
CHAPTER 5

Linear Second Order Equations

IN THIS CHAPTER we study a particularly important class of second order equations. Because of

their many applications in science and engineering, second order differential equation have historically
been the most thoroughly studied class of differential equations. Research on the theory of second order

differential equations continues to the present day. This chapter is devoted to second order equations that

can be written in the form

P0.x/y00 C P1.x/y0 C P2.x/y D F.x/:

Such equations are said to be linear. As in the case of first order linear equations, (A) is said to be

homogeneous if F � 0, or nonhomogeneous if F 6� 0.

SECTION 5.1 is devoted to the theory of homogeneous linear equations.

SECTION 5.2 deals with homogeneous equations of the special form

ay00 C by0 C cy D 0;

where a, b, and c are constant (a ¤ 0). When you’ve completed this section you’ll know everything there

is to know about solving such equations.

SECTION 5.3 presents the theory of nonhomogeneous linear equations.

SECTIONS 5.4 AND 5.5 present the method of undetermined coefficients, which can be used to solve

nonhomogeneous equations of the form

ay00 C by0 C cy D F.x/;

where a, b, and c are constants and F has a special form that is still sufficiently general to occur in many

applications. In this section we make extensive use of the idea of variation of parameters introduced in

Chapter 2.

SECTION 5.6 deals with reduction of order, a technique based on the idea of variation of parameters,

which enables us to find the general solution of a nonhomogeneous linear second order equation provided

that we know one nontrivial (not identically zero) solution of the associated homogeneous equation.

SECTION 5.6 deals with the method traditionally called variation of parameters, which enables us to

find the general solution of a nonhomogeneous linear second order equation provided that we know two

nontrivial solutions (with nonconstant ratio) of the associated homogeneous equation.
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194 Chapter 5 Linear Second Order Equations

5.1 HOMOGENEOUS LINEAR EQUATIONS

A second order differential equation is said to be linear if it can be written as

y00 C p.x/y0 C q.x/y D f .x/: (5.1.1)

We call the function f on the right a forcing function, since in physical applications it’s often related to

a force acting on some system modeled by the differential equation. We say that (5.1.1) is homogeneous

if f � 0 or nonhomogeneous if f 6� 0. Since these definitions are like the corresponding definitions in

Section 2.1 for the linear first order equation

y0 C p.x/y D f .x/; (5.1.2)

it’s natural to expect similarities between methods of solving (5.1.1) and (5.1.2). However, solving (5.1.1)

is more difficult than solving (5.1.2). For example, while Theorem 2.1.1 gives a formula for the general

solution of (5.1.2) in the case where f � 0 and Theorem 2.1.2 gives a formula for the case where f 6� 0,

there are no formulas for the general solution of (5.1.1) in either case. Therefore we must be content to

solve linear second order equations of special forms.

In Section 2.1 we considered the homogeneous equation y0Cp.x/y D 0 first, and then used a nontrivial
solution of this equation to find the general solution of the nonhomogeneous equation y0Cp.x/y D f .x/.

Although the progression from the homogeneous to the nonhomogeneous case isn’t that simple for the

linear second order equation, it’s still necessary to solve the homogeneous equation

y00 C p.x/y0 C q.x/y D 0 (5.1.3)

in order to solve the nonhomogeneous equation (5.1.1). This section is devoted to (5.1.3).
The next theorem gives sufficient conditions for existence and uniqueness of solutions of initial value

problems for (5.1.3). We omit the proof.

Theorem 5.1.1 Suppose p and q are continuous on an open interval .a; b/; let x0 be any point in .a; b/;

and let k0 and k1 be arbitrary real numbers: Then the initial value problem

y00 C p.x/y0 C q.x/y D 0; y.x0/ D k0; y0.x0/ D k1

has a unique solution on .a; b/:

Since y � 0 is obviously a solution of (5.1.3) we call it the trivial solution. Any other solution is
nontrivial. Under the assumptions of Theorem 5.1.1, the only solution of the initial value problem

y00 C p.x/y0 C q.x/y D 0; y.x0/ D 0; y0.x0/ D 0

on .a; b/ is the trivial solution (Exercise 24).

The next three examples illustrate concepts that we’ll develop later in this section. You shouldn’t be

concerned with how to find the given solutions of the equations in these examples. This will be explained

in later sections.

Example 5.1.1 The coefficients of y0 and y in

y00 � y D 0 (5.1.4)

are the constant functions p � 0 and q � �1, which are continuous on .�1; 1/. Therefore Theo-
rem 5.1.1 implies that every initial value problem for (5.1.4) has a unique solution on .�1; 1/.
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(a) Verify that y1 D ex and y2 D e�x are solutions of (5.1.4) on .�1; 1/.

(b) Verify that if c1 and c2 are arbitrary constants, y D c1ex C c2e�x is a solution of (5.1.4) on

.�1; 1/.

(c) Solve the initial value problem

y00 � y D 0; y.0/ D 1; y0.0/ D 3: (5.1.5)

SOLUTION(a) If y1 D ex then y0
1 D ex and y00

1 D ex D y1, so y00
1 � y1 D 0. If y2 D e�x, then

y0
2 D �e�x and y00

2 D e�x D y2, so y00
2 � y2 D 0.

SOLUTION(b) If

y D c1ex C c2e�x (5.1.6)

then
y0 D c1ex � c2e�x (5.1.7)

and

y00 D c1ex C c2e�x;

so

y00 � y D .c1ex C c2e�x/ � .c1ex C c2e�x/

D c1.ex � ex/ C c2.e�x � e�x/ D 0

for all x. Therefore y D c1ex C c2e�x is a solution of (5.1.4) on .�1; 1/.

SOLUTION(c) We can solve (5.1.5) by choosing c1 and c2 in (5.1.6) so that y.0/ D 1 and y0.0/ D 3.

Setting x D 0 in (5.1.6) and (5.1.7) shows that this is equivalent to

c1 C c2 D 1

c1 � c2 D 3:

Solving these equations yields c1 D 2 and c2 D �1. Therefore y D 2ex � e�x is the unique solution of
(5.1.5) on .�1; 1/.

Example 5.1.2 Let ! be a positive constant. The coefficients of y0 and y in

y00 C !2y D 0 (5.1.8)

are the constant functions p � 0 and q � !2, which are continuous on .�1; 1/. Therefore Theo-

rem 5.1.1 implies that every initial value problem for (5.1.8) has a unique solution on .�1; 1/.

(a) Verify that y1 D cos !x and y2 D sin !x are solutions of (5.1.8) on .�1; 1/.

(b) Verify that if c1 and c2 are arbitrary constants then y D c1 cos !x Cc2 sin !x is a solution of (5.1.8)

on .�1; 1/.

(c) Solve the initial value problem

y00 C !2y D 0; y.0/ D 1; y0.0/ D 3: (5.1.9)
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SOLUTION(a) If y1 D cos !x then y0
1 D �! sin !x and y00

1 D �!2 cos !x D �!2y1, so y00
1 C!2y1 D

0. If y2 D sin !x then, y0
2 D ! cos !x and y00

2 D �!2 sin !x D �!2y2, so y00
2 C !2y2 D 0.

SOLUTION(b) If
y D c1 cos !x C c2 sin !x (5.1.10)

then

y0 D !.�c1 sin !x C c2 cos !x/ (5.1.11)

and
y00 D �!2.c1 cos !x C c2 sin !x/;

so

y00 C !2y D �!2.c1 cos !x C c2 sin !x/ C !2.c1 cos !x C c2 sin !x/

D c1!2.� cos !x C cos !x/ C c2!2.� sin !x C sin !x/ D 0

for all x. Therefore y D c1 cos !x C c2 sin !x is a solution of (5.1.8) on .�1; 1/.

SOLUTION(c) To solve (5.1.9), we must choosing c1 and c2 in (5.1.10) so that y.0/ D 1 and y0.0/ D 3.

Setting x D 0 in (5.1.10) and (5.1.11) shows that c1 D 1 and c2 D 3=!. Therefore

y D cos !x C 3

!
sin !x

is the unique solution of (5.1.9) on .�1; 1/.

Theorem 5.1.1 implies that if k0 and k1 are arbitrary real numbers then the initial value problem

P0.x/y00 C P1.x/y0 C P2.x/y D 0; y.x0/ D k0; y0.x0/ D k1 (5.1.12)

has a unique solution on an interval .a; b/ that contains x0, provided that P0, P1, and P2 are continuous

and P0 has no zeros on .a; b/. To see this, we rewrite the differential equation in (5.1.12) as

y00 C P1.x/

P0.x/
y0 C P2.x/

P0.x/
y D 0

and apply Theorem 5.1.1 with p D P1=P0 and q D P2=P0.

Example 5.1.3 The equation

x2y00 C xy0 � 4y D 0 (5.1.13)

has the form of the differential equation in (5.1.12), with P0.x/ D x2, P1.x/ D x, and P2.x/ D �4,

which are are all continuous on .�1; 1/. However, since P.0/ D 0 we must consider solutions of

(5.1.13) on .�1; 0/ and .0; 1/. Since P0 has no zeros on these intervals, Theorem 5.1.1 implies that the

initial value problem

x2y00 C xy0 � 4y D 0; y.x0/ D k0; y0.x0/ D k1

has a unique solution on .0; 1/ if x0 > 0, or on .�1; 0/ if x0 < 0.

(a) Verify that y1 D x2 is a solution of (5.1.13) on .�1; 1/ and y2 D 1=x2 is a solution of (5.1.13)

on .�1; 0/ and .0; 1/.

(b) Verify that if c1 and c2 are any constants then y D c1x2Cc2=x2 is a solution of (5.1.13) on .�1; 0/

and .0; 1/.
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(c) Solve the initial value problem

x2y00 C xy0 � 4y D 0; y.1/ D 2; y0.1/ D 0: (5.1.14)

(d) Solve the initial value problem

x2y00 C xy0 � 4y D 0; y.�1/ D 2; y0.�1/ D 0: (5.1.15)

SOLUTION(a) If y1 D x2 then y0
1 D 2x and y00

1 D 2, so

x2y00
1 C xy0

1 � 4y1 D x2.2/ C x.2x/ � 4x2 D 0

for x in .�1; 1/. If y2 D 1=x2, then y0
2 D �2=x3 and y00

2 D 6=x4, so

x2y00
2 C xy0

2 � 4y2 D x2

�

6

x4

�

� x

�

2

x3

�

� 4

x2
D 0

for x in .�1; 0/ or .0; 1/.

SOLUTION(b) If

y D c1x2 C c2

x2
(5.1.16)

then

y0 D 2c1x � 2c2

x3
(5.1.17)

and

y00 D 2c1 C 6c2

x4
;

so

x2y00 C xy0 � 4y D x2

�

2c1 C 6c2

x4

�

C x

�

2c1x � 2c2

x3

�

� 4
�

c1x2 C c2

x2

�

D c1.2x2 C 2x2 � 4x2/ C c2

�

6

x2
� 2

x2
� 4

x2

�

D c1 � 0 C c2 � 0 D 0

for x in .�1; 0/ or .0; 1/.

SOLUTION(c) To solve (5.1.14), we choose c1 and c2 in (5.1.16) so that y.1/ D 2 and y0.1/ D 0. Setting

x D 1 in (5.1.16) and (5.1.17) shows that this is equivalent to

c1 C c2 D 2

2c1 � 2c2 D 0:

Solving these equations yields c1 D 1 and c2 D 1. Therefore y D x2 C 1=x2 is the unique solution of

(5.1.14) on .0; 1/.

SOLUTION(d) We can solve (5.1.15) by choosing c1 and c2 in (5.1.16) so that y.�1/ D 2 and y0.�1/ D
0. Setting x D �1 in (5.1.16) and (5.1.17) shows that this is equivalent to

c1 C c2 D 2

�2c1 C 2c2 D 0:
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Solving these equations yields c1 D 1 and c2 D 1. Therefore y D x2 C 1=x2 is the unique solution of

(5.1.15) on .�1; 0/.

Although the formulas for the solutions of (5.1.14) and (5.1.15) are both y D x2 C 1=x2, you should

not conclude that these two initial value problems have the same solution. Remember that a solution of

an initial value problem is defined on an interval that contains the initial point; therefore, the solution

of (5.1.14) is y D x2 C 1=x2 on the interval .0; 1/, which contains the initial point x0 D 1, while the
solution of (5.1.15) is y D x2 C 1=x2 on the interval .�1; 0/, which contains the initial point x0 D �1.

The General Solution of a Homogeneous Linear Second Order Equation

If y1 and y2 are defined on an interval .a; b/ and c1 and c2 are constants, then

y D c1y1 C c2y2

is a linear combination of y1 and y2. For example, y D 2 cos x C 7 sin x is a linear combination of

y1 D cos x and y2 D sin x, with c1 D 2 and c2 D 7.
The next theorem states a fact that we’ve already verified in Examples 5.1.1, 5.1.2, and 5.1.3.

Theorem 5.1.2 If y1 and y2 are solutions of the homogeneous equation

y00 C p.x/y0 C q.x/y D 0 (5.1.18)

on .a; b/; then any linear combination

y D c1y1 C c2y2 (5.1.19)

of y1 and y2 is also a solution of (5.1.18) on .a; b/:

Proof If

y D c1y1 C c2y2

then
y0 D c1y0

1 C c2y0
2 and y00 D c1y00

1 C c2y00
2 :

Therefore

y00 C p.x/y0 C q.x/y D .c1y00
1 C c2y00

2 / C p.x/.c1y0
1 C c2y0

2/ C q.x/.c1y1 C c2y2/

D c1

�

y00
1 C p.x/y0

1 C q.x/y1

�

C c2

�

y00
2 C p.x/y0

2 C q.x/y2

�

D c1 � 0 C c2 � 0 D 0;

since y1 and y2 are solutions of (5.1.18).

We say that fy1; y2g is a fundamental set of solutions of (5.1.18) on .a; b/ if every solution of (5.1.18)

on .a; b/ can be written as a linear combination of y1 and y2 as in (5.1.19). In this case we say that

(5.1.19) is general solution of (5.1.18) on .a; b/.

Linear Independence

We need a way to determine whether a given set fy1; y2g of solutions of (5.1.18) is a fundamental set.

The next definition will enable us to state necessary and sufficient conditions for this.

We say that two functions y1 and y2 defined on an interval .a; b/ are linearly independent on .a; b/

if neither is a constant multiple of the other on .a; b/. (In particular, this means that neither can be the

trivial solution of (5.1.18), since, for example, if y1 � 0 we could write y1 D 0y2.) We’ll also say that
the set fy1; y2g is linearly independent on .a; b/.
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Theorem 5.1.3 Suppose p and q are continuous on .a; b/: Then a set fy1; y2g of solutions of

y00 C p.x/y0 C q.x/y D 0 (5.1.20)

on .a; b/ is a fundamental set if and only if fy1; y2g is linearly independent on .a; b/:

We’ll present the proof of Theorem 5.1.3 in steps worth regarding as theorems in their own right.

However, let’s first interpret Theorem 5.1.3 in terms of Examples 5.1.1, 5.1.2, and 5.1.3.

Example 5.1.4

(a) Since ex=e�x D e2x is nonconstant, Theorem 5.1.3 implies that y D c1ex C c2e�x is the general
solution of y00 � y D 0 on .�1; 1/.

(b) Since cos !x= sin !x D cot !x is nonconstant, Theorem 5.1.3 implies that y D c1 cos !x C
c2 sin !x is the general solution of y00 C !2y D 0 on .�1; 1/.

(c) Since x2=x�2 D x4 is nonconstant, Theorem 5.1.3 implies that y D c1x2 C c2=x2 is the general

solution of x2y00 C xy0 � 4y D 0 on .�1; 0/ and .0; 1/.

The Wronskian and Abel’s Formula

To motivate a result that we need in order to prove Theorem 5.1.3, let’s see what is required to prove that

fy1; y2g is a fundamental set of solutions of (5.1.20) on .a; b/. Let x0 be an arbitrary point in .a; b/, and

suppose y is an arbitrary solution of (5.1.20) on .a; b/. Then y is the unique solution of the initial value

problem

y00 C p.x/y0 C q.x/y D 0; y.x0/ D k0; y0.x0/ D k1I (5.1.21)

that is, k0 and k1 are the numbers obtained by evaluating y and y0 at x0. Moreover, k0 and k1 can

be any real numbers, since Theorem 5.1.1 implies that (5.1.21) has a solution no matter how k0 and k1

are chosen. Therefore fy1; y2g is a fundamental set of solutions of (5.1.20) on .a; b/ if and only if it’s

possible to write the solution of an arbitrary initial value problem (5.1.21) as y D c1y1 C c2y2. This is

equivalent to requiring that the system

c1y1.x0/ C c2y2.x0/ D k0

c1y0
1.x0/ C c2y0

2.x0/ D k1
(5.1.22)

has a solution .c1; c2/ for every choice of .k0; k1/. Let’s try to solve (5.1.22).

Multiplying the first equation in (5.1.22) by y0
2.x0/ and the second by y2.x0/ yields

c1y1.x0/y0
2.x0/ C c2y2.x0/y0

2.x0/ D y0
2.x0/k0

c1y0
1.x0/y2.x0/ C c2y0

2.x0/y2.x0/ D y2.x0/k1;

and subtracting the second equation here from the first yields

�

y1.x0/y0
2.x0/ � y0

1.x0/y2.x0/
�

c1 D y0
2.x0/k0 � y2.x0/k1: (5.1.23)

Multiplying the first equation in (5.1.22) by y0
1.x0/ and the second by y1.x0/ yields

c1y1.x0/y0
1.x0/ C c2y2.x0/y0

1.x0/ D y0
1.x0/k0

c1y0
1.x0/y1.x0/ C c2y0

2.x0/y1.x0/ D y1.x0/k1;

and subtracting the first equation here from the second yields

�

y1.x0/y0
2.x0/ � y0

1.x0/y2.x0/
�

c2 D y1.x0/k1 � y0
1.x0/k0: (5.1.24)
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If

y1.x0/y0
2.x0/ � y0

1.x0/y2.x0/ D 0;

it’s impossible to satisfy (5.1.23) and (5.1.24) (and therefore (5.1.22)) unless k0 and k1 happen to satisfy

y1.x0/k1 � y0
1.x0/k0 D 0

y0
2.x0/k0 � y2.x0/k1 D 0:

On the other hand, if

y1.x0/y0
2.x0/ � y0

1.x0/y2.x0/ ¤ 0 (5.1.25)

we can divide (5.1.23) and (5.1.24) through by the quantity on the left to obtain

c1 D y0
2.x0/k0 � y2.x0/k1

y1.x0/y0
2.x0/ � y0

1.x0/y2.x0/

c2 D y1.x0/k1 � y0
1.x0/k0

y1.x0/y0
2.x0/ � y0

1.x0/y2.x0/
;

(5.1.26)

no matter how k0 and k1 are chosen. This motivates us to consider conditions on y1 and y2 that imply
(5.1.25).

Theorem 5.1.4 Suppose p and q are continuous on .a; b/; let y1 and y2 be solutions of

y00 C p.x/y0 C q.x/y D 0 (5.1.27)

on .a; b/, and define

W D y1y0
2 � y0

1y2: (5.1.28)

Let x0 be any point in .a; b/: Then

W.x/ D W.x0/e
�

R x
x0

p.t/ dt
; a < x < b: (5.1.29)

Therefore either W has no zeros in .a; b/ or W � 0 on .a; b/:

Proof Differentiating (5.1.28) yields

W 0 D y0
1y0

2 C y1y00
2 � y0

1y0
2 � y00

1 y2 D y1y00
2 � y00

1 y2: (5.1.30)

Since y1 and y2 both satisfy (5.1.27),

y00
1 D �py0

1 � qy1 and y00
2 D �py0

2 � qy2:

Substituting these into (5.1.30) yields

W 0 D �y1

�

py0
2 C qy2

�

C y2

�

py0
1 C qy1

�

D �p.y1y0
2 � y2y0

1/ � q.y1y2 � y2y1/

D �p.y1y0
2 � y2y0

1/ D �pW:

Therefore W 0 C p.x/W D 0; that is, W is the solution of the initial value problem

y0 C p.x/y D 0; y.x0/ D W.x0/:
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We leave it to you to verify by separation of variables that this implies (5.1.29). If W.x0/ ¤ 0, (5.1.29)

implies that W has no zeros in .a; b/, since an exponential is never zero. On the other hand, if W.x0/ D 0,

(5.1.29) implies that W.x/ D 0 for all x in .a; b/.

The function W defined in (5.1.28) is the Wronskian of fy1; y2g. Formula (5.1.29) is Abel’s formula.

The Wronskian of fy1; y2g is usually written as the determinant

W D
ˇ

ˇ

ˇ

ˇ

ˇ

y1 y2

y0
1 y0

2

ˇ

ˇ

ˇ

ˇ

ˇ

:

The expressions in (5.1.26) for c1 and c2 can be written in terms of determinants as

c1 D 1

W.x0/

ˇ

ˇ

ˇ

ˇ

ˇ

k0 y2.x0/

k1 y0
2.x0/

ˇ

ˇ

ˇ

ˇ

ˇ

and c2 D 1

W.x0/

ˇ

ˇ

ˇ

ˇ

ˇ

y1.x0/ k0

y0
1.x0/ k1

ˇ

ˇ

ˇ

ˇ

ˇ

:

If you’ve taken linear algebra you may recognize this as Cramer’s rule.

Example 5.1.5 Verify Abel’s formula for the following differential equations and the corresponding so-

lutions, from Examples 5.1.1, 5.1.2, and 5.1.3:

(a) y00 � y D 0I y1 D ex; y2 D e�x

(b) y00 C !2y D 0I y1 D cos !x; y2 D sin !x

(c) x2y00 C xy0 � 4y D 0I y1 D x2; y2 D 1=x2

SOLUTION(a) Since p � 0, we can verify Abel’s formula by showing that W is constant, which is true,

since

W.x/ D
ˇ

ˇ

ˇ

ˇ

ˇ

ex e�x

ex �e�x

ˇ

ˇ

ˇ

ˇ

ˇ

D ex.�e�x/ � exe�x D �2

for all x.

SOLUTION(b) Again, since p � 0, we can verify Abel’s formula by showing that W is constant, which

is true, since

W.x/ D
ˇ

ˇ

ˇ

ˇ

ˇ

cos !x sin !x

�! sin !x ! cos !x

ˇ

ˇ

ˇ

ˇ

ˇ

D cos !x.! cos !x/ � .�! sin !x/ sin !x

D !.cos2 !x C sin2 !x/ D !

for all x.

SOLUTION(c) Computing the Wronskian of y1 D x2 and y2 D 1=x2 directly yields

W D
ˇ

ˇ

ˇ

ˇ

ˇ

x2 1=x2

2x �2=x3

ˇ

ˇ

ˇ

ˇ

ˇ

D x2

�

� 2

x3

�

� 2x

�

1

x2

�

D � 4

x
: (5.1.31)

To verify Abel’s formula we rewrite the differential equation as

y00 C 1

x
y0 � 4

x2
y D 0



202 Chapter 5 Linear Second Order Equations

to see that p.x/ D 1=x. If x0 and x are either both in .�1; 0/ or both in .0; 1/ then
Z x

x0

p.t/ dt D
Z x

x0

dt

t
D ln

�

x

x0

�

;

so Abel’s formula becomes

W.x/ D W.x0/e� ln.x=x0/ D W.x0/
x0

x

D �
�

4

x0

�

�x0

x

�

from (5.1.31)

D � 4

x
;

which is consistent with (5.1.31).
The next theorem will enable us to complete the proof of Theorem 5.1.3.

Theorem 5.1.5 Suppose p and q are continuous on an open interval .a; b/; let y1 and y2 be solutions of

y00 C p.x/y0 C q.x/y D 0 (5.1.32)

on .a; b/; and let W D y1y0
2 � y0

1y2: Then y1 and y2 are linearly independent on .a; b/ if and only if W

has no zeros on .a; b/:

Proof We first show that if W.x0/ D 0 for some x0 in .a; b/, then y1 and y2 are linearly dependent on
.a; b/. Let I be a subinterval of .a; b/ on which y1 has no zeros. (If there’s no such subinterval, y1 � 0

on .a; b/, so y1 and y2 are linearly independent, and we’re finished with this part of the proof.) Then

y2=y1 is defined on I , and
�

y2

y1

�0

D y1y0
2 � y0

1y2

y2
1

D W

y2
1

: (5.1.33)

However, if W.x0/ D 0, Theorem 5.1.4 implies that W � 0 on .a; b/. Therefore (5.1.33) implies that
.y2=y1/0 � 0, so y2=y1 D c (constant) on I . This shows that y2.x/ D cy1.x/ for all x in I . However,

we want to show that y2 D cy1.x/ for all x in .a; b/. Let Y D y2 � cy1. Then Y is a solution of (5.1.32)

on .a; b/ such that Y � 0 on I , and therefore Y 0 � 0 on I . Consequently, if x0 is chosen arbitrarily in I

then Y is a solution of the initial value problem

y00 C p.x/y0 C q.x/y D 0; y.x0/ D 0; y0.x0/ D 0;

which implies that Y � 0 on .a; b/, by the paragraph following Theorem 5.1.1. (See also Exercise 24).

Hence, y2 � cy1 � 0 on .a; b/, which implies that y1 and y2 are not linearly independent on .a; b/.

Now suppose W has no zeros on .a; b/. Then y1 can’t be identically zero on .a; b/ (why not?), and

therefore there is a subinterval I of .a; b/ on which y1 has no zeros. Since (5.1.33) implies that y2=y1 is
nonconstant on I , y2 isn’t a constant multiple of y1 on .a; b/. A similar argument shows that y1 isn’t a

constant multiple of y2 on .a; b/, since
�

y1

y2

�0

D y0
1y2 � y1y0

2

y2
2

D � W

y2
2

on any subinterval of .a; b/ where y2 has no zeros.
We can now complete the proof of Theorem 5.1.3. From Theorem 5.1.5, two solutions y1 and y2 of

(5.1.32) are linearly independent on .a; b/ if and only if W has no zeros on .a; b/. From Theorem 5.1.4

and the motivating comments preceding it, fy1; y2g is a fundamental set of solutions of (5.1.32) if and

only if W has no zeros on .a; b/. Therefore fy1; y2g is a fundamental set for (5.1.32) on .a; b/ if and

only if fy1; y2g is linearly independent on .a; b/.
The next theorem summarizes the relationships among the concepts discussed in this section.
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Theorem 5.1.6 Suppose p and q are continuous on an open interval .a; b/ and let y1 and y2 be solutions

of

y00 C p.x/y0 C q.x/y D 0 (5.1.34)

on .a; b/: Then the following statements are equivalentI that is; they are either all true or all false:

(a) The general solution of (5.1.34) on .a; b/ is y D c1y1 C c2y2.

(b) fy1; y2g is a fundamental set of solutions of (5.1.34) on .a; b/:

(c) fy1; y2g is linearly independent on .a; b/:

(d) The Wronskian of fy1; y2g is nonzero at some point in .a; b/:

(e) The Wronskian of fy1; y2g is nonzero at all points in .a; b/:

We can apply this theorem to an equation written as

P0.x/y00 C P1.x/y0 C P2.x/y D 0

on an interval .a; b/ where P0, P1, and P2 are continuous and P0 has no zeros.

Theorem 5.1.7 Suppose c is in .a; b/ and ˛ and ˇ are real numbers, not both zero. Under the assump-

tions of Theorem 5.1.7, suppose y1 and y2 are solutions of (5.1.34) such that

˛y1.c/ C ˇy0
1.c/ D 0 and ˛y2.c/ C ˇy0

2.c/ D 0: (5.1.35)

Then fy1; y2g isn’t linearly independent on .a; b/:

Proof Since ˛ and ˇ are not both zero, (5.1.35) implies that
ˇ

ˇ

ˇ

ˇ

y1.c/ y0
1.c/

y2.c/ y0
2.c/

ˇ

ˇ

ˇ

ˇ

D 0; so

ˇ

ˇ

ˇ

ˇ

y1.c/ y2.c/

y0
1.c/ y0

2.c/

ˇ

ˇ

ˇ

ˇ

D 0

and Theorem 5.1.6 implies the stated conclusion.

5.1 Exercises

1. (a) Verify that y1 D e2x and y2 D e5x are solutions of

y00 � 7y0 C 10y D 0 .A/

on .�1; 1/.

(b) Verify that if c1 and c2 are arbitrary constants then y D c1e2x C c2e5x is a solution of (A)

on .�1; 1/.

(c) Solve the initial value problem

y00 � 7y0 C 10y D 0; y.0/ D �1; y0.0/ D 1:

(d) Solve the initial value problem

y00 � 7y0 C 10y D 0; y.0/ D k0; y0.0/ D k1:

2. (a) Verify that y1 D ex cos x and y2 D ex sin x are solutions of

y00 � 2y0 C 2y D 0 .A/

on .�1; 1/.
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(b) Verify that if c1 and c2 are arbitrary constants then y D c1ex cos x C c2ex sin x is a solution

of (A) on .�1; 1/.

(c) Solve the initial value problem

y00 � 2y0 C 2y D 0; y.0/ D 3; y0.0/ D �2:

(d) Solve the initial value problem

y00 � 2y0 C 2y D 0; y.0/ D k0; y0.0/ D k1:

3. (a) Verify that y1 D ex and y2 D xex are solutions of

y00 � 2y0 C y D 0 .A/

on .�1; 1/.

(b) Verify that if c1 and c2 are arbitrary constants then y D ex.c1 C c2x/ is a solution of (A) on
.�1; 1/.

(c) Solve the initial value problem

y00 � 2y0 C y D 0; y.0/ D 7; y0.0/ D 4:

(d) Solve the initial value problem

y00 � 2y0 C y D 0; y.0/ D k0; y0.0/ D k1:

4. (a) Verify that y1 D 1=.x � 1/ and y2 D 1=.x C 1/ are solutions of

.x2 � 1/y00 C 4xy0 C 2y D 0 .A/

on .�1; �1/, .�1; 1/, and .1; 1/. What is the general solution of (A) on each of these

intervals?

(b) Solve the initial value problem

.x2 � 1/y00 C 4xy0 C 2y D 0; y.0/ D �5; y0.0/ D 1:

What is the interval of validity of the solution?

(c) C/G Graph the solution of the initial value problem.

(d) Verify Abel’s formula for y1 and y2, with x0 D 0.

5. Compute the Wronskians of the given sets of functions.

(a) f1; exg (b) fex; ex sin xg
(c) fx C 1; x2 C 2g (d) fx1=2; x�1=3g

(e) f sin x

x
;

cos x

x
g (f) fx ln jxj; x2 ln jxjg

(g) fex cos
p

x; ex sin
p

xg
6. Find the Wronskian of a given set fy1; y2g of solutions of

y00 C 3.x2 C 1/y0 � 2y D 0;

given that W.�/ D 0.
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7. Find the Wronskian of a given set fy1; y2g of solutions of

.1 � x2/y00 � 2xy0 C ˛.˛ C 1/y D 0;

given that W.0/ D 1. (This is Legendre’s equation.)

8. Find the Wronskian of a given set fy1; y2g of solutions of

x2y00 C xy0 C .x2 � �2/y D 0;

given that W.1/ D 1. (This is Bessel’s equation.)

9. (This exercise shows that if you know one nontrivial solution of y00 C p.x/y0 C q.x/y D 0, you

can use Abel’s formula to find another.)

Suppose p and q are continuous and y1 is a solution of

y00 C p.x/y0 C q.x/y D 0 .A/

that has no zeros on .a; b/. Let P.x/ D
R

p.x/ dx be any antiderivative of p on .a; b/.

(a) Show that if K is an arbitrary nonzero constant and y2 satisfies

y1y0
2 � y0

1y2 D Ke�P.x/ .B/

on .a; b/, then y2 also satisfies (A) on .a; b/, and fy1; y2g is a fundamental set of solutions
on (A) on .a; b/.

(b) Conclude from (a) that if y2 D uy1 where u0 D K
e�P.x/

y2
1 .x/

, then fy1; y2g is a fundamental

set of solutions of (A) on .a; b/.

In Exercises 10–23 use the method suggested by Exercise 9 to find a second solution y2 that isn’t a

constant multiple of the solution y1. Choose K conveniently to simplify y2.

10. y00 � 2y0 � 3y D 0; y1 D e3x

11. y00 � 6y0 C 9y D 0; y1 D e3x

12. y00 � 2ay0 C a2y D 0 (a D constant); y1 D eax

13. x2y00 C xy0 � y D 0; y1 D x

14. x2y00 � xy0 C y D 0; y1 D x

15. x2y00 � .2a � 1/xy0 C a2y D 0 (a D nonzero constant); x > 0; y1 D xa

16. 4x2y00 � 4xy0 C .3 � 16x2/y D 0; y1 D x1=2e2x

17. .x � 1/y00 � xy0 C y D 0; y1 D ex

18. x2y00 � 2xy0 C .x2 C 2/y D 0; y1 D x cos x

19. 4x2.sin x/y00 � 4x.x cos x C sin x/y0 C .2x cos x C 3 sin x/y D 0; y1 D x1=2

20. .3x � 1/y00 � .3x C 2/y0 � .6x � 8/y D 0; y1 D e2x

21. .x2 � 4/y00 C 4xy0 C 2y D 0; y1 D 1

x � 2

22. .2x C 1/xy00 � 2.2x2 � 1/y0 � 4.x C 1/y D 0; y1 D 1

x

23. .x2 � 2x/y00 C .2 � x2/y0 C .2x � 2/y D 0; y1 D ex
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24. Suppose p and q are continuous on an open interval .a; b/ and let x0 be in .a; b/. Use Theo-

rem 5.1.1 to show that the only solution of the initial value problem

y00 C p.x/y0 C q.x/y D 0; y.x0/ D 0; y0.x0/ D 0

on .a; b/ is the trivial solution y � 0.

25. Suppose P0, P1, and P2 are continuous on .a; b/ and let x0 be in .a; b/. Show that if either of the

following statements is true then P0.x/ D 0 for some x in .a; b/.

(a) The initial value problem

P0.x/y00 C P1.x/y0 C P2.x/y D 0; y.x0/ D k0; y0.x0/ D k1

has more than one solution on .a; b/.

(b) The initial value problem

P0.x/y00 C P1.x/y0 C P2.x/y D 0; y.x0/ D 0; y0.x0/ D 0

has a nontrivial solution on .a; b/.

26. Suppose p and q are continuous on .a; b/ and y1 and y2 are solutions of

y00 C p.x/y0 C q.x/y D 0 .A/

on .a; b/. Let

´1 D ˛y1 C ˇy2 and ´2 D �y1 C ıy2;

where ˛, ˇ, � , and ı are constants. Show that if f´1; ´2g is a fundamental set of solutions of (A)
on .a; b/ then so is fy1; y2g.

27. Suppose p and q are continuous on .a; b/ and fy1; y2g is a fundamental set of solutions of

y00 C p.x/y0 C q.x/y D 0 .A/

on .a; b/. Let

´1 D ˛y1 C ˇy2 and ´2 D �y1 C ıy2;

where ˛; ˇ; � , and ı are constants. Show that f´1; ´2g is a fundamental set of solutions of (A) on

.a; b/ if and only if ˛� � ˇı ¤ 0.

28. Suppose y1 is differentiable on an interval .a; b/ and y2 D ky1, where k is a constant. Show that

the Wronskian of fy1; y2g is identically zero on .a; b/.

29. Let

y1 D x3 and y2 D
�

x3; x � 0;

�x3; x < 0:

(a) Show that the Wronskian of fy1; y2g is defined and identically zero on .�1; 1/.

(b) Suppose a < 0 < b. Show that fy1; y2g is linearly independent on .a; b/.

(c) Use Exercise 25(b) to show that these results don’t contradict Theorem 5.1.5, because neither

y1 nor y2 can be a solution of an equation

y00 C p.x/y0 C q.x/y D 0

on .a; b/ if p and q are continuous on .a; b/.
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30. Suppose p and q are continuous on .a; b/ and fy1; y2g is a set of solutions of

y00 C p.x/y0 C q.x/y D 0

on .a; b/ such that either y1.x0/ D y2.x0/ D 0 or y0
1.x0/ D y0

2.x0/ D 0 for some x0 in .a; b/.

Show that fy1; y2g is linearly dependent on .a; b/.

31. Suppose p and q are continuous on .a; b/ and fy1; y2g is a fundamental set of solutions of

y00 C p.x/y0 C q.x/y D 0

on .a; b/. Show that if y1.x1/ D y1.x2/ D 0, where a < x1 < x2 < b, then y2.x/ D 0 for

some x in .x1; x2/. HINT: Show that if y2 has no zeros in .x1; x2/, then y1=y2 is either strictly

increasing or strictly decreasing on .x1; x2/, and deduce a contradiction.

32. Suppose p and q are continuous on .a; b/ and every solution of

y00 C p.x/y0 C q.x/y D 0 .A/

on .a; b/ can be written as a linear combination of the twice differentiable functions fy1; y2g. Use
Theorem 5.1.1 to show that y1 and y2 are themselves solutions of (A) on .a; b/.

33. Suppose p1, p2, q1, and q2 are continuous on .a; b/ and the equations

y00 C p1.x/y0 C q1.x/y D 0 and y00 C p2.x/y0 C q2.x/y D 0

have the same solutions on .a; b/. Show that p1 D p2 and q1 D q2 on .a; b/. HINT: Use Abel’s

formula.

34. (For this exercise you have to know about 3 � 3 determinants.) Show that if y1 and y2 are twice

continuously differentiable on .a; b/ and the Wronskian W of fy1; y2g has no zeros in .a; b/ then
the equation

1

W

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

y y1 y2

y0 y0
1 y0

2

y00 y00
1 y00

2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D 0

can be written as

y00 C p.x/y0 C q.x/y D 0; .A/

where p and q are continuous on .a; b/ and fy1; y2g is a fundamental set of solutions of (A) on
.a; b/. HINT: Expand the determinant by cofactors of its first column.

35. Use the method suggested by Exercise 34 to find a linear homogeneous equation for which the

given functions form a fundamental set of solutions on some interval.

(a) ex cos 2x; ex sin 2x (b) x; e2x

(c) x; x ln x (d) cos.ln x/; sin.ln x/

(e) cosh x; sinh x (f) x2 � 1; x2 C 1

36. Suppose p and q are continuous on .a; b/ and fy1; y2g is a fundamental set of solutions of

y00 C p.x/y0 C q.x/y D 0 .A/

on .a; b/. Show that if y is a solution of (A) on .a; b/, there’s exactly one way to choose c1 and

c2 so that y D c1y1 C c2y2 on .a; b/.
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37. Suppose p and q are continuous on .a; b/ and x0 is in .a; b/. Let y1 and y2 be the solutions of

y00 C p.x/y0 C q.x/y D 0 .A/

such that

y1.x0/ D 1; y0
1.x0/ D 0 and y2.x0/ D 0; y0

2.x0/ D 1:

(Theorem 5.1.1 implies that each of these initial value problems has a unique solution on .a; b/.)

(a) Show that fy1; y2g is linearly independent on .a; b/.

(b) Show that an arbitrary solution y of (A) on .a; b/ can be written as y D y.x0/y1 Cy0.x0/y2.

(c) Express the solution of the initial value problem

y00 C p.x/y0 C q.x/y D 0; y.x0/ D k0; y0.x0/ D k1

as a linear combination of y1 and y2.

38. Find solutions y1 and y2 of the equation y00 D 0 that satisfy the initial conditions

y1.x0/ D 1; y0
1.x0/ D 0 and y2.x0/ D 0; y0

2.x0/ D 1:

Then use Exercise 37 (c) to write the solution of the initial value problem

y00 D 0; y.0/ D k0; y0.0/ D k1

as a linear combination of y1 and y2.

39. Let x0 be an arbitrary real number. Given (Example 5.1.1) that ex and e�x are solutions of y00 �
y D 0, find solutions y1 and y2 of y00 � y D 0 such that

y1.x0/ D 1; y0
1.x0/ D 0 and y2.x0/ D 0; y0

2.x0/ D 1:

Then use Exercise 37 (c) to write the solution of the initial value problem

y00 � y D 0; y.x0/ D k0; y0.x0/ D k1

as a linear combination of y1 and y2.

40. Let x0 be an arbitrary real number. Given (Example 5.1.2) that cos !x and sin !x are solutions of
y00 C !2y D 0, find solutions of y00 C !2y D 0 such that

y1.x0/ D 1; y0
1.x0/ D 0 and y2.x0/ D 0; y0

2.x0/ D 1:

Then use Exercise 37 (c) to write the solution of the initial value problem

y00 C !2y D 0; y.x0/ D k0; y0.x0/ D k1

as a linear combination of y1 and y2. Use the identities

cos.A C B/ D cos A cos B � sin A sin B

sin.A C B/ D sin A cos B C cos A sin B

to simplify your expressions for y1, y2, and y.
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41. Recall from Exercise 4 that 1=.x � 1/ and 1=.x C 1/ are solutions of

.x2 � 1/y00 C 4xy0 C 2y D 0 .A/

on .�1; 1/. Find solutions of (A) such that

y1.0/ D 1; y0
1.0/ D 0 and y2.0/ D 0; y0

2.0/ D 1:

Then use Exercise 37 (c) to write the solution of initial value problem

.x2 � 1/y00 C 4xy0 C 2y D 0; y.0/ D k0; y0.0/ D k1

as a linear combination of y1 and y2.

42. (a) Verify that y1 D x2 and y2 D x3 satisfy

x2y00 � 4xy0 C 6y D 0 .A/

on .�1; 1/ and that fy1; y2g is a fundamental set of solutions of (A) on .�1; 0/ and

.0; 1/.

(b) Let a1, a2, b1, and b2 be constants. Show that

y D
�

a1x2 C a2x3; x � 0;

b1x2 C b2x3; x < 0

is a solution of (A) on .�1; 1/ if and only if a1 D b1. From this, justify the statement that

y is a solution of (A) on .�1; 1/ if and only if

y D
�

c1x2 C c2x3; x � 0;

c1x2 C c3x3; x < 0;

where c1, c2, and c3 are arbitrary constants.

(c) For what values of k0 and k1 does the initial value problem

x2y00 � 4xy0 C 6y D 0; y.0/ D k0; y0.0/ D k1

have a solution? What are the solutions?

(d) Show that if x0 ¤ 0 and k0; k1 are arbitrary constants, the initial value problem

x2y00 � 4xy0 C 6y D 0; y.x0/ D k0; y0.x0/ D k1 .B/

has infinitely many solutions on .�1; 1/. On what interval does (B) have a unique solution?

43. (a) Verify that y1 D x and y2 D x2 satisfy

x2y00 � 2xy0 C 2y D 0 .A/

on .�1; 1/ and that fy1; y2g is a fundamental set of solutions of (A) on .�1; 0/ and

.0; 1/.

(b) Let a1, a2, b1, and b2 be constants. Show that

y D
�

a1x C a2x2; x � 0;

b1x C b2x2; x < 0

is a solution of (A) on .�1; 1/ if and only if a1 D b1 and a2 D b2. From this, justify the

statement that the general solution of (A) on .�1; 1/ is y D c1x C c2x2, where c1 and c2

are arbitrary constants.
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(c) For what values of k0 and k1 does the initial value problem

x2y00 � 2xy0 C 2y D 0; y.0/ D k0; y0.0/ D k1

have a solution? What are the solutions?

(d) Show that if x0 ¤ 0 and k0; k1 are arbitrary constants then the initial value problem

x2y00 � 2xy0 C 2y D 0; y.x0/ D k0; y0.x0/ D k1

has a unique solution on .�1; 1/.

44. (a) Verify that y1 D x3 and y2 D x4 satisfy

x2y00 � 6xy0 C 12y D 0 .A/

on .�1; 1/, and that fy1; y2g is a fundamental set of solutions of (A) on .�1; 0/ and

.0; 1/.

(b) Show that y is a solution of (A) on .�1; 1/ if and only if

y D
�

a1x3 C a2x4; x � 0;

b1x3 C b2x4; x < 0;

where a1, a2, b1, and b2 are arbitrary constants.

(c) For what values of k0 and k1 does the initial value problem

x2y00 � 6xy0 C 12y D 0; y.0/ D k0; y0.0/ D k1

have a solution? What are the solutions?

(d) Show that if x0 ¤ 0 and k0; k1 are arbitrary constants then the initial value problem

x2y00 � 6xy0 C 12y D 0; y.x0/ D k0; y0.x0/ D k1 .B/

has infinitely many solutions on .�1; 1/. On what interval does (B) have a unique solution?

5.2 CONSTANT COEFFICIENT HOMOGENEOUS EQUATIONS

If a; b, and c are real constants and a ¤ 0, then

ay00 C by0 C cy D F.x/

is said to be a constant coefficient equation. In this section we consider the homogeneous constant coef-

ficient equation

ay00 C by0 C cy D 0: (5.2.1)

As we’ll see, all solutions of (5.2.1) are defined on .�1; 1/. This being the case, we’ll omit references

to the interval on which solutions are defined, or on which a given set of solutions is a fundamental set,
etc., since the interval will always be .�1; 1/.

The key to solving (5.2.1) is that if y D erx where r is a constant then the left side of (5.2.1) is a

multiple of erx; thus, if y D erx then y0 D rerx and y00 D r2erx, so

ay00 C by0 C cy D ar2erx C brerx C cerx D .ar2 C br C c/erx: (5.2.2)
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The quadratic polynomial

p.r/ D ar2 C br C c

is the characteristic polynomial of (5.2.1), and p.r/ D 0 is the characteristic equation. From (5.2.2) we

can see that y D erx is a solution of (5.2.1) if and only if p.r/ D 0.

The roots of the characteristic equation are given by the quadratic formula

r D �b ˙
p

b2 � 4ac

2a
: (5.2.3)

We consider three cases:

CASE 1. b2 � 4ac > 0, so the characteristic equation has two distinct real roots.

CASE 2. b2 � 4ac D 0, so the characteristic equation has a repeated real root.

CASE 3. b2 � 4ac < 0, so the characteristic equation has complex roots.

In each case we’ll start with an example.

Case 1: Distinct Real Roots

Example 5.2.1

(a) Find the general solution of

y00 C 6y0 C 5y D 0: (5.2.4)

(b) Solve the initial value problem

y00 C 6y0 C 5y D 0; y.0/ D 3; y0.0/ D �1: (5.2.5)

SOLUTION(a) The characteristic polynomial of (5.2.4) is

p.r/ D r2 C 6r C 5 D .r C 1/.r C 5/:

Since p.�1/ D p.�5/ D 0, y1 D e�x and y2 D e�5x are solutions of (5.2.4). Since y2=y1 D e�4x is

nonconstant, 5.1.6 implies that the general solution of (5.2.4) is

y D c1e�x C c2e�5x: (5.2.6)

SOLUTION(b) We must determine c1 and c2 in (5.2.6) so that y satisfies the initial conditions in (5.2.5).

Differentiating (5.2.6) yields

y0 D �c1e�x � 5c2e�5x: (5.2.7)

Imposing the initial conditions y.0/ D 3; y0.0/ D �1 in (5.2.6) and (5.2.7) yields

c1 C c2 D 3

�c1 � 5c2 D �1:

The solution of this system is c1 D 7=2; c2 D �1=2. Therefore the solution of (5.2.5) is

y D 7

2
e�x � 1

2
e�5x:

Figure 5.2.1 is a graph of this solution.

If the characteristic equation has arbitrary distinct real roots r1 and r2, then y1 D er1x and y2 D er2x

are solutions of ay00 C by0 C cy D 0. Since y2=y1 D e.r2�r1/x is nonconstant, Theorem 5.1.6 implies

that fy1; y2g is a fundamental set of solutions of ay00 C by0 C cy D 0.
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e�x � 1

2
e�5x

Case 2: A Repeated Real Root

Example 5.2.2

(a) Find the general solution of

y00 C 6y0 C 9y D 0: (5.2.8)

(b) Solve the initial value problem

y00 C 6y0 C 9y D 0; y.0/ D 3; y0.0/ D �1: (5.2.9)

SOLUTION(a) The characteristic polynomial of (5.2.8) is

p.r/ D r2 C 6r C 9 D .r C 3/2;

so the characteristic equation has the repeated real root r1 D �3. Therefore y1 D e�3x is a solution

of (5.2.8). Since the characteristic equation has no other roots, (5.2.8) has no other solutions of the

form erx. We look for solutions of the form y D uy1 D ue�3x, where u is a function that we’ll now

determine. (This should remind you of the method of variation of parameters used in Section 2.1 to

solve the nonhomogeneous equation y0 C p.x/y D f .x/, given a solution y1 of the complementary
equation y0 C p.x/y D 0. It’s also a special case of a method called reduction of order that we’ll study

in Section 5.6. For other ways to obtain a second solution of (5.2.8) that’s not a multiple of e�3x, see

Exercises 5.1.9, 5.1.12, and 33.
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If y D ue�3x, then

y0 D u0e�3x � 3ue�3x and y00 D u00e�3x � 6u0e�3x C 9ue�3x;

so

y00 C 6y0 C 9y D e�3x
�

.u00 � 6u0 C 9u/ C 6.u0 � 3u/ C 9u
�

D e�3x
�

u00 � .6 � 6/u0 C .9 � 18 C 9/u
�

D u00e�3x:

Therefore y D ue�3x is a solution of (5.2.8) if and only if u00 D 0, which is equivalent to u D c1 C c2x,
where c1 and c2 are constants. Therefore any function of the form

y D e�3x.c1 C c2x/ (5.2.10)

is a solution of (5.2.8). Letting c1 D 1 and c2 D 0 yields the solution y1 D e�3x that we already knew.

Letting c1 D 0 and c2 D 1 yields the second solution y2 D xe�3x. Since y2=y1 D x is nonconstant,

5.1.6 implies that fy1; y2g is fundamental set of solutions of (5.2.8), and (5.2.10) is the general solution.

SOLUTION(b) Differentiating (5.2.10) yields

y0 D �3e�3x.c1 C c2x/ C c2e�3x: (5.2.11)

Imposing the initial conditions y.0/ D 3; y0.0/ D �1 in (5.2.10) and (5.2.11) yields c1 D 3 and
�3c1 C c2 D �1, so c2 D 8. Therefore the solution of (5.2.9) is

y D e�3x.3 C 8x/:

Figure 5.2.2 is a graph of this solution.

1

2

3

1 2 3
 x

 y

Figure 5.2.2 y D e�3x.3 C 8x/
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If the characteristic equation of ay00 Cby0 Ccy D 0 has an arbitrary repeated root r1, the characteristic

polynomial must be

p.r/ D a.r � r1/2 D a.r2 � 2r1r C r2
1 /:

Therefore

ar2 C br C c D ar2 � .2ar1/r C ar2
1 ;

which implies that b D �2ar1 and c D ar2
1 . Therefore ay00 C by0 C cy D 0 can be written as

a.y00 � 2r1y0 C r2
1 y/ D 0. Since a ¤ 0 this equation has the same solutions as

y00 � 2r1y0 C r2
1 y D 0: (5.2.12)

Since p.r1/ D 0, t y1 D er1x is a solution of ay00Cby0Ccy D 0, and therefore of (5.2.12). Proceeding

as in Example 5.2.2, we look for other solutions of (5.2.12) of the form y D uer1x; then

y0 D u0er1x C ruer1x and y00 D u00er1x C 2r1u0er1x C r2
1 uer1x ;

so

y00 � 2r1y0 C r2
1 y D erx

�

.u00 C 2r1u0 C r2
1 u/ � 2r1.u0 C r1u/ C r2

1 u
�

D er1x
�

u00 C .2r1 � 2r1/u0 C .r2
1 � 2r2

1 C r2
1 /u

�

D u00er1x :

Therefore y D uer1x is a solution of (5.2.12) if and only if u00 D 0, which is equivalent to u D c1 C c2x,

where c1 and c2 are constants. Hence, any function of the form

y D er1x.c1 C c2x/ (5.2.13)

is a solution of (5.2.12). Letting c1 D 1 and c2 D 0 here yields the solution y1 D er1x that we already
knew. Letting c1 D 0 and c2 D 1 yields the second solution y2 D xer1x. Since y2=y1 D x is

nonconstant, 5.1.6 implies that fy1; y2g is a fundamental set of solutions of (5.2.12), and (5.2.13) is the

general solution.

Case 3: Complex Conjugate Roots

Example 5.2.3

(a) Find the general solution of

y00 C 4y0 C 13y D 0: (5.2.14)

(b) Solve the initial value problem

y00 C 4y0 C 13y D 0; y.0/ D 2; y0.0/ D �3: (5.2.15)

SOLUTION(a) The characteristic polynomial of (5.2.14) is

p.r/ D r2 C 4r C 13 D r2 C 4r C 4 C 9 D .r C 2/2 C 9:

The roots of the characteristic equation are r1 D �2 C 3i and r2 D �2 � 3i . By analogy with Case 1, it’s
reasonable to expect that e.�2C3i/x and e.�2�3i/x are solutions of (5.2.14). This is true (see Exercise 34);

however, there are difficulties here, since you are probably not familiar with exponential functions with

complex arguments, and even if you are, it’s inconvenient to work with them, since they are complex–

valued. We’ll take a simpler approach, which we motivate as follows: the exponential notation suggests

that
e.�2C3i/x D e�2xe3ix and e.�2�3i/x D e�2xe�3ix;
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so even though we haven’t defined e3ix and e�3ix, it’s reasonable to expect that every linear combination

of e.�2C3i/x and e.�2�3i/x can be written as y D ue�2x , where u depends upon x. To determine u, we

note that if y D ue�2x then

y0 D u0e�2x � 2ue�2x and y00 D u00e�2x � 4u0e�2x C 4ue�2x;

so

y00 C 4y0 C 13y D e�2x
�

.u00 � 4u0 C 4u/ C 4.u0 � 2u/ C 13u
�

D e�2x
�

u00 � .4 � 4/u0 C .4 � 8 C 13/u
�

D e�2x.u00 C 9u/:

Therefore y D ue�2x is a solution of (5.2.14) if and only if

u00 C 9u D 0:

From Example 5.1.2, the general solution of this equation is

u D c1 cos 3x C c2 sin 3x:

Therefore any function of the form

y D e�2x.c1 cos 3x C c2 sin 3x/ (5.2.16)

is a solution of (5.2.14). Letting c1 D 1 and c2 D 0 yields the solution y1 D e�2x cos 3x. Letting c1 D 0

and c2 D 1 yields the second solution y2 D e�2x sin 3x. Since y2=y1 D tan 3x is nonconstant, 5.1.6

implies that fy1; y2g is a fundamental set of solutions of (5.2.14), and (5.2.16) is the general solution.

SOLUTION(b) Imposing the condition y.0/ D 2 in (5.2.16) shows that c1 D 2. Differentiating (5.2.16)

yields

y0 D �2e�2x.c1 cos 3x C c2 sin 3x/ C 3e�2x.�c1 sin 3x C c2 cos 3x/;

and imposing the initial condition y0.0/ D �3 here yields �3 D �2c1 C 3c2 D �4 C 3c2, so c2 D 1=3.

Therefore the solution of (5.2.15) is

y D e�2x.2 cos 3x C 1

3
sin 3x/:

Figure 5.2.3 is a graph of this function.
Now suppose the characteristic equation of ay00 C by0 C cy D 0 has arbitrary complex roots; thus,

b2 � 4ac < 0 and, from (5.2.3), the roots are

r1 D �b C i
p

4ac � b2

2a
; r2 D �b � i

p
4ac � b2

2a
;

which we rewrite as

r1 D � C i!; r2 D � � i!; (5.2.17)

with

� D � b

2a
; ! D

p
4ac � b2

2a
:

Don’t memorize these formulas. Just remember that r1 and r2 are of the form (5.2.17), where � is an

arbitrary real number and ! is positive; � and ! are the real and imaginary parts, respectively, of r1.
Similarly, � and �! are the real and imaginary parts of r2. We say that r1 and r2 are complex conjugates,
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which means that they have the same real part and their imaginary parts have the same absolute values,

but opposite signs.
As in Example 5.2.3, it’s reasonable to to expect that the solutions of ay00 C by0 C cy D 0 are linear

combinations of e.�Ci!/x and e.��i!/x. Again, the exponential notation suggests that

e.�Ci!/x D e�xei!x and e.��i!/x D e�xe�i!x;

so even though we haven’t defined ei!x and e�i!x, it’s reasonable to expect that every linear combination

of e.�Ci!/x and e.��i!/x can be written as y D ue�x , where u depends upon x. To determine u we first

observe that since r1 D � C i! and r2 D � � i! are the roots of the characteristic equation, p must be

of the form
p.r/ D a.r � r1/.r � r2/

D a.r � � � i!/.r � � C i!/

D a
�

.r � �/2 C !2
�

D a.r2 � 2�r C �2 C !2/:

Therefore ay00 C by0 C cy D 0 can be written as

a
�

y00 � 2�y0 C .�2 C !2/y
�

D 0:

Since a ¤ 0 this equation has the same solutions as

y00 � 2�y0 C .�2 C !2/y D 0: (5.2.18)

To determine u we note that if y D ue�x then

y0 D u0e�x C �ue�x and y00 D u00e�x C 2�u0e�x C �2ue�x :
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Substituting these expressions into (5.2.18) and dropping the common factor e�x yields

.u00 C 2�u0 C �2u/ � 2�.u0 C �u/ C .�2 C !2/u D 0;

which simplifies to

u00 C !2u D 0:

From Example 5.1.2, the general solution of this equation is

u D c1 cos !x C c2 sin !x:

Therefore any function of the form

y D e�x.c1 cos !x C c2 sin !x/ (5.2.19)

is a solution of (5.2.18). Letting c1 D 1 and c2 D 0 here yields the solution y1 D e�x cos !x. Letting

c1 D 0 and c2 D 1 yields a second solution y2 D e�x sin !x. Since y2=y1 D tan !x is nonconstant,

so Theorem 5.1.6 implies that fy1; y2g is a fundamental set of solutions of (5.2.18), and (5.2.19) is the

general solution.

Summary

The next theorem summarizes the results of this section.

Theorem 5.2.1 Let p.r/ D ar2 C br C c be the characteristic polynomial of

ay00 C by0 C cy D 0: (5.2.20)

ThenW
(a) If p.r/ D 0 has distinct real roots r1 and r2; then the general solution of (5.2.20) is

y D c1er1x C c2er2x:

(b) If p.r/ D 0 has a repeated root r1; then the general solution of (5.2.20) is

y D er1x.c1 C c2x/:

(c) If p.r/ D 0 has complex conjugate roots r1 D � C i! and r2 D � � i! .where ! > 0/; then the

general solution of (5.2.20) is

y D e�x.c1 cos !x C c2 sin !x/:

5.2 Exercises

In Exercises 1–12 find the general solution.

1. y00 C 5y0 � 6y D 0 2. y00 � 4y0 C 5y D 0

3. y00 C 8y0 C 7y D 0 4. y00 � 4y0 C 4y D 0

5. y00 C 2y0 C 10y D 0 6. y00 C 6y0 C 10y D 0
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7. y00 � 8y0 C 16y D 0 8. y00 C y0 D 0

9. y00 � 2y0 C 3y D 0 10. y00 C 6y0 C 13y D 0

11. 4y00 C 4y0 C 10y D 0 12. 10y00 � 3y0 � y D 0

In Exercises 13–17 solve the initial value problem.

13. y00 C 14y0 C 50y D 0; y.0/ D 2; y0.0/ D �17

14. 6y00 � y0 � y D 0; y.0/ D 10; y0.0/ D 0

15. 6y00 C y0 � y D 0; y.0/ D �1; y0.0/ D 3

16. 4y00 � 4y0 � 3y D 0; y.0/ D 13

12
; y0.0/ D 23

24

17. 4y00 � 12y0 C 9y D 0; y.0/ D 3; y0.0/ D 5

2

In Exercises 18–21 solve the initial value problem and graph the solution.

18. C/G y00 C 7y0 C 12y D 0; y.0/ D �1; y0.0/ D 0

19. C/G y00 � 6y0 C 9y D 0; y.0/ D 0; y0.0/ D 2

20. C/G 36y00 � 12y0 C y D 0; y.0/ D 3; y0.0/ D 5

2

21. C/G y00 C 4y0 C 10y D 0; y.0/ D 3; y0.0/ D �2

22. (a) Suppose y is a solution of the constant coefficient homogeneous equation

ay00 C by0 C cy D 0: .A/

Let ´.x/ D y.x � x0/, where x0 is an arbitrary real number. Show that

a´00 C b´0 C c´ D 0:

(b) Let ´1.x/ D y1.x � x0/ and ´2.x/ D y2.x � x0/, where fy1; y2g is a fundamental set of

solutions of (A). Show that f´1; ´2g is also a fundamental set of solutions of (A).

(c) The statement of Theorem 5.2.1 is convenient for solving an initial value problem

ay00 C by0 C cy D 0; y.0/ D k0; y0.0/ D k1;

where the initial conditions are imposed at x0 D 0. However, if the initial value problem is

ay00 C by0 C cy D 0; y.x0/ D k0; y0.x0/ D k1; .B/

where x0 ¤ 0, then determining the constants in

y D c1er1x C c2er2x; y D er1x.c1 C c2x/; or y D e�x.c1 cos !x C c2 sin !x/

(whichever is applicable) is more complicated. Use (b) to restate Theorem 5.2.1 in a form

more convenient for solving (B).

In Exercises 23–28 use a method suggested by Exercise 22 to solve the initial value problem.

23. y00 C 3y0 C 2y D 0; y.1/ D �1; y0.1/ D 4
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24. y00 � 6y0 � 7y D 0; y.2/ D �1

3
; y0.2/ D �5

25. y00 � 14y0 C 49y D 0; y.1/ D 2; y0.1/ D 11

26. 9y00 C 6y0 C y D 0; y.2/ D 2; y0.2/ D �14

3

27. 9y00 C 4y D 0; y.�=4/ D 2; y0.�=4/ D �2

28. y00 C 3y D 0; y.�=3/ D 2; y0.�=3/ D �1

29. Prove: If the characteristic equation of

ay00 C by0 C cy D 0 .A/

has a repeated negative root or two roots with negative real parts, then every solution of (A) ap-

proaches zero as x ! 1.

30. Suppose the characteristic polynomial of ay00 C by0 C cy D 0 has distinct real roots r1 and r2.

Use a method suggested by Exercise 22 to find a formula for the solution of

ay00 C by0 C cy D 0; y.x0/ D k0; y0.x0/ D k1:

31. Suppose the characteristic polynomial of ay00 C by0 C cy D 0 has a repeated real root r1. Use a

method suggested by Exercise 22 to find a formula for the solution of

ay00 C by0 C cy D 0; y.x0/ D k0; y0.x0/ D k1:

32. Suppose the characteristic polynomial of ay00 Cby0 Ccy D 0 has complex conjugate roots �˙ i!.

Use a method suggested by Exercise 22 to find a formula for the solution of

ay00 C by0 C cy D 0; y.x0/ D k0; y0.x0/ D k1:

33. Suppose the characteristic equation of

ay00 C by0 C cy D 0 .A/

has a repeated real root r1. Temporarily, think of erx as a function of two real variables x and r .

(a) Show that

a
@2

@2x
.erx/ C b

@

@x
.erx/ C cerx D a.r � r1/2erx: .B/

(b) Differentiate (B) with respect to r to obtain

a
@

@r

�

@2

@2x
.erx/

�

C b
@

@r

�

@

@x
.erx/

�

C c.xerx/ D Œ2 C .r � r1/x�a.r � r1/erx: .C/

(c) Reverse the orders of the partial differentiations in the first two terms on the left side of (C)

to obtain

a
@2

@x2
.xerx/ C b

@

@x
.xerx/ C c.xerx/ D Œ2 C .r � r1/x�a.r � r1/erx: .D/

(d) Set r D r1 in (B) and (D) to see that y1 D er1x and y2 D xer1x are solutions of (A)
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34. In calculus you learned that eu, cos u, and sin u can be represented by the infinite series

eu D
1

X

nD0

un

nŠ
D 1 C u

1Š
C u2

2Š
C u3

3Š
C � � � C un

nŠ
C � � � .A/

cos u D
1

X

nD0

.�1/n u2n

.2n/Š
D 1 � u2

2Š
C u4

4Š
C � � � C .�1/n u2n

.2n/Š
C � � � ; .B/

and

sin u D
1

X

nD0

.�1/n u2nC1

.2n C 1/Š
D u � u3

3Š
C u5

5Š
C � � � C .�1/n u2nC1

.2n C 1/Š
C � � � .C/

for all real values of u. Even though you have previously considered (A) only for real values of u,
we can set u D i� , where � is real, to obtain

ei� D
1

X

nD0

.i�/n

nŠ
: .D/

Given the proper background in the theory of infinite series with complex terms, it can be shown

that the series in (D) converges for all real � .

(a) Recalling that i2 D �1; write enough terms of the sequence fing to convince yourself that

the sequence is repetitive:

1; i; �1; �i; 1; i; �1; �i; 1; i; �1; �i; 1; i; �1; �i; � � � :

Use this to group the terms in (D) as

ei� D
�

1 � �2

2
C �4

4
C � � �

�

C i

�

� � �3

3Š
C �5

5Š
C � � �

�

D
1

X

nD0

.�1/n �2n

.2n/Š
C i

1
X

nD0

.�1/n �2nC1

.2n C 1/Š
:

By comparing this result with (B) and (C), conclude that

ei� D cos � C i sin �: .E/

This is Euler’s identity.

(b) Starting from

ei�1ei�2 D .cos �1 C i sin �1/.cos �2 C i sin �2/;

collect the real part (the terms not multiplied by i ) and the imaginary part (the terms multi-

plied by i ) on the right, and use the trigonometric identities

cos.�1 C �2/ D cos �1 cos �2 � sin �1 sin �2

sin.�1 C �2/ D sin �1 cos �2 C cos �1 sin �2

to verify that

ei.�1C�2/ D ei�1ei�2 ;

as you would expect from the use of the exponential notation ei� .
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(c) If ˛ and ˇ are real numbers, define

e˛Ciˇ D e˛eiˇ D e˛.cos ˇ C i sin ˇ/: .F/

Show that if ´1 D ˛1 C iˇ1 and ´2 D ˛2 C iˇ2 then

e´1C´2 D e´1e´2:

(d) Let a, b, and c be real numbers, with a ¤ 0. Let ´ D u C iv where u and v are real-valued

functions of x. Then we say that ´ is a solution of

ay00 C by0 C cy D 0 .G/

if u and v are both solutions of (G). Use Theorem 5.2.1(c) to verify that if the characteristic
equation of (G) has complex conjugate roots � ˙ i! then ´1 D e.�Ci!/x and ´2 D e.��i!/x

are both solutions of (G).

5.3 NONHOMOGENEOUS LINEAR EQUATIONS

We’ll now consider the nonhomogeneous linear second order equation

y00 C p.x/y0 C q.x/y D f .x/; (5.3.1)

where the forcing function f isn’t identically zero. The next theorem, an extension of Theorem 5.1.1,

gives sufficient conditions for existence and uniqueness of solutions of initial value problems for (5.3.1).

We omit the proof, which is beyond the scope of this book.

Theorem 5.3.1 Suppose p; ; q and f are continuous on an open interval .a; b/; let x0 be any point in

.a; b/; and let k0 and k1 be arbitrary real numbers: Then the initial value problem

y00 C p.x/y0 C q.x/y D f .x/; y.x0/ D k0; y0.x0/ D k1

has a unique solution on .a; b/:

To find the general solution of (5.3.1) on an interval .a; b/ where p, q, and f are continuous, it’s

necessary to find the general solution of the associated homogeneous equation

y00 C p.x/y0 C q.x/y D 0 (5.3.2)

on .a; b/. We call (5.3.2) the complementary equation for (5.3.1).

The next theorem shows how to find the general solution of (5.3.1) if we know one solution yp of

(5.3.1) and a fundamental set of solutions of (5.3.2). We call yp a particular solution of (5.3.1); it can be

any solution that we can find, one way or another.

Theorem 5.3.2 Suppose p; q; and f are continuous on .a; b/: Let yp be a particular solution of

y00 C p.x/y0 C q.x/y D f .x/ (5.3.3)

on .a; b/, and let fy1; y2g be a fundamental set of solutions of the complementary equation

y00 C p.x/y0 C q.x/y D 0 (5.3.4)

on .a; b/. Then y is a solution of (5.3.3) on .a; b/ if and only if

y D yp C c1y1 C c2y2; (5.3.5)

where c1 and c2 are constants.
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Proof We first show that y in (5.3.5) is a solution of (5.3.3) for any choice of the constants c1 and c2.

Differentiating (5.3.5) twice yields

y0 D y0
p C c1y0

1 C c2y0
2 and y00 D y00

p C c1y00
1 C c2y00

2 ;

so

y00 C p.x/y0 C q.x/y D .y00
p C c1y00

1 C c2y00
2 / C p.x/.y0

p C c1y0
1 C c2y0

2/

Cq.x/.yp C c1y1 C c2y2/

D .y00
p C p.x/y0

p C q.x/yp/ C c1.y00
1 C p.x/y0

1 C q.x/y1/

Cc2.y00
2 C p.x/y0

2 C q.x/y2/

D f C c1 � 0 C c2 � 0 D f;

since yp satisfies (5.3.3) and y1 and y2 satisfy (5.3.4).

Now we’ll show that every solution of (5.3.3) has the form (5.3.5) for some choice of the constants c1

and c2. Suppose y is a solution of (5.3.3). We’ll show that y � yp is a solution of (5.3.4), and therefore

of the form y � yp D c1y1 C c2y2, which implies (5.3.5). To see this, we compute

.y � yp/00 C p.x/.y � yp/0 C q.x/.y � yp/ D .y00 � y00
p/ C p.x/.y0 � y0

p/

Cq.x/.y � yp/

D .y00 C p.x/y0 C q.x/y/

�.y00
p C p.x/y0

p C q.x/yp/

D f .x/ � f .x/ D 0;

since y and yp both satisfy (5.3.3).
We say that (5.3.5) is the general solution of (5.3.3) on .a; b/.

If P0, P1, and F are continuous and P0 has no zeros on .a; b/, then Theorem 5.3.2 implies that the

general solution of

P0.x/y00 C P1.x/y0 C P2.x/y D F.x/ (5.3.6)

on .a; b/ is y D yp C c1y1 C c2y2, where yp is a particular solution of (5.3.6) on .a; b/ and fy1; y2g is

a fundamental set of solutions of

P0.x/y00 C P1.x/y0 C P2.x/y D 0

on .a; b/. To see this, we rewrite (5.3.6) as

y00 C P1.x/

P0.x/
y0 C P2.x/

P0.x/
y D F.x/

P0.x/

and apply Theorem 5.3.2 with p D P1=P0, q D P2=P0, and f D F=P0.

To avoid awkward wording in examples and exercises, we won’t specify the interval .a; b/ when we ask
for the general solution of a specific linear second order equation, or for a fundamental set of solutions of

a homogeneous linear second order equation. Let’s agree that this always means that we want the general

solution (or a fundamental set of solutions, as the case may be) on every open interval on which p, q, and

f are continuous if the equation is of the form (5.3.3), or on which P0, P1, P2, and F are continuous

and P0 has no zeros, if the equation is of the form (5.3.6). We leave it to you to identify these intervals in
specific examples and exercises.

For completeness, we point out that if P0, P1, P2, and F are all continuous on an open interval .a; b/,

but P0 does have a zero in .a; b/, then (5.3.6) may fail to have a general solution on .a; b/ in the sense

just defined. Exercises 42–44 illustrate this point for a homogeneous equation.

In this section we to limit ourselves to applications of Theorem 5.3.2 where we can guess at the form
of the particular solution.
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Example 5.3.1

(a) Find the general solution of

y00 C y D 1: (5.3.7)

(b) Solve the initial value problem

y00 C y D 1; y.0/ D 2; y0.0/ D 7: (5.3.8)

SOLUTION(a) We can apply Theorem 5.3.2 with .a; b/ D .�1; 1/, since the functions p � 0, q � 1,

and f � 1 in (5.3.7) are continuous on .�1; 1/. By inspection we see that yp � 1 is a particu-

lar solution of (5.3.7). Since y1 D cos x and y2 D sin x form a fundamental set of solutions of the

complementary equation y00 C y D 0, the general solution of (5.3.7) is

y D 1 C c1 cos x C c2 sin x: (5.3.9)

SOLUTION(b) Imposing the initial condition y.0/ D 2 in (5.3.9) yields 2 D 1 C c1, so c1 D 1.

Differentiating (5.3.9) yields

y0 D �c1 sin x C c2 cos x:

Imposing the initial condition y0.0/ D 7 here yields c2 D 7, so the solution of (5.3.8) is

y D 1 C cos x C 7 sin x:

Figure 5.3.1 is a graph of this function.

Example 5.3.2

(a) Find the general solution of

y00 � 2y0 C y D �3 � x C x2: (5.3.10)

(b) Solve the initial value problem

y00 � 2y0 C y D �3 � x C x2; y.0/ D �2; y0.0/ D 1: (5.3.11)

SOLUTION(a) The characteristic polynomial of the complementary equation

y00 � 2y0 C y D 0

is r2 � 2r C 1 D .r � 1/2, so y1 D ex and y2 D xex form a fundamental set of solutions of the

complementary equation. To guess a form for a particular solution of (5.3.10), we note that substituting a
second degree polynomial yp D ACBx CCx2 into the left side of (5.3.10) will produce another second

degree polynomial with coefficients that depend upon A, B , and C . The trick is to choose A, B , and C

so the polynomials on the two sides of (5.3.10) have the same coefficients; thus, if

yp D A C Bx C Cx2 then y0
p D B C 2Cx and y00

p D 2C;

so

y00
p � 2y0

p C yp D 2C � 2.B C 2Cx/ C .A C Bx C Cx2/

D .2C � 2B C A/ C .�4C C B/x C Cx2 D �3 � x C x2:
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Figure 5.3.1 y D 1 C cos x C 7 sin x

Equating coefficients of like powers of x on the two sides of the last equality yields

C D 1

B � 4C D �1

A � 2B C 2C D �3;

so C D 1, B D �1C4C D 3, and A D �3�2C C2B D 1. Therefore yp D 1C3x Cx2 is a particular

solution of (5.3.10) and Theorem 5.3.2 implies that

y D 1 C 3x C x2 C ex.c1 C c2x/ (5.3.12)

is the general solution of (5.3.10).

SOLUTION(b) Imposing the initial condition y.0/ D �2 in (5.3.12) yields �2 D 1 C c1, so c1 D �3.

Differentiating (5.3.12) yields

y0 D 3 C 2x C ex.c1 C c2x/ C c2ex;

and imposing the initial condition y0.0/ D 1 here yields 1 D 3 C c1 C c2, so c2 D 1. Therefore the

solution of (5.3.11) is

y D 1 C 3x C x2 � ex.3 � x/:

Figure 5.3.2 is a graph of this solution.

Example 5.3.3 Find the general solution of

x2y00 C xy0 � 4y D 2x4 (5.3.13)

on .�1; 0/ and .0; 1/.
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Figure 5.3.2 y D 1 C 3x C x2 � ex.3 � x/

Solution In Example 5.1.3, we verified that y1 D x2 and y2 D 1=x2 form a fundamental set of solutions

of the complementary equation

x2y00 C xy0 � 4y D 0

on .�1; 0/ and .0; 1/. To find a particular solution of (5.3.13), we note that if yp D Ax4, where A is a

constant then both sides of (5.3.13) will be constant multiples of x4 and we may be able to choose A so

the two sides are equal. This is true in this example, since if yp D Ax4 then

x2y00
p C xy0

p � 4yp D x2.12Ax2/ C x.4Ax3/ � 4Ax4 D 12Ax4 D 2x4

if A D 1=6; therefore, yp D x4=6 is a particular solution of (5.3.13) on .�1; 1/. Theorem 5.3.2

implies that the general solution of (5.3.13) on .�1; 0/ and .0; 1/ is

y D x4

6
C c1x2 C c2

x2
:

The Principle of Superposition

The next theorem enables us to break a nonhomogeous equation into simpler parts, find a particular
solution for each part, and then combine their solutions to obtain a particular solution of the original

problem.

Theorem 5.3.3 ŒThe Principle of Superposition� Suppose yp1
is a particular solution of

y00 C p.x/y0 C q.x/y D f1.x/

on .a; b/ and yp2
is a particular solution of

y00 C p.x/y0 C q.x/y D f2.x/
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on .a; b/. Then

yp D yp1
C yp2

is a particular solution of

y00 C p.x/y0 C q.x/y D f1.x/ C f2.x/

on .a; b/.

Proof If yp D yp1
C yp2

then

y00
p C p.x/y0

p C q.x/yp D .yp1
C yp2

/00 C p.x/.yp1
C yp2

/0 C q.x/.yp1
C yp2

/

D
�

y00
p1

C p.x/y0
p1

C q.x/yp1

�

C
�

y00
p2

C p.x/y0
p2

C q.x/yp2

�

D f1.x/ C f2.x/:

It’s easy to generalize Theorem 5.3.3 to the equation

y00 C p.x/y0 C q.x/y D f .x/ (5.3.14)

where

f D f1 C f2 C � � � C fk I
thus, if ypi

is a particular solution of

y00 C p.x/y0 C q.x/y D fi .x/

on .a; b/ for i D 1, 2, . . . , k, then yp1
C yp2

C � � � C ypk
is a particular solution of (5.3.14) on .a; b/.

Moreover, by a proof similar to the proof of Theorem 5.3.3 we can formulate the principle of superposition

in terms of a linear equation written in the form

P0.x/y00 C P1.x/y0 C P2.x/y D F.x/

(Exercise 39); that is, if yp1
is a particular solution of

P0.x/y00 C P1.x/y0 C P2.x/y D F1.x/

on .a; b/ and yp2
is a particular solution of

P0.x/y00 C P1.x/y0 C P2.x/y D F2.x/

on .a; b/, then yp1
C yp2

is a solution of

P0.x/y00 C P1.x/y0 C P2.x/y D F1.x/ C F2.x/

on .a; b/.

Example 5.3.4 The function yp1
D x4=15 is a particular solution of

x2y00 C 4xy0 C 2y D 2x4 (5.3.15)

on .�1; 1/ and yp2
D x2=3 is a particular solution of

x2y00 C 4xy0 C 2y D 4x2 (5.3.16)

on .�1; 1/. Use the principle of superposition to find a particular solution of

x2y00 C 4xy0 C 2y D 2x4 C 4x2 (5.3.17)

on .�1; 1/.
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Solution The right side F.x/ D 2x4 C 4x2 in (5.3.17) is the sum of the right sides

F1.x/ D 2x4 and F2.x/ D 4x2:

in (5.3.15) and (5.3.16). Therefore the principle of superposition implies that

yp D yp1
C yp2

D x4

15
C x2

3

is a particular solution of (5.3.17).

5.3 Exercises

In Exercises 1–6 find a particular solution by the method used in Example 5.3.2. Then find the general

solution and, where indicated, solve the initial value problem and graph the solution.

1. y00 C 5y0 � 6y D 22 C 18x � 18x2

2. y00 � 4y0 C 5y D 1 C 5x

3. y00 C 8y0 C 7y D �8 � x C 24x2 C 7x3

4. y00 � 4y0 C 4y D 2 C 8x � 4x2

5. C/G y00 C 2y0 C 10y D 4 C 26x C 6x2 C 10x3; y.0/ D 2; y0.0/ D 9

6. C/G y00 C 6y0 C 10y D 22 C 20x; y.0/ D 2; y0.0/ D �2

7. Show that the method used in Example 5.3.2 won’t yield a particular solution of

y00 C y0 D 1 C 2x C x2I .A/

that is, (A) does’nt have a particular solution of the form yp D A C Bx C Cx2, where A, B , and

C are constants.

In Exercises 8–13 find a particular solution by the method used in Example 5.3.3.

8. x2y00 C 7xy0 C 8y D 6

x

9. x2y00 � 7xy0 C 7y D 13x1=2

10. x2y00 � xy0 C y D 2x3

11. x2y00 C 5xy0 C 4y D 1

x3

12. x2y00 C xy0 C y D 10x1=3 13. x2y00 � 3xy0 C 13y D 2x4

14. Show that the method suggested for finding a particular solution in Exercises 8-13 won’t yield a

particular solution of

x2y00 C 3xy0 � 3y D 1

x3
I .A/

that is, (A) doesn’t have a particular solution of the form yp D A=x3.

15. Prove: If a, b, c, ˛, and M are constants and M ¤ 0 then

ax2y00 C bxy0 C cy D Mx˛

has a particular solution yp D Ax˛ (A D constant) if and only if a˛.˛ � 1/ C b˛ C c ¤ 0.
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If a, b, c, and ˛ are constants, then

a.e˛x/00 C b.e˛x/0 C ce˛x D .a˛2 C b˛ C c/e˛x :

Use this in Exercises 16–21 to find a particular solution . Then find the general solution and, where

indicated, solve the initial value problem and graph the solution.

16. y00 C 5y0 � 6y D 6e3x 17. y00 � 4y0 C 5y D e2x

18. C/G y00 C 8y0 C 7y D 10e�2x; y.0/ D �2; y0.0/ D 10

19. C/G y00 � 4y0 C 4y D ex; y.0/ D 2; y0.0/ D 0

20. y00 C 2y0 C 10y D ex=2 21. y00 C 6y0 C 10y D e�3x

22. Show that the method suggested for finding a particular solution in Exercises 16-21 won’t yield a

particular solution of

y00 � 7y0 C 12y D 5e4xI .A/

that is, (A) doesn’t have a particular solution of the form yp D Ae4x.

23. Prove: If ˛ and M are constants and M ¤ 0 then constant coefficient equation

ay00 C by0 C cy D Me˛x

has a particular solution yp D Ae˛x (A D constant) if and only if e˛x isn’t a solution of the

complementary equation.

If ! is a constant, differentiating a linear combination of cos !x and sin !x with respect to x yields

another linear combination of cos !x and sin !x. In Exercises 24–29 use this to find a particular solution

of the equation. Then find the general solution and, where indicated, solve the initial value problem and

graph the solution.

24. y00 � 8y0 C 16y D 23 cos x � 7 sin x

25. y00 C y0 D �8 cos 2x C 6 sin 2x

26. y00 � 2y0 C 3y D �6 cos 3x C 6 sin 3x

27. y00 C 6y0 C 13y D 18 cos x C 6 sin x

28. C/G y00 C 7y0 C 12y D �2 cos 2x C 36 sin2x; y.0/ D �3; y0.0/ D 3

29. C/G y00 � 6y0 C 9y D 18 cos 3x C 18 sin 3x; y.0/ D 2; y0.0/ D 2

30. Find the general solution of

y00 C !2
0 y D M cos !x C N sin !x;

where M and N are constants and ! and !0 are distinct positive numbers.

31. Show that the method suggested for finding a particular solution in Exercises 24-29 won’t yield a
particular solution of

y00 C y D cos x C sin xI .A/

that is, (A) does not have a particular solution of the form yp D A cos x C B sin x.
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32. Prove: If M , N are constants (not both zero) and ! > 0, the constant coefficient equation

ay00 C by0 C cy D M cos !x C N sin !x .A/

has a particular solution that’s a linear combination of cos !x and sin !x if and only if the left side

of (A) is not of the form a.y00 C !2y/, so that cos !x and sin !x are solutions of the complemen-

tary equation.

In Exercises 33–38 refer to the cited exercises and use the principal of superposition to find a particular

solution. Then find the general solution.

33. y00 C 5y0 � 6y D 22 C 18x � 18x2 C 6e3x (See Exercises 1 and 16.)

34. y00 � 4y0 C 5y D 1 C 5x C e2x (See Exercises 2 and 17.)

35. y00 C 8y0 C 7y D �8 � x C 24x2 C 7x3 C 10e�2x (See Exercises 3 and 18.)

36. y00 � 4y0 C 4y D 2 C 8x � 4x2 C ex (See Exercises 4 and 19.)

37. y00 C 2y0 C 10y D 4 C 26x C 6x2 C 10x3 C ex=2 (See Exercises 5 and 20.)

38. y00 C 6y0 C 10y D 22 C 20x C e�3x (See Exercises 6 and 21.)

39. Prove: If yp1
is a particular solution of

P0.x/y00 C P1.x/y0 C P2.x/y D F1.x/

on .a; b/ and yp2
is a particular solution of

P0.x/y00 C P1.x/y0 C P2.x/y D F2.x/

on .a; b/, then yp D yp1
C yp2

is a solution of

P0.x/y00 C P1.x/y0 C P2.x/y D F1.x/ C F2.x/

on .a; b/.

40. Suppose p, q, and f are continuous on .a; b/. Let y1, y2, and yp be twice differentiable on .a; b/,

such that y D c1y1 C c2y2 C yp is a solution of

y00 C p.x/y0 C q.x/y D f

on .a; b/ for every choice of the constants c1; c2. Show that y1 and y2 are solutions of the com-

plementary equation on .a; b/.

5.4 THE METHOD OF UNDETERMINED COEFFICIENTS I

In this section we consider the constant coefficient equation

ay00 C by0 C cy D e˛xG.x/; (5.4.1)

where ˛ is a constant and G is a polynomial.
From Theorem 5.3.2, the general solution of (5.4.1) is y D yp C c1y1 C c2y2, where yp is a particular

solution of (5.4.1) and fy1; y2g is a fundamental set of solutions of the complementary equation

ay00 C by0 C cy D 0:

In Section 5.2 we showed how to find fy1; y2g. In this section we’ll show how to find yp . The procedure

that we’ll use is called the method of undetermined coefficients.
Our first example is similar to Exercises 16–21.
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Example 5.4.1 Find a particular solution of

y00 � 7y0 C 12y D 4e2x: (5.4.2)

Then find the general solution.

Solution Substituting yp D Ae2x for y in (5.4.2) will produce a constant multiple of Ae2x on the left

side of (5.4.2), so it may be possible to choose A so that yp is a solution of (5.4.2). Let’s try it; if

yp D Ae2x then

y00
p � 7y0

p C 12yp D 4Ae2x � 14Ae2x C 12Ae2x D 2Ae2x D 4e2x

if A D 2. Therefore yp D 2e2x is a particular solution of (5.4.2). To find the general solution, we note

that the characteristic polynomial of the complementary equation

y00 � 7y0 C 12y D 0 (5.4.3)

is p.r/ D r2 � 7r C 12 D .r � 3/.r � 4/, so fe3x; e4xg is a fundamental set of solutions of (5.4.3).

Therefore the general solution of (5.4.2) is

y D 2e2x C c1e3x C c2e4x:

Example 5.4.2 Find a particular solution of

y00 � 7y0 C 12y D 5e4x: (5.4.4)

Then find the general solution.

Solution Fresh from our success in finding a particular solution of (5.4.2) — where we chose yp D Ae2x

because the right side of (5.4.2) is a constant multiple of e2x — it may seem reasonable to try yp D Ae4x

as a particular solution of (5.4.4). However, this won’t work, since we saw in Example 5.4.1 that e4x is
a solution of the complementary equation (5.4.3), so substituting yp D Ae4x into the left side of (5.4.4)

produces zero on the left, no matter how we chooseA. To discover a suitable form for yp , we use the

same approach that we used in Section 5.2 to find a second solution of

ay00 C by0 C cy D 0

in the case where the characteristic equation has a repeated real root: we look for solutions of (5.4.4) in

the form y D ue4x, where u is a function to be determined. Substituting

y D ue4x; y0 D u0e4x C 4ue4x; and y00 D u00e4x C 8u0e4x C 16ue4x (5.4.5)

into (5.4.4) and canceling the common factor e4x yields

.u00 C 8u0 C 16u/ � 7.u0 C 4u/ C 12u D 5;

or

u00 C u0 D 5:

By inspection we see that up D 5x is a particular solution of this equation, so yp D 5xe4x is a particular

solution of (5.4.4). Therefore
y D 5xe4x C c1e3x C c2e4x

is the general solution.
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Example 5.4.3 Find a particular solution of

y00 � 8y0 C 16y D 2e4x: (5.4.6)

Solution Since the characteristic polynomial of the complementary equation

y00 � 8y0 C 16y D 0 (5.4.7)

is p.r/ D r2 � 8r C 16 D .r � 4/2, both y1 D e4x and y2 D xe4x are solutions of (5.4.7). Therefore

(5.4.6) does not have a solution of the form yp D Ae4x or yp D Axe4x. As in Example 5.4.2, we look

for solutions of (5.4.6) in the form y D ue4x, where u is a function to be determined. Substituting from

(5.4.5) into (5.4.6) and canceling the common factor e4x yields

.u00 C 8u0 C 16u/ � 8.u0 C 4u/ C 16u D 2;

or

u00 D 2:

Integrating twice and taking the constants of integration to be zero shows that up D x2 is a particular

solution of this equation, so yp D x2e4x is a particular solution of (5.4.4). Therefore

y D e4x.x2 C c1 C c2x/

is the general solution.

The preceding examples illustrate the following facts concerning the form of a particular solution yp

of a constant coefficent equation

ay00 C by0 C cy D ke˛x;

where k is a nonzero constant:

(a) If e˛x isn’t a solution of the complementary equation

ay00 C by0 C cy D 0; (5.4.8)

then yp D Ae˛x , where A is a constant. (See Example 5.4.1).

(b) If e˛x is a solution of (5.4.8) but xe˛x is not, then yp D Axe˛x, where A is a constant. (See

Example 5.4.2.)

(c) If both e˛x and xe˛x are solutions of (5.4.8), then yp D Ax2e˛x, where A is a constant. (See
Example 5.4.3.)

See Exercise 30 for the proofs of these facts.

In all three cases you can just substitute the appropriate form for yp and its derivatives directly into

ay00
p C by0

p C cyp D ke˛x ;

and solve for the constant A, as we did in Example 5.4.1. (See Exercises 31–33.) However, if the equation
is

ay00 C by0 C cy D ke˛xG.x/;

where G is a polynomial of degree greater than zero, we recommend that you use the substitution y D
ue˛x as we did in Examples 5.4.2 and 5.4.3. The equation for u will turn out to be

au00 C p0.˛/u0 C p.˛/u D G.x/; (5.4.9)
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where p.r/ D ar2 C br C c is the characteristic polynomial of the complementary equation and p0.r/ D
2ar C b (Exercise 30); however, you shouldn’t memorize this since it’s easy to derive the equation for

u in any particular case. Note, however, that if e˛x is a solution of the complementary equation then

p.˛/ D 0, so (5.4.9) reduces to

au00 C p0.˛/u0 D G.x/;

while if both e˛x and xe˛x are solutions of the complementary equation then p.r/ D a.r � ˛/2 and

p0.r/ D 2a.r � ˛/, so p.˛/ D p0.˛/ D 0 and (5.4.9) reduces to

au00 D G.x/:

Example 5.4.4 Find a particular solution of

y00 � 3y0 C 2y D e3x.�1 C 2x C x2/: (5.4.10)

Solution Substituting

y D ue3x; y0 D u0e3x C 3ue3x; and y00 D u00e3x C 6u0e3x C 9ue3x

into (5.4.10) and canceling e3x yields

.u00 C 6u0 C 9u/ � 3.u0 C 3u/ C 2u D �1 C 2x C x2;

or
u00 C 3u0 C 2u D �1 C 2x C x2: (5.4.11)

As in Example 2, in order to guess a form for a particular solution of (5.4.11), we note that substituting a

second degree polynomial up D ACBx CCx2 for u in the left side of (5.4.11) produces another second
degree polynomial with coefficients that depend upon A, B , and C ; thus,

if up D A C Bx C Cx2 then u0
p D B C 2Cx and u00

p D 2C:

If up is to satisfy (5.4.11), we must have

u00
p C 3u0

p C 2up D 2C C 3.B C 2Cx/ C 2.A C Bx C Cx2/

D .2C C 3B C 2A/ C .6C C 2B/x C 2Cx2 D �1 C 2x C x2:

Equating coefficients of like powers of x on the two sides of the last equality yields

2C D 1

2B C 6C D 2

2A C 3B C 2C D �1:

Solving these equations for C , B , and A (in that order) yields C D 1=2; B D �1=2; A D �1=4.
Therefore

up D �1

4
.1 C 2x � 2x2/

is a particular solution of (5.4.11), and

yp D upe3x D �e3x

4
.1 C 2x � 2x2/

is a particular solution of (5.4.10).
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Example 5.4.5 Find a particular solution of

y00 � 4y0 C 3y D e3x.6 C 8x C 12x2/: (5.4.12)

Solution Substituting

y D ue3x; y0 D u0e3x C 3ue3x; and y00 D u00e3x C 6u0e3x C 9ue3x

into (5.4.12) and canceling e3x yields

.u00 C 6u0 C 9u/ � 4.u0 C 3u/ C 3u D 6 C 8x C 12x2;

or
u00 C 2u0 D 6 C 8x C 12x2: (5.4.13)

There’s no u term in this equation, since e3x is a solution of the complementary equation for (5.4.12).

(See Exercise 30.) Therefore (5.4.13) does not have a particular solution of the form up D ACBxCCx2

that we used successfully in Example 5.4.4, since with this choice of up ,

u00
p C 2u0

p D 2C C .B C 2Cx/

can’t contain the last term (12x2) on the right side of (5.4.13). Instead, let’s try up D Ax C Bx2 C Cx3

on the grounds that

u0
p D A C 2Bx C 3Cx2 and u00

p D 2B C 6Cx

together contain all the powers of x that appear on the right side of (5.4.13).

Substituting these expressions in place of u0 and u00 in (5.4.13) yields

.2B C 6Cx/ C 2.A C 2Bx C 3Cx2/ D .2B C 2A/ C .6C C 4B/x C 6Cx2 D 6 C 8x C 12x2:

Comparing coefficients of like powers of x on the two sides of the last equality shows that up satisfies

(5.4.13) if
6C D 12

4B C 6C D 8

2A C 2B D 6:

Solving these equations successively yields C D 2, B D �1, and A D 4. Therefore

up D x.4 � x C 2x2/

is a particular solution of (5.4.13), and

yp D upe3x D xe3x.4 � x C 2x2/

is a particular solution of (5.4.12).

Example 5.4.6 Find a particular solution of

4y00 C 4y0 C y D e�x=2.�8 C 48x C 144x2/: (5.4.14)

Solution Substituting

y D ue�x=2; y0 D u0e�x=2 � 1

2
ue�x=2; and y00 D u00e�x=2 � u0e�x=2 C 1

4
ue�x=2
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into (5.4.14) and canceling e�x=2 yields

4
�

u00 � u0 C u

4

�

C 4
�

u0 � u

2

�

C u D 4u00 D �8 C 48x C 144x2;

or
u00 D �2 C 12x C 36x2; (5.4.15)

which does not contain u or u0 because e�x=2 and xe�x=2 are both solutions of the complementary

equation. (See Exercise 30.) To obtain a particular solution of (5.4.15) we integrate twice, taking the

constants of integration to be zero; thus,

u0
p D �2x C 6x2 C 12x3 and up D �x2 C 2x3 C 3x4 D x2.�1 C 2x C 3x2/:

Therefore

yp D upe�x=2 D x2e�x=2.�1 C 2x C 3x2/

is a particular solution of (5.4.14).

Summary

The preceding examples illustrate the following facts concerning particular solutions of a constant coef-

ficent equation of the form

ay00 C by0 C cy D e˛xG.x/;

where G is a polynomial (see Exercise 30):
(a) If e˛x isn’t a solution of the complementary equation

ay00 C by0 C cy D 0; (5.4.16)

then yp D e˛xQ.x/, where Q is a polynomial of the same degree as G. (See Example 5.4.4).

(b) If e˛x is a solution of (5.4.16) but xe˛x is not, then yp D xe˛xQ.x/, where Q is a polynomial of
the same degree as G. (See Example 5.4.5.)

(c) If both e˛x and xe˛x are solutions of (5.4.16), then yp D x2e˛xQ.x/, where Q is a polynomial of

the same degree as G. (See Example 5.4.6.)
In all three cases, you can just substitute the appropriate form for yp and its derivatives directly into

ay00
p C by0

p C cyp D e˛xG.x/;

and solve for the coefficients of the polynomial Q. However, if you try this you will see that the compu-

tations are more tedious than those that you encounter by making the substitution y D ue˛x and finding

a particular solution of the resulting equation for u. (See Exercises 34-36.) In Case (a) the equation for u

will be of the form

au00 C p0.˛/u0 C p.˛/u D G.x/;

with a particular solution of the form up D Q.x/, a polynomial of the same degree as G, whose coeffi-

cients can be found by the method used in Example 5.4.4. In Case (b) the equation for u will be of the

form
au00 C p0.˛/u0 D G.x/

(no u term on the left), with a particular solution of the form up D xQ.x/, where Q is a polynomial of

the same degree as G whose coefficents can be found by the method used in Example 5.4.5. In Case (c)

the equation for u will be of the form

au00 D G.x/
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with a particular solution of the form up D x2Q.x/ that can be obtained by integrating G.x/=a twice

and taking the constants of integration to be zero, as in Example 5.4.6.

Using the Principle of Superposition

The next example shows how to combine the method of undetermined coefficients and Theorem 5.3.3,
the principle of superposition.

Example 5.4.7 Find a particular solution of

y00 � 7y0 C 12y D 4e2x C 5e4x: (5.4.17)

Solution In Example 5.4.1 we found that yp1
D 2e2x is a particular solution of

y00 � 7y0 C 12y D 4e2x;

and in Example 5.4.2 we found that yp2
D 5xe4x is a particular solution of

y00 � 7y0 C 12y D 5e4x:

Therefore the principle of superposition implies that yp D 2e2x C 5xe4x is a particular solution of

(5.4.17).

5.4 Exercises

In Exercises 1–14 find a particular solution.

1. y00 � 3y0 C 2y D e3x.1 C x/ 2. y00 � 6y0 C 5y D e�3x.35 � 8x/

3. y00 � 2y0 � 3y D ex.�8 C 3x/ 4. y00 C 2y0 C y D e2x.�7 � 15x C 9x2/

5. y00 C 4y D e�x.7 � 4x C 5x2/ 6. y00 � y0 � 2y D ex.9 C 2x � 4x2/

7. y00 � 4y0 � 5y D �6xe�x 8. y00 � 3y0 C 2y D ex.3 � 4x/

9. y00 C y0 � 12y D e3x.�6 C 7x/ 10. 2y00 � 3y0 � 2y D e2x.�6 C 10x/

11. y00 C 2y0 C y D e�x.2 C 3x/ 12. y00 � 2y0 C y D ex.1 � 6x/

13. y00 � 4y0 C 4y D e2x.1 � 3x C 6x2/

14. 9y00 C 6y0 C y D e�x=3.2 � 4x C 4x2/

In Exercises 15–19 find the general solution.

15. y00 � 3y0 C 2y D e3x.1 C x/ 16. y00 � 6y0 C 8y D ex.11 � 6x/

17. y00 C 6y0 C 9y D e2x.3 � 5x/ 18. y00 C 2y0 � 3y D �16xex

19. y00 � 2y0 C y D ex.2 � 12x/
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In Exercises 20–23 solve the initial value problem and plot the solution.

20. C/G y00 � 4y0 � 5y D 9e2x.1 C x/; y.0/ D 0; y0.0/ D �10

21. C/G y00 C 3y0 � 4y D e2x.7 C 6x/; y.0/ D 2; y0.0/ D 8

22. C/G y00 C 4y0 C 3y D �e�x.2 C 8x/; y.0/ D 1; y0.0/ D 2

23. C/G y00 � 3y0 � 10y D 7e�2x; y.0/ D 1; y0.0/ D �17

In Exercises 24–29 use the principle of superposition to find a particular solution.

24. y00 C y0 C y D xex C e�x.1 C 2x/

25. y00 � 7y0 C 12y D �ex.17 � 42x/ � e3x

26. y00 � 8y0 C 16y D 6xe4x C 2 C 16x C 16x2

27. y00 � 3y0 C 2y D �e2x.3 C 4x/ � ex

28. y00 � 2y0 C 2y D ex.1 C x/ C e�x.2 � 8x C 5x2/

29. y00 C y D e�x.2 � 4x C 2x2/ C e3x.8 � 12x � 10x2/

30. (a) Prove that y is a solution of the constant coefficient equation

ay00 C by0 C cy D e˛xG.x/ .A/

if and only if y D ue˛x , where u satisfies

au00 C p0.˛/u0 C p.˛/u D G.x/ .B/

and p.r/ D ar2 C br C c is the characteristic polynomial of the complementary equation

ay00 C by0 C cy D 0:

For the rest of this exercise, let G be a polynomial. Give the requested proofs for the case

where

G.x/ D g0 C g1x C g2x2 C g3x3:

(b) Prove that if e˛x isn’t a solution of the complementary equation then (B) has a particular

solution of the form up D A.x/, where A is a polynomial of the same degree as G, as in

Example 5.4.4. Conclude that (A) has a particular solution of the form yp D e˛xA.x/.

(c) Show that if e˛x is a solution of the complementary equation and xe˛x isn’t , then (B)

has a particular solution of the form up D xA.x/, where A is a polynomial of the same

degree as G, as in Example 5.4.5. Conclude that (A) has a particular solution of the form
yp D xe˛xA.x/.

(d) Show that if e˛x and xe˛x are both solutions of the complementary equation then (B) has a
particular solution of the form up D x2A.x/, where A is a polynomial of the same degree as

G, and x2A.x/ can be obtained by integrating G=a twice, taking the constants of integration

to be zero, as in Example 5.4.6. Conclude that (A) has a particular solution of the form

yp D x2e˛xA.x/.

Exercises 31–36 treat the equations considered in Examples 5.4.1–5.4.6. Substitute the suggested form

of yp into the equation and equate the resulting coefficients of like functions on the two sides of the

resulting equation to derive a set of simultaneous equations for the coefficients in yp . Then solve for

the coefficients to obtain yp . Compare the work you’ve done with the work required to obtain the same

results in Examples 5.4.1–5.4.6.
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31. Compare with Example 5.4.1:

y00 � 7y0 C 12y D 4e2xI yp D Ae2x

32. Compare with Example 5.4.2:

y00 � 7y0 C 12y D 5e4xI yp D Axe4x

33. Compare with Example 5.4.3.

y00 � 8y0 C 16y D 2e4xI yp D Ax2e4x

34. Compare with Example 5.4.4:

y00 � 3y0 C 2y D e3x.�1 C 2x C x2/; yp D e3x.A C Bx C Cx2/

35. Compare with Example 5.4.5:

y00 � 4y0 C 3y D e3x.6 C 8x C 12x2/; yp D e3x.Ax C Bx2 C Cx3/

36. Compare with Example 5.4.6:

4y00 C 4y0 C y D e�x=2.�8 C 48x C 144x2/; yp D e�x=2.Ax2 C Bx3 C Cx4/

37. Write y D ue˛x to find the general solution.

(a) y00 C 2y0 C y D e�x

p
x

(b) y00 C 6y0 C 9y D e�3x ln x

(c) y00 � 4y0 C 4y D e2x

1 C x
(d) 4y00 C 4y0 C y D 4e�x=2

�

1

x
C x

�

38. Suppose ˛ ¤ 0 and k is a positive integer. In most calculus books integrals like
R

xke˛x dx are

evaluated by integrating by parts k times. This exercise presents another method. Let

y D
Z

e˛xP.x/ dx

with

P.x/ D p0 C p1x C � � � C pkxk; (where pk ¤ 0):

(a) Show that y D e˛xu, where

u0 C ˛u D P.x/: .A/

(b) Show that (A) has a particular solution of the form

up D A0 C A1x C � � � C Akxk;

where Ak , Ak�1, . . . , A0 can be computed successively by equating coefficients of xk; xk�1; : : : ; 1

on both sides of the equation

u0
p C ˛up D P.x/:

(c) Conclude that
Z

e˛xP.x/ dx D
�

A0 C A1x C � � � C Akxk
�

e˛x C c;

where c is a constant of integration.
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39. Use the method of Exercise 38 to evaluate the integral.

(a)
R

ex.4 C x/ dx (b)
R

e�x.�1 C x2/ dx

(c)
R

x3e�2x dx (d)
R

ex.1 C x/2 dx

(e)
R

e3x.�14 C 30x C 27x2/ dx (f)
R

e�x.1 C 6x2 � 14x3 C 3x4/ dx

40. Use the method suggested in Exercise 38 to evaluate
R

xke˛x dx, where k is an arbitrary positive

integer and ˛ ¤ 0.

5.5 THE METHOD OF UNDETERMINED COEFFICIENTS II

In this section we consider the constant coefficient equation

ay00 C by0 C cy D e�x .P.x/ cos !x C Q.x/ sin !x/ (5.5.1)

where � and ! are real numbers, ! ¤ 0, and P and Q are polynomials. We want to find a particular
solution of (5.5.1). As in Section 5.4, the procedure that we will use is called the method of undetermined

coefficients.

Forcing Functions Without Exponential Factors

We begin with the case where � D 0 in (5.5.1); thus, we we want to find a particular solution of

ay00 C by0 C cy D P.x/ cos !x C Q.x/ sin !x; (5.5.2)

where P and Q are polynomials.

Differentiating xr cos !x and xr sin !x yields

d

dx
xr cos !x D �!xr sin !x C rxr�1 cos !x

and d

dx
xr sin !x D !xr cos !x C rxr�1 sin !x:

This implies that if

yp D A.x/ cos !x C B.x/ sin !x

where A and B are polynomials, then

ay00
p C by0

p C cyp D F.x/ cos !x C G.x/ sin !x;

where F and G are polynomials with coefficients that can be expressed in terms of the coefficients of A

and B . This suggests that we try to choose A and B so that F D P and G D Q, respectively. Then yp

will be a particular solution of (5.5.2). The next theorem tells us how to choose the proper form for yp .

For the proof see Exercise 37.

Theorem 5.5.1 Suppose ! is a positive number and P and Q are polynomials: Let k be the larger of the

degrees of P and Q: Then the equation

ay00 C by0 C cy D P.x/ cos !x C Q.x/ sin !x

has a particular solution

yp D A.x/ cos !x C B.x/ sin !x; (5.5.3)
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where

A.x/ D A0 C A1x C � � � C Akxk and B.x/ D B0 C B1x C � � � C Bkxk;

provided that cos !x and sin !x are not solutions of the complementary equation: The solutions of

a.y00 C !2y/ D P.x/ cos !x C Q.x/ sin !x

.for which cos !x and sin !x are solutions of the complementary equation/ are of the form (5.5.3); where

A.x/ D A0x C A1x2 C � � � C AkxkC1 and B.x/ D B0x C B1x2 C � � � C BkxkC1:

For an analog of this theorem that’s applicable to (5.5.1), see Exercise 38.

Example 5.5.1 Find a particular solution of

y00 � 2y0 C y D 5 cos 2x C 10 sin 2x: (5.5.4)

Solution In (5.5.4) the coefficients of cos 2x and sin 2x are both zero degree polynomials (constants).

Therefore Theorem 5.5.1 implies that (5.5.4) has a particular solution

yp D A cos 2x C B sin 2x:

Since

y0
p D �2A sin 2x C 2B cos 2x and y00

p D �4.A cos 2x C B sin 2x/;

replacing y by yp in (5.5.4) yields

y00
p � 2y0

p C yp D �4.A cos 2x C B sin 2x/ � 4.�A sin 2x C B cos 2x/

C.A cos 2x C B sin 2x/

D .�3A � 4B/ cos 2x C .4A � 3B/ sin 2x:

Equating the coefficients of cos 2x and sin 2x here with the corresponding coefficients on the right side

of (5.5.4) shows that yp is a solution of (5.5.4) if

�3A � 4B D 5

4A � 3B D 10:

Solving these equations yields A D 1, B D �2. Therefore

yp D cos 2x � 2 sin 2x

is a particular solution of (5.5.4).

Example 5.5.2 Find a particular solution of

y00 C 4y D 8 cos 2x C 12 sin 2x: (5.5.5)

Solution The procedure used in Example 5.5.1 doesn’t work here; substituting yp D A cos 2xCB sin 2x

for y in (5.5.5) yields

y00
p C 4yp D �4.A cos 2x C B sin 2x/ C 4.A cos 2x C B sin 2x/ D 0
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for any choice of A and B , since cos 2x and sin 2x are both solutions of the complementary equation

for (5.5.5). We’re dealing with the second case mentioned in Theorem 5.5.1, and should therefore try a

particular solution of the form

yp D x.A cos 2x C B sin 2x/: (5.5.6)

Then

y0
p D A cos 2x C B sin 2x C 2x.�A sin 2x C B cos 2x/

and y00
p D �4A sin 2x C 4B cos 2x � 4x.A cos 2x C B sin 2x/

D �4A sin 2x C 4B cos 2x � 4yp (see (5.5.6));

so

y00
p C 4yp D �4A sin 2x C 4B cos 2x:

Therefore yp is a solution of (5.5.5) if

�4A sin 2x C 4B cos 2x D 8 cos 2x C 12 sin 2x;

which holds if A D �3 and B D 2. Therefore

yp D �x.3 cos 2x � 2 sin 2x/

is a particular solution of (5.5.5).

Example 5.5.3 Find a particular solution of

y00 C 3y0 C 2y D .16 C 20x/ cos x C 10 sin x: (5.5.7)

Solution The coefficients of cos x and sin x in (5.5.7) are polynomials of degree one and zero, respec-
tively. Therefore Theorem 5.5.1 tells us to look for a particular solution of (5.5.7) of the form

yp D .A0 C A1x/ cos x C .B0 C B1x/ sin x: (5.5.8)

Then

y0
p D .A1 C B0 C B1x/ cos x C .B1 � A0 � A1x/ sin x (5.5.9)

and
y00

p D .2B1 � A0 � A1x/ cos x � .2A1 C B0 C B1x/ sin x; (5.5.10)

so
y00

p C 3y0
p C 2yp D ŒA0 C 3A1 C 3B0 C 2B1 C .A1 C 3B1/x� cos x

C ŒB0 C 3B1 � 3A0 � 2A1 C .B1 � 3A1/x� sin x:
(5.5.11)

Comparing the coefficients of x cos x, x sin x, cos x, and sin x here with the corresponding coefficients

in (5.5.7) shows that yp is a solution of (5.5.7) if

A1 C 3B1 D 20

�3A1 C B1 D 0

A0 C 3B0 C 3A1 C 2B1 D 16

�3A0 C B0 � 2A1 C 3B1 D 10:

Solving the first two equations yields A1 D 2, B1 D 6. Substituting these into the last two equations

yields

A0 C 3B0 D 16 � 3A1 � 2B1 D �2

�3A0 C B0 D 10 C 2A1 � 3B1 D �4:
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Solving these equations yields A0 D 1, B0 D �1. Substituting A0 D 1, A1 D 2, B0 D �1, B1 D 6 into

(5.5.8) shows that

yp D .1 C 2x/ cos x � .1 � 6x/ sin x

is a particular solution of (5.5.7).

A Useful Observation

In (5.5.9), (5.5.10), and (5.5.11) the polynomials multiplying sin x can be obtained by replacing A0; A1; B0,

and B1 by B0, B1, �A0, and �A1, respectively, in the polynomials mutiplying cos x. An analogous result

applies in general, as follows (Exercise 36).

Theorem 5.5.2 If

yp D A.x/ cos !x C B.x/ sin !x;

where A.x/ and B.x/ are polynomials with coefficients A0 . . . , Ak and B0, . . . , Bk; then the polynomials

multiplying sin !x in

y0
p ; y00

p ; ay00
p C by0

p C cyp and y00
p C !2yp

can be obtained by replacing A0, . . . ; Ak by B0; . . . ; Bk and B0; . . . ; Bk by �A0; . . . ; �Ak in the

corresponding polynomials multiplying cos !x.

We won’t use this theorem in our examples, but we recommend that you use it to check your manipu-

lations when you work the exercises.

Example 5.5.4 Find a particular solution of

y00 C y D .8 � 4x/ cos x � .8 C 8x/ sin x: (5.5.12)

Solution According to Theorem 5.5.1, we should look for a particular solution of the form

yp D .A0x C A1x2/ cos x C .B0x C B1x2/ sin x; (5.5.13)

since cos x and sin x are solutions of the complementary equation. However, let’s try

yp D .A0 C A1x/ cos x C .B0 C B1x/ sin x (5.5.14)

first, so you can see why it doesn’t work. From (5.5.10),

y00
p D .2B1 � A0 � A1x/ cos x � .2A1 C B0 C B1x/ sin x;

which together with (5.5.14) implies that

y00
p C yp D 2B1 cos x � 2A1 sin x:

Since the right side of this equation does not contain x cos x or x sin x, (5.5.14) can’t satisfy (5.5.12) no

matter how we choose A0, A1, B0, and B1.

Now let yp be as in (5.5.13). Then

y0
p D

�

A0 C .2A1 C B0/x C B1x2
�

cos x

C
�

B0 C .2B1 � A0/x � A1x2
�

sin x

and y00
p D

�

2A1 C 2B0 � .A0 � 4B1/x � A1x2
�

cos x

C
�

2B1 � 2A0 � .B0 C 4A1/x � B1x2
�

sin x;
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so

y00
p C yp D .2A1 C 2B0 C 4B1x/ cos x C .2B1 � 2A0 � 4A1x/ sin x:

Comparing the coefficients of cos x and sin x here with the corresponding coefficients in (5.5.12) shows

that yp is a solution of (5.5.12) if

4B1 D �4

�4A1 D �8

2B0 C 2A1 D 8

�2A0 C 2B1 D �8:

The solution of this system is A1 D 2, B1 D �1, A0 D 3, B0 D 2. Therefore

yp D x Œ.3 C 2x/ cos x C .2 � x/ sin x�

is a particular solution of (5.5.12).

Forcing Functions with Exponential Factors

To find a particular solution of

ay00 C by0 C cy D e�x .P.x/ cos !x C Q.x/ sin !x/ (5.5.15)

when � ¤ 0, we recall from Section 5.4 that substituting y D ue�x into (5.5.15) will produce a constant

coefficient equation for u with the forcing function P.x/ cos !x C Q.x/ sin !x. We can find a particular
solution up of this equation by the procedure that we used in Examples 5.5.1–5.5.4. Then yp D upe�x

is a particular solution of (5.5.15).

Example 5.5.5 Find a particular solution of

y00 � 3y0 C 2y D e�2x Œ2 cos 3x � .34 � 150x/ sin 3x� : (5.5.16)

Solution Let y D ue�2x. Then

y00 � 3y0 C 2y D e�2x
�

.u00 � 4u0 C 4u/ � 3.u0 � 2u/ C 2u
�

D e�2x.u00 � 7u0 C 12u/

D e�2x Œ2 cos 3x � .34 � 150x/ sin3x�

if

u00 � 7u0 C 12u D 2 cos 3x � .34 � 150x/ sin 3x: (5.5.17)

Since cos 3x and sin 3x aren’t solutions of the complementary equation

u00 � 7u0 C 12u D 0;

Theorem 5.5.1 tells us to look for a particular solution of (5.5.17) of the form

up D .A0 C A1x/ cos 3x C .B0 C B1x/ sin 3x: (5.5.18)

Then

u0
p D .A1 C 3B0 C 3B1x/ cos 3x C .B1 � 3A0 � 3A1x/ sin 3x

and u00
p D .�9A0 C 6B1 � 9A1x/ cos 3x � .9B0 C 6A1 C 9B1x/ sin 3x;
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so

u00
p � 7u0

p C 12up D Œ3A0 � 21B0 � 7A1 C 6B1 C .3A1 � 21B1/x� cos 3x

C Œ21A0 C 3B0 � 6A1 � 7B1 C .21A1 C 3B1/x� sin 3x:

Comparing the coefficients of x cos 3x, x sin 3x, cos 3x, and sin 3x here with the corresponding coeffi-

cients on the right side of (5.5.17) shows that up is a solution of (5.5.17) if

3A1 � 21B1 D 0

21A1 C 3B1 D 150

3A0 � 21B0 � 7A1 C 6B1 D 2

21A0 C 3B0 � 6A1 � 7B1 D �34:

(5.5.19)

Solving the first two equations yields A1 D 7, B1 D 1. Substituting these values into the last two
equations of (5.5.19) yields

3A0 � 21B0 D 2 C 7A1 � 6B1 D 45

21A0 C 3B0 D �34 C 6A1 C 7B1 D 15:

Solving this system yields A0 D 1, B0 D �2. Substituting A0 D 1, A1 D 7, B0 D �2, and B1 D 1 into

(5.5.18) shows that

up D .1 C 7x/ cos 3x � .2 � x/ sin 3x

is a particular solution of (5.5.17). Therefore

yp D e�2x Œ.1 C 7x/ cos 3x � .2 � x/ sin 3x�

is a particular solution of (5.5.16).

Example 5.5.6 Find a particular solution of

y00 C 2y0 C 5y D e�x Œ.6 � 16x/ cos 2x � .8 C 8x/ sin 2x� : (5.5.20)

Solution Let y D ue�x. Then

y00 C 2y0 C 5y D e�x
�

.u00 � 2u0 C u/ C 2.u0 � u/ C 5u
�

D e�x.u00 C 4u/

D e�x Œ.6 � 16x/ cos 2x � .8 C 8x/ sin 2x�

if

u00 C 4u D .6 � 16x/ cos 2x � .8 C 8x/ sin 2x: (5.5.21)

Since cos 2x and sin 2x are solutions of the complementary equation

u00 C 4u D 0;

Theorem 5.5.1 tells us to look for a particular solution of (5.5.21) of the form

up D .A0x C A1x2/ cos 2x C .B0x C B1x2/ sin 2x:
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Then

u0
p D

�

A0 C .2A1 C 2B0/x C 2B1x2
�

cos 2x

C
�

B0 C .2B1 � 2A0/x � 2A1x2
�

sin 2x

and u00
p D

�

2A1 C 4B0 � .4A0 � 8B1/x � 4A1x2
�

cos 2x

C
�

2B1 � 4A0 � .4B0 C 8A1/x � 4B1x2
�

sin 2x;

so

u00
p C 4up D .2A1 C 4B0 C 8B1x/ cos 2x C .2B1 � 4A0 � 8A1x/ sin 2x:

Equating the coefficients of x cos 2x, x sin 2x, cos 2x, and sin 2x here with the corresponding coefficients

on the right side of (5.5.21) shows that up is a solution of (5.5.21) if

8B1 D �16

�8A1 D � 8

4B0 C 2A1 D 6

�4A0 C 2B1 D �8:

(5.5.22)

The solution of this system is A1 D 1, B1 D �2, B0 D 1, A0 D 1. Therefore

up D xŒ.1 C x/ cos 2x C .1 � 2x/ sin 2x�

is a particular solution of (5.5.21), and

yp D xe�x Œ.1 C x/ cos 2x C .1 � 2x/ sin 2x�

is a particular solution of (5.5.20).

You can also find a particular solution of (5.5.20) by substituting

yp D xe�x Œ.A0 C A1x/ cos 2x C .B0 C B1x/ sin 2x�

for y in (5.5.20) and equating the coefficients of xe�x cos 2x, xe�x sin 2x, e�x cos 2x, and e�x sin 2x in

the resulting expression for

y00
p C 2y0

p C 5yp

with the corresponding coefficients on the right side of (5.5.20). (See Exercise 38). This leads to the same
system (5.5.22) of equations for A0, A1, B0, and B1 that we obtained in Example 5.5.6. However, if you

try this approach you’ll see that deriving (5.5.22) this way is much more tedious than the way we did it

in Example 5.5.6.

5.5 Exercises

In Exercises 1–17 find a particular solution.

1. y00 C 3y0 C 2y D 7 cos x � sin x

2. y00 C 3y0 C y D .2 � 6x/ cos x � 9 sin x

3. y00 C 2y0 C y D ex.6 cos x C 17 sinx/

4. y00 C 3y0 � 2y D �e2x.5 cos 2x C 9 sin 2x/

5. y00 � y0 C y D ex.2 C x/ sin x

6. y00 C 3y0 � 2y D e�2x Œ.4 C 20x/ cos 3x C .26 � 32x/ sin 3x�
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7. y00 C 4y D �12 cos 2x � 4 sin 2x

8. y00 C y D .�4 C 8x/ cos x C .8 � 4x/ sin x

9. 4y00 C y D �4 cos x=2 � 8x sin x=2

10. y00 C 2y0 C 2y D e�x.8 cos x � 6 sin x/

11. y00 � 2y0 C 5y D ex Œ.6 C 8x/ cos 2x C .6 � 8x/ sin 2x�

12. y00 C 2y0 C y D 8x2 cos x � 4x sin x

13. y00 C 3y0 C 2y D .12 C 20x C 10x2/ cos x C 8x sin x

14. y00 C 3y0 C 2y D .1 � x � 4x2/ cos 2x � .1 C 7x C 2x2/ sin 2x

15. y00 � 5y0 C 6y D �ex
�

.4 C 6x � x2/ cos x � .2 � 4x C 3x2/ sin x
�

16. y00 � 2y0 C y D �ex
�

.3 C 4x � x2/ cos x C .3 � 4x � x2/ sin x
�

17. y00 � 2y0 C 2y D ex
�

.2 � 2x � 6x2/ cos x C .2 � 10x C 6x2/ sin x
�

In Exercises 1–17 find a particular solution and graph it.

18. C/G y00 C 2y0 C y D e�x Œ.5 � 2x/ cos x � .3 C 3x/ sin x�

19. C/G y00 C 9y D �6 cos 3x � 12 sin 3x

20. C/G y00 C 3y0 C 2y D .1 � x � 4x2/ cos 2x � .1 C 7x C 2x2/ sin 2x

21. C/G y00 C 4y0 C 3y D e�x
�

.2 C x C x2/ cos x C .5 C 4x C 2x2/ sin x
�

In Exercises 22–26 solve the initial value problem.

22. y00 � 7y0 C 6y D �ex.17 cos x � 7 sin x/; y.0/ D 4; y0.0/ D 2

23. y00 � 2y0 C 2y D �ex.6 cos x C 4 sin x/; y.0/ D 1; y0.0/ D 4

24. y00 C 6y0 C 10y D �40ex sin x; y.0/ D 2; y0.0/ D �3

25. y00 � 6y0 C 10y D �e3x.6 cos x C 4 sin x/; y.0/ D 2; y0.0/ D 7

26. y00 � 3y0 C 2y D e3x Œ21 cos x � .11 C 10x/ sin x� ; y.0/ D 0; y0.0/ D 6

In Exercises 27–32 use the principle of superposition to find a particular solution. Where indicated, solve

the initial value problem.

27. y00 � 2y0 � 3y D 4e3x C ex.cos x � 2 sin x/

28. y00 C y D 4 cos x � 2 sin x C xex C e�x

29. y00 � 3y0 C 2y D xex C 2e2x C sin x

30. y00 � 2y0 C 2y D 4xex cos x C xe�x C 1 C x2

31. y00 � 4y0 C 4y D e2x.1 C x/ C e2x.cos x � sin x/ C 3e3x C 1 C x

32. y00 � 4y0 C 4y D 6e2x C 25 sin x; y.0/ D 5; y0.0/ D 3

In Exercises 33–35 solve the initial value problem and graph the solution.

33. C/G y00 C 4y D �e�2x Œ.4 � 7x/ cos x C .2 � 4x/ sin x� ; y.0/ D 3; y0.0/ D 1

34. C/G y00 C 4y0 C 4y D 2 cos 2x C 3 sin 2x C e�x; y.0/ D �1; y0.0/ D 2

35. C/G y00 C 4y D ex.11 C 15x/ C 8 cos 2x � 12 sin 2x; y.0/ D 3; y0.0/ D 5
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36. (a) Verify that if

yp D A.x/ cos !x C B.x/ sin !x

where A and B are twice differentiable, then

y0
p D .A0 C !B/ cos !x C .B 0 � !A/ sin !x and

y00
p D .A00 C 2!B 0 � !2A/ cos !x C .B 00 � 2!A0 � !2B/ sin !x:

(b) Use the results of (a) to verify that

ay00
p C by0

p C cyp D
�

.c � a!2/A C b!B C 2a!B 0 C bA0 C aA00� cos !x C
�

�b!A C .c � a!2/B � 2a!A0 C bB 0 C aB 00� sin !x:

(c) Use the results of (a) to verify that

y00
p C !2yp D .A00 C 2!B 0/ cos !x C .B 00 � 2!A0/ sin !x:

(d) Prove Theorem 5.5.2.

37. Let a, b, c, and ! be constants, with a ¤ 0 and ! > 0, and let

P.x/ D p0 C p1x C � � � C pkxk and Q.x/ D q0 C q1x C � � � C qkxk;

where at least one of the coefficients pk , qk is nonzero, so k is the larger of the degrees of P

and Q.

(a) Show that if cos !x and sin !x are not solutions of the complementary equation

ay00 C by0 C cy D 0;

then there are polynomials

A.x/ D A0 C A1x C � � � C Akxk and B.x/ D B0 C B1x C � � � C Bkxk .A/

such that
.c � a!2/A C b!B C 2a!B 0 C bA0 C aA00 D P

�b!A C .c � a!2/B � 2a!A0 C bB 0 C aB 00 D Q;

where .Ak; Bk/, .Ak�1; Bk�1/, . . . ,.A0 ; B0/ can be computed successively by solving the

systems
.c � a!2/Ak C b!Bk D pk

�b!Ak C .c � a!2/Bk D qk;

and, if 1 � r � k,

.c � a!2/Ak�r C b!Bk�r D pk�r C � � �
�b!Ak�r C .c � a!2/Bk�r D qk�r C � � � ;

where the terms indicated by “� � � ” depend upon the previously computed coefficients with

subscripts greater than k � r . Conclude from this and Exercise 36(b) that

yp D A.x/ cos !x C B.x/ sin !x .B/

is a particular solution of

ay00 C by0 C cy D P.x/ cos !x C Q.x/ sin !x:
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(b) Conclude from Exercise 36(c) that the equation

a.y00 C !2y/ D P.x/ cos !x C Q.x/ sin !x .C/

does not have a solution of the form (B) with A and B as in (A). Then show that there are
polynomials

A.x/ D A0x C A1x2 C � � � C AkxkC1 and B.x/ D B0x C B1x2 C � � � C BkxkC1

such that
a.A00 C 2!B 0/ D P

a.B 00 � 2!A0/ D Q;

where the pairs .Ak; Bk/, .Ak�1; Bk�1/, . . . , .A0; B0/ can be computed successively as

follows:

Ak D � qk

2a!.k C 1/

Bk D pk

2a!.k C 1/
;

and, if k � 1,

Ak�j D � 1

2!

�

qk�j

a.k � j C 1/
� .k � j C 2/Bk�j C1

�

Bk�j D 1

2!

�

pk�j

a.k � j C 1/
� .k � j C 2/Ak�j C1

�

for 1 � j � k. Conclude that (B) with this choice of the polynomials A and B is a particular
solution of (C).

38. Show that Theorem 5.5.1 implies the next theorem: Suppose ! is a positive number and P and Q

are polynomials. Let k be the larger of the degrees of P and Q. Then the equation

ay00 C by0 C cy D e�x .P.x/ cos !x C Q.x/ sin !x/

has a particular solution

yp D e�x .A.x/ cos !x C B.x/ sin !x/ ; .A/

where

A.x/ D A0 C A1x C � � � C Akxk and B.x/ D B0 C B1x C � � � C Bkxk;

provided that e�x cos !x and e�x sin !x are not solutions of the complementary equation. The

equation

a
�

y00 � 2�y0 C .�2 C !2/y
�

D e�x .P.x/ cos !x C Q.x/ sin !x/

.for which e�x cos !x and e�x sin !x are solutions of the complementary equation/ has a partic-

ular solution of the form (A), where

A.x/ D A0x C A1x2 C � � � C AkxkC1 and B.x/ D B0x C B1x2 C � � � C BkxkC1:
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39. This exercise presents a method for evaluating the integral

y D
Z

e�x .P.x/ cos !x C Q.x/ sin !x/ dx

where ! ¤ 0 and

P.x/ D p0 C p1x C � � � C pkxk; Q.x/ D q0 C q1x C � � � C qkxk:

(a) Show that y D e�xu, where

u0 C �u D P.x/ cos !x C Q.x/ sin !x: .A/

(b) Show that (A) has a particular solution of the form

up D A.x/ cos !x C B.x/ sin !x;

where

A.x/ D A0 C A1x C � � � C Akxk; B.x/ D B0 C B1x C � � � C Bkxk;

and the pairs of coefficients .Ak; Bk/, .Ak�1; Bk�1/, . . . ,.A0 ; B0/ can be computed succes-

sively as the solutions of pairs of equations obtained by equating the coefficients of xr cos !x

and xr sin !x for r D k, k � 1, . . . , 0.

(c) Conclude that

Z

e�x .P.x/ cos !x C Q.x/ sin !x/ dx D e�x .A.x/ cos !x C B.x/ sin !x/ C c;

where c is a constant of integration.

40. Use the method of Exercise 39 to evaluate the integral.

(a)
R

x2 cos x dx (b)
R

x2ex cos x dx

(c)
R

xe�x sin 2x dx (d)
R

x2e�x sin x dx

(e)
R

x3ex sin x dx (f)
R

ex Œx cos x � .1 C 3x/ sin x� dx

(g)
R

e�x
�

.1 C x2/ cos x C .1 � x2/ sin x
�

dx

5.6 REDUCTION OF ORDER

In this section we give a method for finding the general solution of

P0.x/y00 C P1.x/y0 C P2.x/y D F.x/ (5.6.1)

if we know a nontrivial solution y1 of the complementary equation

P0.x/y00 C P1.x/y0 C P2.x/y D 0: (5.6.2)

The method is called reduction of order because it reduces the task of solving (5.6.1) to solving a first

order equation. Unlike the method of undetermined coefficients, it does not require P0, P1, and P2 to be
constants, or F to be of any special form.
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By now you shoudn’t be surprised that we look for solutions of (5.6.1) in the form

y D uy1 (5.6.3)

where u is to be determined so that y satisfies (5.6.1). Substituting (5.6.3) and

y0 D u0y1 C uy0
1

y00 D u00y1 C 2u0y0
1 C uy00

1

into (5.6.1) yields

P0.x/.u00y1 C 2u0y0
1 C uy00

1/ C P1.x/.u0y1 C uy0
1/ C P2.x/uy1 D F.x/:

Collecting the coefficients of u, u0, and u00 yields

.P0y1/u00 C .2P0y0
1 C P1y1/u0 C .P0y00

1 C P1y0
1 C P2y1/u D F: (5.6.4)

However, the coefficient of u is zero, since y1 satisfies (5.6.2). Therefore (5.6.4) reduces to

Q0.x/u00 C Q1.x/u0 D F; (5.6.5)

with

Q0 D P0y1 and Q1 D 2P0y0
1 C P1y1:

(It isn’t worthwhile to memorize the formulas for Q0 and Q1!) Since (5.6.5) is a linear first order equation

in u0, we can solve it for u0 by variation of parameters as in Section 1.2, integrate the solution to obtain

u, and then obtain y from (5.6.3).

Example 5.6.1

(a) Find the general solution of

xy00 � .2x C 1/y0 C .x C 1/y D x2; (5.6.6)

given that y1 D ex is a solution of the complementary equation

xy00 � .2x C 1/y0 C .x C 1/y D 0: (5.6.7)

(b) As a byproduct of (a), find a fundamental set of solutions of (5.6.7).

SOLUTION(a) If y D uex, then y0 D u0ex C uex and y00 D u00ex C 2u0ex C uex, so

xy00 � .2x C 1/y0 C .x C 1/y D x.u00ex C 2u0ex C uex/

�.2x C 1/.u0ex C uex/ C .x C 1/uex

D .xu00 � u0/ex :

Therefore y D uex is a solution of (5.6.6) if and only if

.xu00 � u0/ex D x2;

which is a first order equation in u0. We rewrite it as

u00 � u0

x
D xe�x: (5.6.8)
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To focus on how we apply variation of parameters to this equation, we temporarily write ´ D u0, so that

(5.6.8) becomes

´0 � ´

x
D xe�x: (5.6.9)

We leave it to you to show (by separation of variables) that ´1 D x is a solution of the complementary
equation

´0 � ´

x
D 0

for (5.6.9). By applying variation of parameters as in Section 1.2, we can now see that every solution of

(5.6.9) is of the form

´ D vx where v0x D xe�x; so v0 D e�x and v D �e�x C C1:

Since u0 D ´ D vx, u is a solution of (5.6.8) if and only if

u0 D vx D �xe�x C C1x:

Integrating this yields

u D .x C 1/e�x C C1

2
x2 C C2:

Therefore the general solution of (5.6.6) is

y D uex D x C 1 C C1

2
x2ex C C2ex: (5.6.10)

SOLUTION(b) By letting C1 D C2 D 0 in (5.6.10), we see that yp1
D x C 1 is a solution of (5.6.6).

By letting C1 D 2 and C2 D 0, we see that yp2
D x C 1 C x2ex is also a solution of (5.6.6). Since

the difference of two solutions of (5.6.6) is a solution of (5.6.7), y2 D yp1
� yp2

D x2ex is a solution

of (5.6.7). Since y2=y1 is nonconstant and we already know that y1 D ex is a solution of (5.6.6),

Theorem 5.1.6 implies that fex; x2exg is a fundamental set of solutions of (5.6.7).
Although (5.6.10) is a correct form for the general solution of (5.6.6), it’s silly to leave the arbitrary

coefficient of x2ex as C1=2 where C1 is an arbitrary constant. Moreover, it’s sensible to make the

subscripts of the coefficients of y1 D ex and y2 D x2ex consistent with the subscripts of the functions

themselves. Therefore we rewrite (5.6.10) as

y D x C 1 C c1ex C c2x2ex

by simply renaming the arbitrary constants. We’ll also do this in the next two examples, and in the
answers to the exercises.

Example 5.6.2

(a) Find the general solution of

x2y00 C xy0 � y D x2 C 1;

given that y1 D x is a solution of the complementary equation

x2y00 C xy0 � y D 0: (5.6.11)

As a byproduct of this result, find a fundamental set of solutions of (5.6.11).
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(b) Solve the initial value problem

x2y00 C xy0 � y D x2 C 1; y.1/ D 2; y0.1/ D �3: (5.6.12)

SOLUTION(a) If y D ux, then y0 D u0x C u and y00 D u00x C 2u0, so

x2y00 C xy0 � y D x2.u00x C 2u0/ C x.u0x C u/ � ux

D x3u00 C 3x2u0:

Therefore y D ux is a solution of (5.6.12) if and only if

x3u00 C 3x2u0 D x2 C 1;

which is a first order equation in u0. We rewrite it as

u00 C 3

x
u0 D 1

x
C 1

x3
: (5.6.13)

To focus on how we apply variation of parameters to this equation, we temporarily write ´ D u0, so that

(5.6.13) becomes

´0 C 3

x
´ D 1

x
C 1

x3
: (5.6.14)

We leave it to you to show by separation of variables that ´1 D 1=x3 is a solution of the complementary

equation

´0 C 3

x
´ D 0

for (5.6.14). By variation of parameters, every solution of (5.6.14) is of the form

´ D v

x3
where

v0

x3
D 1

x
C 1

x3
; so v0 D x2 C 1 and v D x3

3
C x C C1:

Since u0 D ´ D v=x3, u is a solution of (5.6.14) if and only if

u0 D v

x3
D 1

3
C 1

x2
C C1

x3
:

Integrating this yields

u D x

3
� 1

x
� C1

2x2
C C2:

Therefore the general solution of (5.6.12) is

y D ux D x2

3
� 1 � C1

2x
C C2x: (5.6.15)

Reasoning as in the solution of Example 5.6.1(a), we conclude that y1 D x and y2 D 1=x form a

fundamental set of solutions for (5.6.11).
As we explained above, we rename the constants in (5.6.15) and rewrite it as

y D x2

3
� 1 C c1x C c2

x
: (5.6.16)
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SOLUTION(b) Differentiating (5.6.16) yields

y0 D 2x

3
C c1 � c2

x2
: (5.6.17)

Setting x D 1 in (5.6.16) and (5.6.17) and imposing the initial conditions y.1/ D 2 and y0.1/ D �3

yields

c1 C c2 D 8

3

c1 � c2 D �11

3
:

Solving these equations yields c1 D �1=2, c2 D 19=6. Therefore the solution of (5.6.12) is

y D x2

3
� 1 � x

2
C 19

6x
:

Using reduction of order to find the general solution of a homogeneous linear second order equation

leads to a homogeneous linear first order equation in u0 that can be solved by separation of variables. The

next example illustrates this.

Example 5.6.3 Find the general solution and a fundamental set of solutions of

x2y00 � 3xy0 C 3y D 0; (5.6.18)

given that y1 D x is a solution.

Solution If y D ux then y0 D u0x C u and y00 D u00x C 2u0, so

x2y00 � 3xy0 C 3y D x2.u00x C 2u0/ � 3x.u0x C u/ C 3ux

D x3u00 � x2u0:

Therefore y D ux is a solution of (5.6.18) if and only if

x3u00 � x2u0 D 0:

Separating the variables u0 and x yields
u00

u0 D 1

x
;

so
ln ju0j D ln jxj C k; or, equivalently, u0 D C1x:

Therefore

u D C1

2
x2 C C2;

so the general solution of (5.6.18) is

y D ux D C1

2
x3 C C2x;

which we rewrite as
y D c1x C c2x3:
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Therefore fx; x3g is a fundamental set of solutions of (5.6.18).

5.6 Exercises

In Exercises 1–17 find the general solution, given that y1 satisfies the complementary equation. As a

byproduct, find a fundamental set of solutions of the complementary equation.

1. .2x C 1/y00 � 2y0 � .2x C 3/y D .2x C 1/2I y1 D e�x

2. x2y00 C xy0 � y D 4

x2
I y1 D x

3. x2y00 � xy0 C y D xI y1 D x

4. y00 � 3y0 C 2y D 1

1 C e�x
I y1 D e2x

5. y00 � 2y0 C y D 7x3=2exI y1 D ex

6. 4x2y00 C .4x � 8x2/y0 C .4x2 � 4x � 1/y D 4x1=2ex.1 C 4x/I y1 D x1=2ex

7. y00 � 2y0 C 2y D ex sec xI y1 D ex cos x

8. y00 C 4xy0 C .4x2 C 2/y D 8e�x.xC2/I y1 D e�x2

9. x2y00 C xy0 � 4y D �6x � 4I y1 D x2

10. x2y00 C 2x.x � 1/y0 C .x2 � 2x C 2/y D x3e2x I y1 D xe�x

11. x2y00 � x.2x � 1/y0 C .x2 � x � 1/y D x2exI y1 D xex

12. .1 � 2x/y00 C 2y0 C .2x � 3/y D .1 � 4x C 4x2/exI y1 D ex

13. x2y00 � 3xy0 C 4y D 4x4I y1 D x2

14. 2xy00 C .4x C 1/y0 C .2x C 1/y D 3x1=2e�xI y1 D e�x

15. xy00 � .2x C 1/y0 C .x C 1/y D �exI y1 D ex

16. 4x2y00 � 4x.x C 1/y0 C .2x C 3/y D 4x5=2e2xI y1 D x1=2

17. x2y00 � 5xy0 C 8y D 4x2I y1 D x2

In Exercises 18–30 find a fundamental set of solutions, given that y1 is a solution.

18. xy00 C .2 � 2x/y0 C .x � 2/y D 0I y1 D ex

19. x2y00 � 4xy0 C 6y D 0I y1 D x2

20. x2.ln jxj/2y00 � .2x ln jxj/y0 C .2 C ln jxj/y D 0I y1 D ln jxj
21. 4xy00 C 2y0 C y D 0I y1 D sin

p
x

22. xy00 � .2x C 2/y0 C .x C 2/y D 0I y1 D ex

23. x2y00 � .2a � 1/xy0 C a2y D 0I y1 D xa

24. x2y00 � 2xy0 C .x2 C 2/y D 0I y1 D x sin x

25. xy00 � .4x C 1/y0 C .4x C 2/y D 0I y1 D e2x

26. 4x2.sin x/y00 � 4x.x cos x C sin x/y0 C .2x cos x C 3 sin x/y D 0I y1 D x1=2

27. 4x2y00 � 4xy0 C .3 � 16x2/y D 0I y1 D x1=2e2x

28. .2x C 1/xy00 � 2.2x2 � 1/y0 � 4.x C 1/y D 0I y1 D 1=x

29. .x2 � 2x/y00 C .2 � x2/y0 C .2x � 2/y D 0I y1 D ex
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30. xy00 � .4x C 1/y0 C .4x C 2/y D 0I y1 D e2x

In Exercises 31–33 solve the initial value problem, given that y1 satisfies the complementary equation.

31. x2y00 � 3xy0 C 4y D 4x4; y.�1/ D 7; y0.�1/ D �8I y1 D x2

32. .3x � 1/y00 � .3x C 2/y0 � .6x � 8/y D 0; y.0/ D 2; y0.0/ D 3I y1 D e2x

33. .x C 1/2y00 � 2.x C 1/y0 � .x2 C 2x � 1/y D .x C 1/3ex; y.0/ D 1; y0.0/ D � 1;

y1 D .x C 1/ex

In Exercises 34 and 35 solve the initial value problem and graph the solution, given that y1 satisfies the

complementary equation.

34. C/G x2y00 C 2xy0 � 2y D x2; y.1/ D 5

4
; y0.1/ D 3

2
I y1 D x

35. C/G .x2 � 4/y00 C 4xy0 C 2y D x C 2; y.0/ D �1

3
; y0.0/ D �1I y1 D 1

x � 2

36. Suppose p1 and p2 are continuous on .a; b/. Let y1 be a solution of

y00 C p1.x/y0 C p2.x/y D 0 .A/

that has no zeros on .a; b/, and let x0 be in .a; b/. Use reduction of order to show that y1 and

y2.x/ D y1.x/

Z x

x0

1

y2
1.t/

exp

�

�
Z t

x0

p1.s/ ds

�

dt

form a fundamental set of solutions of (A) on .a; b/. (NOTE: This exercise is related to Exercise 9.)

37. The nonlinear first order equation

y0 C y2 C p.x/y C q.x/ D 0 .A/

is a Riccati equation. (See Exercise 2.4.55.) Assume that p and q are continuous.

(a) Show that y is a solution of (A) if and only if y D ´0=´, where

´00 C p.x/´0 C q.x/´ D 0: .B/

(b) Show that the general solution of (A) is

y D c1´0
1 C c2´0

2

c1´1 C c2´2

; .C/

where f´1; ´2g is a fundamental set of solutions of (B) and c1 and c2 are arbitrary constants.

(c) Does the formula (C) imply that the first order equation (A) has a two–parameter family of

solutions? Explain your answer.

38. Use a method suggested by Exercise 37 to find all solutions. of the equation.

(a) y0 C y2 C k2 D 0 (b) y0 C y2 � 3y C 2 D 0

(c) y0 C y2 C 5y � 6 D 0 (d) y0 C y2 C 8y C 7 D 0

(e) y0 C y2 C 14y C 50 D 0 (f) 6y0 C 6y2 � y � 1 D 0

(g) 36y0 C 36y2 � 12y C 1 D 0
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39. Use a method suggested by Exercise 37 and reduction of order to find all solutions of the equation,

given that y1 is a solution.

(a) x2.y0 C y2/ � x.x C 2/y C x C 2 D 0I y1 D 1=x

(b) y0 C y2 C 4xy C 4x2 C 2 D 0I y1 D �2x

(c) .2x C 1/.y0 C y2/ � 2y � .2x C 3/ D 0I y1 D �1

(d) .3x � 1/.y0 C y2/ � .3x C 2/y � 6x C 8 D 0I y1 D 2

(e) x2.y0 C y2/ C xy C x2 � 1

4
D 0I y1 D � tan x � 1

2x

(f) x2.y0 C y2/ � 7xy C 7 D 0I y1 D 1=x

40. The nonlinear first order equation

y0 C r.x/y2 C p.x/y C q.x/ D 0 .A/

is the generalized Riccati equation. (See Exercise 2.4.55.) Assume that p and q are continuous

and r is differentiable.

(a) Show that y is a solution of (A) if and only if y D ´0=r´, where

´00 C
�

p.x/ � r 0.x/

r.x/

�

´0 C r.x/q.x/´ D 0: .B/

(b) Show that the general solution of (A) is

y D c1´0
1 C c2´0

2

r.c1´1 C c2´2/
;

where f´1; ´2g is a fundamental set of solutions of (B) and c1 and c2 are arbitrary constants.

5.7 VARIATION OF PARAMETERS

In this section we give a method called variation of parameters for finding a particular solution of

P0.x/y00 C P1.x/y0 C P2.x/y D F.x/ (5.7.1)

if we know a fundamental set fy1; y2g of solutions of the complementary equation

P0.x/y00 C P1.x/y0 C P2.x/y D 0: (5.7.2)

Having found a particular solution yp by this method, we can write the general solution of (5.7.1) as

y D yp C c1y1 C c2y2:

Since we need only one nontrivial solution of (5.7.2) to find the general solution of (5.7.1) by reduction

of order, it’s natural to ask why we’re interested in variation of parameters, which requires two linearly

independent solutions of (5.7.2) to achieve the same goal. Here’s the answer:

� If we already know two linearly independent solutions of (5.7.2) then variation of parameters will

probably be simpler than reduction of order.
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� Variation of parameters generalizes naturally to a method for finding particular solutions of higher

order linear equations (Section 9.4) and linear systems of equations (Section 10.7), while reduction

of order doesn’t.

� Variation of parameters is a powerful theoretical tool used by researchers in differential equations.

Although a detailed discussion of this is beyond the scope of this book, you can get an idea of what

it means from Exercises 37–39.

We’ll now derive the method. As usual, we consider solutions of (5.7.1) and (5.7.2) on an interval .a; b/

where P0, P1, P2, and F are continuous and P0 has no zeros. Suppose that fy1; y2g is a fundamental

set of solutions of the complementary equation (5.7.2). We look for a particular solution of (5.7.1) in the

form

yp D u1y1 C u2y2 (5.7.3)

where u1 and u2 are functions to be determined so that yp satisfies (5.7.1). You may not think this is a

good idea, since there are now two unknown functions to be determined, rather than one. However, since

u1 and u2 have to satisfy only one condition (that yp is a solution of (5.7.1)), we can impose a second

condition that produces a convenient simplification, as follows.
Differentiating (5.7.3) yields

y0
p D u1y0

1 C u2y0
2 C u0

1y1 C u0
2y2: (5.7.4)

As our second condition on u1 and u2 we require that

u0
1y1 C u0

2y2 D 0: (5.7.5)

Then (5.7.4) becomes

y0
p D u1y0

1 C u2y0
2I (5.7.6)

that is, (5.7.5) permits us to differentiate yp (once!) as if u1 and u2 are constants. Differentiating (5.7.4)

yields

y00
p D u1y00

1 C u2y00
2 C u0

1y0
1 C u0

2y0
2: (5.7.7)

(There are no terms involving u00
1 and u00

2 here, as there would be if we hadn’t required (5.7.5).) Substitut-

ing (5.7.3), (5.7.6), and (5.7.7) into (5.7.1) and collecting the coefficients of u1 and u2 yields

u1.P0y00
1 C P1y0

1 C P2y1/ C u2.P0y00
2 C P1y0

2 C P2y2/ C P0.u0
1y0

1 C u0
2y0

2/ D F:

As in the derivation of the method of reduction of order, the coefficients of u1 and u2 here are both zero

because y1 and y2 satisfy the complementary equation. Hence, we can rewrite the last equation as

P0.u0
1y0

1 C u0
2y0

2/ D F: (5.7.8)

Therefore yp in (5.7.3) satisfies (5.7.1) if

u0
1y1 C u0

2y2 D 0

u0
1y0

1 C u0
2y0

2 D F

P0

;
(5.7.9)

where the first equation is the same as (5.7.5) and the second is from (5.7.8).

We’ll now show that you can always solve (5.7.9) for u0
1 and u0

2. (The method that we use here will

always work, but simpler methods usually work when you’re dealing with specific equations.) To obtain

u0
1, multiply the first equation in (5.7.9) by y0

2 and the second equation by y2. This yields

u0
1y1y0

2 C u0
2y2y0

2 D 0

u0
1y0

1y2 C u0
2y0

2y2 D Fy2

P0

:
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Subtracting the second equation from the first yields

u0
1.y1y0

2 � y0
1y2/ D �Fy2

P0

: (5.7.10)

Since fy1; y2g is a fundamental set of solutions of (5.7.2) on .a; b/, Theorem 5.1.6 implies that the

Wronskian y1y0
2 � y0

1y2 has no zeros on .a; b/. Therefore we can solve (5.7.10) for u0
1, to obtain

u0
1 D � Fy2

P0.y1y0
2 � y0

1y2/
: (5.7.11)

We leave it to you to start from (5.7.9) and show by a similar argument that

u0
2 D Fy1

P0.y1y0
2 � y0

1y2/
: (5.7.12)

We can now obtain u1 and u2 by integrating u0
1 and u0

2. The constants of integration can be taken to

be zero, since any choice of u1 and u2 in (5.7.3) will suffice.

You should not memorize (5.7.11) and (5.7.12). On the other hand, you don’t want to rederive the

whole procedure for every specific problem. We recommend the a compromise:

(a) Write
yp D u1y1 C u2y2 (5.7.13)

to remind yourself of what you’re doing.

(b) Write the system
u0

1y1 C u0
2y2 D 0

u0
1y0

1 C u0
2y0

2 D F

P0

(5.7.14)

for the specific problem you’re trying to solve.

(c) Solve (5.7.14) for u0
1 and u0

2 by any convenient method.

(d) Obtain u1 and u2 by integrating u0
1 and u0

2, taking the constants of integration to be zero.

(e) Substitute u1 and u2 into (5.7.13) to obtain yp .

Example 5.7.1 Find a particular solution yp of

x2y00 � 2xy0 C 2y D x9=2; (5.7.15)

given that y1 D x and y2 D x2 are solutions of the complementary equation

x2y00 � 2xy0 C 2y D 0:

Then find the general solution of (5.7.15).

Solution We set

yp D u1x C u2x2;

where

u0
1x C u0

2x2 D 0

u0
1 C 2u0

2x D x9=2

x2
D x5=2:
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From the first equation, u0
1 D �u0

2x. Substituting this into the second equation yields u0
2x D x5=2, so

u0
2 D x3=2 and therefore u0

1 D �u0
2x D �x5=2. Integrating and taking the constants of integration to be

zero yields

u1 D �2

7
x7=2 and u2 D 2

5
x5=2:

Therefore

yp D u1x C u2x2 D �2

7
x7=2x C 2

5
x5=2x2 D 4

35
x9=2;

and the general solution of (5.7.15) is

y D 4

35
x9=2 C c1x C c2x2:

Example 5.7.2 Find a particular solution yp of

.x � 1/y00 � xy0 C y D .x � 1/2; (5.7.16)

given that y1 D x and y2 D ex are solutions of the complementary equation

.x � 1/y00 � xy0 C y D 0:

Then find the general solution of (5.7.16).

Solution We set

yp D u1x C u2ex;

where

u0
1x C u0

2ex D 0

u0
1 C u0

2ex D .x � 1/2

x � 1
D x � 1:

Subtracting the first equation from the second yields �u0
1.x � 1/ D x � 1, so u0

1 D �1. From this and

the first equation, u0
2 D �xe�xu0

1 D xe�x. Integrating and taking the constants of integration to be zero

yields

u1 D �x and u2 D �.x C 1/e�x:

Therefore

yp D u1x C u2ex D .�x/x C .�.x C 1/e�x/ex D �x2 � x � 1;

so the general solution of (5.7.16) is

y D yp C c1x C c2ex D �x2 � x � 1 C c1x C c2ex D �x2 � 1 C .c1 � 1/x C c2ex: (5.7.17)

However, since c1 is an arbitrary constant, so is c1 �1; therefore, we improve the appearance of this result

by renaming the constant and writing the general solution as

y D �x2 � 1 C c1x C c2ex: (5.7.18)

There’s nothing wrong with leaving the general solution of (5.7.16) in the form (5.7.17); however, we

think you’ll agree that (5.7.18) is preferable. We can also view the transition from (5.7.17) to (5.7.18)

differently. In this example the particular solution yp D �x2 � x � 1 contained the term �x, which
satisfies the complementary equation. We can drop this term and redefine yp D �x2�1, since �x2�x�1
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is a solution of (5.7.16) and x is a solution of the complementary equation; hence, �x2 � 1 D .�x2 �
x � 1/ C x is also a solution of (5.7.16). In general, it’s always legitimate to drop linear combinations

of fy1; y2g from particular solutions obtained by variation of parameters. (See Exercise 36 for a general

discussion of this question.) We’ll do this in the following examples and in the answers to exercises that

ask for a particular solution. Therefore, don’t be concerned if your answer to such an exercise differs

from ours only by a solution of the complementary equation.

Example 5.7.3 Find a particular solution of

y00 C 3y0 C 2y D 1

1 C ex
: (5.7.19)

Then find the general solution.

Solution

The characteristic polynomial of the complementary equation

y00 C 3y0 C 2y D 0 (5.7.20)

is p.r/ D r2 C3r C2 D .r C1/.r C2/, so y1 D e�x and y2 D e�2x form a fundamental set of solutions

of (5.7.20). We look for a particular solution of (5.7.19) in the form

yp D u1e�x C u2e�2x ;

where

u0
1e�x C u0

2e�2x D 0

�u0
1e�x � 2u0

2e�2x D 1

1 C ex
:

Adding these two equations yields

�u0
2e�2x D 1

1 C ex
; so u0

2 D � e2x

1 C ex
:

From the first equation,

u0
1 D �u0

2e�x D ex

1 C ex
:

Integrating by means of the substitution v D ex and taking the constants of integration to be zero yields

u1 D
Z

ex

1 C ex
dx D

Z

dv

1 C v
D ln.1 C v/ D ln.1 C ex/

and

u2 D �
Z

e2x

1 C ex
dx D �

Z

v

1 C v
dv D

Z
�

1

1 C v
� 1

�

dv

D ln.1 C v/ � v D ln.1 C ex/ � ex:

Therefore

yp D u1e�x C u2e�2x

D Œln.1 C ex/�e�x C Œln.1 C ex/ � ex� e�2x ;
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so

yp D
�

e�x C e�2x
�

ln.1 C ex/ � e�x:

Since the last term on the right satisfies the complementary equation, we drop it and redefine

yp D
�

e�x C e�2x
�

ln.1 C ex/:

The general solution of (5.7.19) is

y D yp C c1e�x C c2e�2x D
�

e�x C e�2x
�

ln.1 C ex/ C c1e�x C c2e�2x:

Example 5.7.4 Solve the initial value problem

.x2 � 1/y00 C 4xy0 C 2y D 2

x C 1
; y.0/ D �1; y0.0/ D �5; (5.7.21)

given that

y1 D 1

x � 1
and y2 D 1

x C 1

are solutions of the complementary equation

.x2 � 1/y00 C 4xy0 C 2y D 0:

Solution We first use variation of parameters to find a particular solution of

.x2 � 1/y00 C 4xy0 C 2y D 2

x C 1

on .�1; 1/ in the form

yp D u1

x � 1
C u2

x C 1
;

where

u0
1

x � 1
C u0

2

x C 1
D 0 (5.7.22)

� u0
1

.x � 1/2
� u0

2

.x C 1/2
D 2

.x C 1/.x2 � 1/
:

Multiplying the first equation by 1=.x � 1/ and adding the result to the second equation yields

�

1

x2 � 1
� 1

.x C 1/2

�

u0
2 D 2

.x C 1/.x2 � 1/
: (5.7.23)

Since
�

1

x2 � 1
� 1

.x C 1/2

�

D .x C 1/ � .x � 1/

.x C 1/.x2 � 1/
D 2

.x C 1/.x2 � 1/
;

(5.7.23) implies that u0
2 D 1. From (5.7.22),

u0
1 D � x � 1

x C 1
u0

2 D � x � 1

x C 1
:
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Integrating and taking the constants of integration to be zero yields

u1 D �
Z

x � 1

x C 1
dx D �

Z

x C 1 � 2

x C 1
dx

D
Z �

2

x C 1
� 1

�

dx D 2 ln.x C 1/ � x

and

u2 D
Z

dx D x:

Therefore

yp D u1

x � 1
C u2

x C 1
D Œ2 ln.x C 1/ � x�

1

x � 1
C x

1

x C 1

D 2 ln.x C 1/

x � 1
C x

�

1

x C 1
� 1

x � 1

�

D 2 ln.x C 1/

x � 1
� 2x

.x C 1/.x � 1/
:

However, since
2x

.x C 1/.x � 1/
D

�

1

x C 1
C 1

x � 1

�

is a solution of the complementary equation, we redefine

yp D 2 ln.x C 1/

x � 1
:

Therefore the general solution of (5.7.24) is

y D 2 ln.x C 1/

x � 1
C c1

x � 1
C c2

x C 1
: (5.7.24)

Differentiating this yields

y0 D 2

x2 � 1
� 2 ln.x C 1/

.x � 1/2
� c1

.x � 1/2
� c2

.x C 1/2
:

Setting x D 0 in the last two equations and imposing the initial conditions y.0/ D �1 and y0.0/ D �5

yields the system

�c1 C c2 D �1

�2 � c1 � c2 D �5:

The solution of this system is c1 D 2; c2 D 1. Substituting these into (5.7.24) yields

y D 2 ln.x C 1/

x � 1
C 2

x � 1
C 1

x C 1

D 2 ln.x C 1/

x � 1
C 3x C 1

x2 � 1

as the solution of (5.7.21). Figure 5.7.1 is a graph of the solution.

Comparison of Methods

We’ve now considered three methods for solving nonhomogeneous linear equations: undetermined coeffi-
cients, reduction of order, and variation of parameters. It’s natural to ask which method is best for a given
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Figure 5.7.1 y D 2 ln.x C 1/

x � 1
C 3x C 1

x2 � 1

problem. The method of undetermined coefficients should be used for constant coefficient equations with

forcing functions that are linear combinations of polynomials multiplied by functions of the form e˛x,

e�x cos !x, or e�x sin !x. Although the other two methods can be used to solve such problems, they will

be more difficult except in the most trivial cases, because of the integrations involved.
If the equation isn’t a constant coefficient equation or the forcing function isn’t of the form just spec-

ified, the method of undetermined coefficients does not apply and the choice is necessarily between the

other two methods. The case could be made that reduction of order is better because it requires only

one solution of the complementary equation while variation of parameters requires two. However, vari-

ation of parameters will probably be easier if you already know a fundamental set of solutions of the

complementary equation.

5.7 Exercises

In Exercises 1–6 use variation of parameters to find a particular solution.

1. y00 C 9y D tan 3x 2. y00 C 4y D sin 2x sec2 2x

3. y00 � 3y0 C 2y D 4

1 C e�x

4. y00 � 2y0 C 2y D 3ex sec x

5. y00 � 2y0 C y D 14x3=2ex 6. y00 � y D 4e�x

1 � e�2x
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In Exercises 7–29 use variation of parameters to find a particular solution, given the solutions y1, y2 of

the complementary equation.

7. x2y00 C xy0 � y D 2x2 C 2I y1 D x; y2 D 1

x

8. xy00 C .2 � 2x/y0 C .x � 2/y D e2xI y1 D ex; y2 D ex

x

9. 4x2y00 C .4x � 8x2/y0 C .4x2 � 4x � 1/y D 4x1=2ex; x > 0;

y1 D x1=2ex; y2 D x�1=2ex

10. y00 C 4xy0 C .4x2 C 2/y D 4e�x.xC2/I y1 D e�x2

; y2 D xe�x2

11. x2y00 � 4xy0 C 6y D x5=2; x > 0I y1 D x2; y2 D x3

12. x2y00 � 3xy0 C 3y D 2x4 sin xI y1 D x; y2 D x3

13. .2x C 1/y00 � 2y0 � .2x C 3/y D .2x C 1/2e�xI y1 D e�x ; y2 D xex

14. 4xy00 C 2y0 C y D sin
p

xI y1 D cos
p

x; y2 D sin
p

x

15. xy00 � .2x C 2/y0 C .x C 2/y D 6x3exI y1 D ex; y2 D x3ex

16. x2y00 � .2a � 1/xy0 C a2y D xaC1I y1 D xa; y2 D xa ln x

17. x2y00 � 2xy0 C .x2 C 2/y D x3 cos xI y1 D x cos x; y2 D x sin x

18. xy00 � y0 � 4x3y D 8x5I y1 D ex2
; y2 D e�x2

19. .sin x/y00 C .2 sin x � cos x/y0 C .sin x � cos x/y D e�xI y1 D e�x; y2 D e�x cos x

20. 4x2y00 � 4xy0 C .3 � 16x2/y D 8x5=2I y1 D p
xe2x; y2 D p

xe�2x

21. 4x2y00 � 4xy0 C .4x2 C 3/y D x7=2I y1 D
p

x sin x; y2 D
p

x cos x

22. x2y00 � 2xy0 � .x2 � 2/y D 3x4I y1 D xex; y2 D xe�x

23. x2y00 � 2x.x C 1/y0 C .x2 C 2x C 2/y D x3exI y1 D xex; y2 D x2ex

24. x2y00 � xy0 � 3y D x3=2I y1 D 1=x; y2 D x3

25. x2y00 � x.x C 4/y0 C 2.x C 3/y D x4exI y1 D x2; y2 D x2ex

26. x2y00 � 2x.x C 2/y0 C .x2 C 4x C 6/y D 2xexI y1 D x2ex; y2 D x3ex

27. x2y00 � 4xy0 C .x2 C 6/y D x4I y1 D x2 cos x; y2 D x2 sin x

28. .x � 1/y00 � xy0 C y D 2.x � 1/2exI y1 D x; y2 D ex

29. 4x2y00 � 4x.x C 1/y0 C .2x C 3/y D x5=2exI y1 D p
x; y2 D p

xex

In Exercises 30–32 use variation of parameters to solve the initial value problem, given y1; y2 are solu-

tions of the complementary equation.

30. .3x � 1/y00 � .3x C 2/y0 � .6x � 8/y D .3x � 1/2e2x; y.0/ D 1; y0.0/ D 2;

y1 D e2x; y2 D xe�x

31. .x � 1/2y00 � 2.x � 1/y0 C 2y D .x � 1/2; y.0/ D 3; y0.0/ D �6;

y1 D x � 1, y2 D x2 � 1

32. .x � 1/2y00 � .x2 � 1/y0 C .x C 1/y D .x � 1/3ex; y.0/ D 4; y0.0/ D �6;

y1 D .x � 1/ex ; y2 D x � 1
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In Exercises 33–35 use variation of parameters to solve the initial value problem and graph the solution,

given that y1; y2 are solutions of the complementary equation.

33. C/G .x2 � 1/y00 C 4xy0 C 2y D 2x; y.0/ D 0; y0.0/ D �2I y1 D 1

x � 1
; y2 D 1

x C 1

34. C/G x2y00 C 2xy0 � 2y D �2x2; y.1/ D 1; y0.1/ D �1I y1 D x; y2 D 1

x2

35. C/G .x C 1/.2x C 3/y00 C 2.x C 2/y0 � 2y D .2x C 3/2; y.0/ D 0; y0.0/ D 0;

y1 D x C 2; y2 D 1

x C 1

36. Suppose

yp D y C a1y1 C a2y2

is a particular solution of

P0.x/y00 C P1.x/y0 C P2.x/y D F.x/; .A/

where y1 and y2 are solutions of the complementary equation

P0.x/y00 C P1.x/y0 C P2.x/y D 0:

Show that y is also a solution of (A).

37. Suppose p, q, and f are continuous on .a; b/ and let x0 be in .a; b/. Let y1 and y2 be the solutions

of

y00 C p.x/y0 C q.x/y D 0

such that

y1.x0/ D 1; y0
1.x0/ D 0; y2.x0/ D 0; y0

2.x0/ D 1:

Use variation of parameters to show that the solution of the initial value problem

y00 C p.x/y0 C q.x/y D f .x/; y.x0/ D k0; y0.x0/ D k1;

is
y.x/ D k0y1.x/ C k1y2.x/

C
Z x

x0

.y1.t/y2.x/ � y1.x/y2.t// f .t/ exp

�
Z t

x0

p.s/ ds

�

dt:

HINT: Use Abel’s formula for the Wronskian of fy1; y2g, and integrate u0
1 and u0

2 from x0 to x.

Show also that

y0.x/ D k0y0
1.x/ C k1y0

2.x/

C
Z x

x0

�

y1.t/y0
2.x/ � y0

1.x/y2.t/
�

f .t/ exp

�
Z t

x0

p.s/ ds

�

dt:

38. Suppose f is continuous on an open interval that contains x0 D 0. Use variation of parameters to

find a formula for the solution of the initial value problem

y00 � y D f .x/; y.0/ D k0; y0.0/ D k1:

39. Suppose f is continuous on .a; 1/, where a < 0, so x0 D 0 is in .a; 1/.
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(a) Use variation of parameters to find a formula for the solution of the initial value problem

y00 C y D f .x/; y.0/ D k0; y0.0/ D k1:

HINT: You will need the addition formulas for the sine and cosine:

sin.A C B/ D sin A cos B C cos A sin B

cos.A C B/ D cos A cos B � sin A sin B:

For the rest of this exercise assume that the improper integral
R 1

0
f .t/ dt is absolutely convergent.

(b) Show that if y is a solution of

y00 C y D f .x/ .A/

on .a; 1/, then

lim
x!1

.y.x/ � A0 cos x � A1 sin x/ D 0 .B/

and

lim
x!1

�

y0.x/ C A0 sin x � A1 cos x
�

D 0; .C/

where

A0 D k0 �
Z 1

0

f .t/ sin t dt and A1 D k1 C
Z 1

0

f .t/ cos t dt:

HINT: Recall from calculus that if
R 1

0
f .t/ dt converges absolutely, then limx!1

R 1
x

jf .t/j dt D 0.

(c) Show that if A0 and A1 are arbitrary constants, then there’s a unique solution of y00 C y D
f .x/ on .a; 1/ that satisfies (B) and (C).




