x+2)+c

X

——————————— _l —
1272 tan (x+l)) Injx+1|+C

(ln(x +2x+2)+

NI'—

Supplementary Problems

40.6 Find the following antiderivatives:

@ j = ® & +J;)‘(i: +3) © ,[ 2 _‘:2‘2—+4x 2 ax
@ I(x—I;;—+2;x—3) © fo_-':_xifTidx ) J‘x(x+3;x:;.)(x—l)dx
o [ 0 [saee 0 e

0 [sFeme o [t 0 [ahs

(m) j x— 1)(x2 ix4x+5) (n) _RGH_;(%TQ ©) _’J::-:-;x dx

® J'm @ W;ﬂ%—ﬁ; ) x(x,"%l—)g x

0 [rmrhmt 0 [t 0 [
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40.7

40.8

409

40.10
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Show that p(x) = x> + bx + c is irreducible if and only if ¢ — (b*/4) > 0. [Hint: A quadratic polynomial is
irreducible if and only if it has no linear factor; that is (by Theorem 7.2), if and only if it has no real root.]

(@) Find the area of the region in the first quadrant under the curve y = 1/(x3 + 27) and to the left of the
line x = 3.
(b) Find the volume of the solid generated by revolving the region of part (a) around the y-axis.

Find Ii— [Hint: See Problem 40.4.]
1 —sin x

-1
answers are equivalent.

d
Find ".%f—i (@) Use the method of Problem 40.4. (b) Use the quick formula II (c) Verify that your

Evaluate the following integrals involving fractional powers:
dx

@ f (b) j——"" © f————"" @ f———
\/;—x 1+ ¥Yx—1 x/1 +3x \’/;+\/;
X3 dx
e J d
(e) f Fri N f 1 +e*dx ) f

[Hints: Part (a) let x = z*; part (b) let x — 1 = z*; part (c) let 1 + 3x = z2; part (d) let x = 2°.]




