CHAPTER 9

Second-Order

Linear Homogeneous
Differential
Equations with
Constant Coefficients

INTRODUCTORY REMARK

Thus far we have concentrated on first-order differential equations. We will now turn our attention to the
second-order case. After investigating solution techniques, we will discuss applications of these differential
equations (see Chapter 14).

THE CHARACTERISTIC EQUATION
Corresponding to the differential equation
Yi+ay +ay=0 (9.1)
in which @, and a; are constants, is the algebraic equation
M+ar+ay=0 (9.2)

which is obtained from Eq. (9.7) by replacing y”. y" and y by A%, A!, and A° = 1, respectively. Equation (9.2) is
called the characteristic equation of (9.1).

Example 9.1. The characteristic equation of y”+3y —dy=0 is A>+3h—4=0; the characteristic equation of
V=2 +y=0is K> 2L+ 1 =0.
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SECOND-ORDER LINEAR HOMOGENEOUS DIFFERENTIAL EQUATIONS [CHAP 9

Characteristic equations for differential equations having dependent variables other than y are obtained

analogously, by replacing the jth derivative of the dependent variable by A/ (j =0, 1, 2).

The characteristic equation can be factored into

A=A)A-21)=0 9.3)

THE GENERAL SOLUTION

The general solution of (9.7) is obtained directly from the roots of (9.3). There are three cases to consider.

Ao x

Case 1. A, and A, both real and distinct. Two linearly independent solutions are ¢"* and ¢**, and

the general solution is (Theorem 8.2)
y=ce" +c, e 94)

In the special case A, =—A4, the solution (9.4) can be rewritten as y = k; cosh A,x + k, sinh A,x.

Case 2. A, =a+ib, a complex number. Since a; and a, in (9./) and (9.2) are assumed real, the roots
of (9.2) must appear in conjugate pairs; thus, the other root is A, = a — ib. Two linearly independent
solutions are € * > and ¢~ and the general complex solution is

y= dlé(a +ib)x dzé(a_ ib)x (95)
which is algebraically equivalent to (see Problem 9.16)
y=ce™ cos bx + ce® sin bx (9.6)

Case 3. A, =A,. Two linearly independent solutions are ¢"* and xe™* and the general solution is

y=ce" +c,xe™ (9.7)

Warning: The above solutions are not valid if the differential equation is not linear or does not have constant

coefficients. Consider, for example, the equation y” — x*y = 0. The roots of the characteristic equation are A, = x
and A, = —x, but the solution is not

— o 0x _ 2 -2
y=ce +ce ™ =ce +ee

Linear equations with variable coefficients are considered in Chapters 27, 28 and 29.

9.1.

9.2.

Solved Problems

Solve vy —y" —2y=0.

The characteristic equation is A> —A—2 =0, which can be factored into (A + 1)(A —2) = 0. Since the roots
A, =—1 and A, =2 are real and distinct, the solution is given by (9.4) as

y=cre ™+ e
Solve ¥y — 7y = 0.

The characteristic equation is A2 — 7A = 0, which can be factored into (A — 0)(A — 7) = 0. Since the roots A, =0
and A, =7 are real and distinct, the solution is given by (9.4) as

y=c1€% + =1+ cpe®
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9.3.

94.

9.5.

9.6.

9.7.

Solve ¥y — 5y =0.
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The characteristic equation is A>— 5 =0, which can be factored into (A — \/g)(k + \/g) =0. Since the roots

A= V5 and Ay =— V5 are real and distinct, the solution is given by (9.4) as

_
y=ce"" +c,e

—5x
Rewrite the solution of Problem 9.3 in terms of hyperbolic functions.
Using the results of Problem 9.3 with the identities

e =cosh Ax+sinh Ax and ¢ ™ = cosh Ax — sinh Ax

we obtain,

_ -
y=ce¥ +ce

=¢,(cosh \/gx + sinh \/gx) + ¢,(cosh \/gx —sinh \/gx)
=(c,; +c,)cosh NE (¢, —¢,)sinh NG
=k, cosh \/gx + k, sinh \/gx

V5x

where k; =c¢;+ ¢, and ky = ¢ — ¢,.

Solve ¥ +10y+21y=0.
Here the independent variable is . The characteristic equation is
A+ 10A+21=0
which can be factored into
A+3)A+7)=0
The roots A; =3 and A, =—7 are real and distinct, so the general solution is
y=cie 2t + e
Solve X —0.01x =0.
The characteristic equation is
A2—0.01=0
which can be factored into
A-0DA+01)=0
The roots A; = 0.1 and A, =—0.1 are real and distinct, so the general solution is

y= 1"V 4 cpe Ol

or, equivalently,
y =k cosh 0.1 + &, sinh 0.1¢

Solve v” + 4y + 5y =0.
The characteristic equation is
AM+4+5=0
Using the quadratic formula, we find its roots to be

@@ A

2

These roots are a complex conjugate pair, so the general solution is given by (9.6) (witha=-2and b=1) as

y=c1e* cos X+ c,e ¥ sin x
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9.8.

92.9.

9.10.

9.11.

9.12.

SECOND-ORDER LINEAR HOMOGENEOUS DIFFERENTIAL EQUATIONS

Solve y” + 4y =0.
The characteristic equation is
A +4h=0
which can be factored into

(A=2)(A+2i)=0

[CHAP 9

These roots are a complex conjugate pair, so the general solution is given by (9.6) (with @ =0 and b =2) as

y=cq cos 2x+ ¢, sin 2x

Solve v =3y +4y=0.
The characteristic equation is
A —3L+4=0

Using the quadratic formula, we find its roots to be

) -3 -4 3, N7

2 2 2

These roots are a complex conjugate pair, so the general solution is given by (9.6) as

7
Birgn
2

7
y= cle(m”‘cosgx +c,e X
Solve y — 6y +25y=0.
The characteristic equation is
A2—6L+25=0
Using the quadratic formula, we find its roots to be

e LS O TS N

5 =

These roots are a complex conjugate pair, so the general solution is

y=c1e> cos 4t + c,e sin 4t

2
Solve d—zl + ZOﬂ + 2007 = 0.
dt dt

The characteristic equation is
A2 =201 +200=0
Using the quadratic formula, we find its roots to be

= 2O EYCO —4200) _ 010

2

These roots are a complex conjugate pair, so the general solution is

I=c1e71% cos10t + cre™'% sin 10¢

Solve y” — 8y + 16y =0.
The characteristic equation is
A—8h+16=0

which can be factored into
A=4%=0
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9.13.

9.14.

9.15.

9.16.

The roots A; = A, =4 are real and equal, so the general solution is given by (9.7) as

y=ce™ + cxe®®

Solve v" = 0.

The characteristic equation is A> = 0, which has roots A; = A, = 0. The solution is given by (9.7) as

y=c1€% + cxe® = ¢1 + cpx

Solve X +4x+4x=0.

The characteristic equation is

AM+4h+4=0
which can be factored into
(A+2)%=0

The roots A, = A, =2 are real and equal, so the general solution is

x=ce ¥+ cpte

2
IN 20N N=0
dt dt

Dividing both sides of the differential equation by 100, to force the coefficient of the highest derivative to be
unity, we obtain

Solve 100

2
d ]2\] - O.Zd—N+ 0.0IN=0
dt dt

Its characteristic equation is
A2—021+0.01=0
which can be factored into
(A-0.1)’=0
The roots A; = A, =0.1 are real and equal, so the general solution is

N=ce 0 4 cye Ot

Prove that (9.6) is algebraically equivalent to (9.5).
Using Euler’s relations
e = cos bx +isin bx e =cos bx —i sin bx
we can rewrite (9.5) as
y — dleaxeibx + dzeaxe—ibx — ewc(dleibx + dze—ib)c)
=¢e”[d,(cos bx + i sin bx) + d,(cos bx — isin bx)]
=e"[(d, +d,)cosbx +i(d, — d,)sin bx]
=™ cosbx + c,e” sin bx ()
where ¢; =d; +d, and ¢, = i(d, — d,).
Equation (7) is real if and only if ¢; and ¢, are both real, which occurs, if and only if d; and d, are com-

plex conjugates. Since we are interested in the general real solution to (9.1), we restrict d; and d, to be a
conjugate pair.
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Supplementary Problems

Solve the following differential equations.

917. y"-y=0 9.18. y"—3y —-30y=0
9.19. ' -2y’ +y=0 9.20. y'+y=0
9.21. y'+2y'+2y=0 9.22. y'=T7y=0
9.23. y'+6y"+9y=0 9.24. y"+2y"+3y=0
4 4 ” 4 1
9.25. y"-3y'—5y=0 9.26. y'+y +Zy=O
9.27. %-20x+64x=0 9.28. X+60x+500x=0
9.29. X¥-3x+x=0 9.30. X¥-10x+25x=0
9.31. X+4+25x=0 9.32. X+25%=0
9.33. X+i+2x=0 934, i—2u+4u=0
9.35. ii—4du+2u=0 9.36. ii—36u=0
2
9.37. ii—36u=0 9.38. d ZQ - Sd—Q+7Q =0
dt dt
: d’p _dP
9.39. d ZQ—7d—Q+SQ:O 9.40. —— 18— +81P=0
dt dt dt dt
2 2
9.41. dP+2d—P+9P=O 9.42. d]:]+5d—N—24N:O
dx dx dx dx
2 2
9.43. d ]:] + Sd—N +24N =0 9.44. d—Y; + 3Od—T +225T =0
dx dx do do
2
9.45. R SdR =0

7o
do do

[CHAP 9



CHAPTER 10

nth-Order Linear
Homogeneous
Differential Equations
with Constant
Coefficients

THE CHARACTERISTIC EQUATION

The characteristic equation of the differential equation

VP 4a, YVt ay +agy =0 (10.1)
with constant coefficients a; (j=0,1,....,n—= 1) is
M4a, N '+ +ah+ay=0 (10.2)

The characteristic equation (/0.2) is obtained from (/0.1) by replacing v by M (j=0, 1,..., n—1).
Characteristic equations for differential equations having dependent variables other than y are obtained analo-
gously. by replacing the jth derivative of the dependent variable by &' (j=0,1,...,n—1).

Example 10.1. The characteristic equation of y* —3y” +2y"—y=0 is A*—=3A*+2A% - 1=0. The characteristic
equation of
&F LK, Jd

= —3—+5—-7x=0
dr dr dt

is M-3+50-7=0

Caution: Characteristic equations are only defined for linear homogencous differential equations with
constant coefficients.
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THE GENERAL SOLUTION

The roots of the characteristic equation determine the solution of (70.1). If the roots A;, A,, ..., A, are all
real and distinct, the solution is

A x Aox Anx

y=ce™ +c,e” -+ e 10.3)

If the roots are distinct, but some are complex, then the solution is again given by (/0.3). As in Chapter 9, those
terms involving complex exponentials can be combined to yield terms involving sines and cosines. If A, is a root

of multiplicity p [that is, if (A — Ay)? is a factor of the characteristic equation, but (A — A;)? ™ ! is not] then there

will be p linearly independent solutions associated with A, given by ", xe™*,x%¢"* ... x""'é"**. These

solutions are combined in the usual way with the solutions associated with the other roots to obtain the complete
solution.

In theory it is always possible to factor the characteristic equation, but in practice this can be extremely
difficult, especially for differential equations of high order. In such cases, one must often use numerical techniques
to approximate the solutions. See Chapters 18, 19 and 20.

Solved Problems

10.1. Solve y” —6y" + 11y —6y=0.
The characteristic equation is A> — 6A% + 11X — 6 = 0, which can be factored into
(= D(h=2)(A=3)=0
The roots are A; = 1, A, =2, and A5 = 3; hence the solution is

V=185 + e + c3€™F

10.2. Solve y¥ — 9y” + 20y =0.

The characteristic equation is A* — 9A% + 20 = 0, which can be factored into
(A =2)A+DA=-V3)R+5)=0

The roots are Ay =2, Ay =2, A, = V5, and A, = —+/5; hence the solution is

By c,e

=k, cosh2x + k, sinh 2x + k; cosh J5x+ k,sinh J5x

2 -2 5.
y=cet e +ee i

10.3. Solve y —5y=0.

The characteristic equation is A — 5= 0, which has the single root A; = 5. The solution is then y=c;e™
(Compare this result with Problem 6.9.)

10.4. Solve y” — 6y” + 2y +36y=0.

The characteristic equation, A>—6A%2+2A+36=0, has roots A,=-2, A, =4+ i\/E, and A, =4- i\/E.
The solution is

y =Cle’2x i d26(4+iﬁ)x + dse(4—i~/§)x
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10.5.

10.6.

10.7.

10.8.

10.9.

10.10.

which can be rewritten, using Euler’s relations (see Problem 9.16) as

-2 4 ax
y=ce "+ e cosv2x + e siny/2x

d* & d* d
Solve = — 452+ 752 4= 4 6x=0.
dt dt dt dt
The characteristic equation, A* —4A% + 7A%2 —4A + 6 =0, has roots A=2+ i\/E, Ay,=2-— i\/E, As=1i, and
Ay = —i The solution is

x= dle(z”‘ﬁ)’ + dze(z”'ﬁ)’ +de +de”

If, using Euler’s relations, we combine the first two terms and then similarly combine the last two terms,
we can rewrite the solution as

x=ce” cosv2t + c,e” sin/21 + ¢y cost + ¢, sint

Solve y® + 8y” + 24y” + 32y + 16y = 0.
The characteristic equation, A* + 8\ + 24A% + 324 + 16 = 0, can be factored into (A + 2)*=0. Here Ay =2 is

a root of multiplicity four; hence the solution is

y=c1e 2 + cpxe X + cgxle X+ ope

a&p o dr d&p d°P  dP
ST e teT T
dt dt dt dt dt

The characteristic equation can be factored into (A — 1)*(A + 1)> = O; hence, A, = 1 is a root of multiplicity three
and A, =—1 is a root of multiplicity two. The solution is

- P=0.

Solve

P =cie' +cyte + csfPet + cuet + cste™
‘o dQ d’Q
78— +32—
dx dx dx
The characteristic equation has roots 2+ i2 and 2 £i2; hence A; =2 +i2 and A, =2 — i2 are both roots of
multiplicity two. The solution is

dQ

—64=
dx

Solve

+640=0

Q — d1€(2 +i2)x + d2X€(2 +i2)x + d36‘(2 —i2)x + d4xe(2 —i2)x
= &% (d,e™ + dye ) + xe¥ (d,e™ + dye™)
= > (c1 cos 2x + ¢3 sin 2x) + xe>* (¢, cos 2X + ¢, sin 2x)

= (¢ + ¢px) € co8 2x + (¢5 + ¢4%) € sin 2x

Find the general solution to a fourth-order linear homogeneous differential equation for y(x) with real
numbers as coefficients if one solution is known to be x3¢¥.

If x3¢* is a solution, then so too are x%¢*, xe™, and ¢*. We now have four linearly independent solutions to a
fourth-order linear, homogeneous differential equation, so we can write the general solution as

V(X) = ;56" + ey x%e™ + oy xe® + e
Determine the differential equation described in Problem 10.9.

The characteristic equation of a fourth-order differential equation is a fourth-degree polynomial having
exactly four roots. Because x°¢** is a solution, we know that A = 4 is a root of multiplicity four of the corresponding
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10.11.

10.12.

10.13.

10.14.

10.15.

nth-ORDER LINEAR HOMOGENEOUS DIFFERENTIAL EQUATIONS [CHAP. 10

characteristic equation, so the characteristic equation must be (A — 4)*=0, or
A — 162 + 96A2 — 2561 + 256 =0

The associated differential equation is

Y — 16y” + 96y” — 256y’ + 256y =0

Find the general solution to a third-order linear homogeneous differential equation for y(x) with real
numbers as coefficients if two solutions are known to be ¢>* and sin 3x.

If sin 3x is a solution, then so too is cos 3x. Together with e, we have three linearly independent solutions
to a third-order linear, homogeneous differential equation, and we can write the general solution as

V(x) = c1e" ¥ + ¢, cos 3x + c3 sin 3x

Determine the differential equation described in Problem 10.11.

The characteristic equation of a third-order differential equation must have three roots. Because > and sin 3x
are solutions, we know that A = —2 and A = * i3 are roots of the corresponding characteristic equation, so this equation
must be

A+2)(h— i3 +i3)=0
or AM+2W2+90+18=0

The associated differential equation is

"

Y7 +2y"+9y" +18y=0

Find the general solution to a sixth-order linear homogeneous differential equation for y(x) with real
numbers as coefficients if one solution is known to be x%¢’* cos 5x.

If x%¢™ cos 5x is a solution, then so too are xe™ cos 5x and ¢”* cos 5x. Furthermore, because complex roots of

a characteristic equation come in conjugate pairs, every solution containing a cosine term is matched with another
solution containing a sine term. Consequently, x%¢™* sin 5x, xe” sin 5x, and ¢’ sin 5x are also solutions. We now
have six linearly independent solutions to a sixth-order linear, homogeneous differential equation, so we can write
the general solution as

7.

V(x) = c;x%€™ cos 5x + c,x%e’ sin 5x + c3xe’* cos 5x + ¢ xe’ sin 5x + cse’F cos 5x + cge’™ sin S5x

Redo Problem 10.13 if the differential equation has order 8.

An eighth-order linear differential equation possesses eight linearly independent solutions, and since we can
only identify six of them, as we did in Problem 10.13, we do not have enough information to solve the problem. We
can say that the solution to Problem 10.13 will be part of the solution to this problem.

d* d’ d* d
Solve —i) - 4—? - 5—2) +362 - 36y =0 if one solution is xe*.
dx dx dx dx
If xe* is a solution, then so too is ¢ which implies that (A —2)? is a factor of the characteristic equation
A — 403 — 502 + 36X — 36 =0. Now,

A — 4N — 50T +360-36

AP -9
r-2)?

so two other roots of the characteristic equation are A =+3, with corresponding solutions ¢** and ¢>* Having
identified four linearly independent solutions to the given fourth-order linear differential equation, we can write the
general solution as

V() = 16 + cpxe™ + e3> + e
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Supplementary Problems

In Problems 10.16 through 10.34, solve the given differential equations.

10.16. y”—2y" -y +2y=0 10.17. y”"—y"—y +y=0
10.18. y”—3y"+3y —y=0 10.19. y"—y"+y —y=0
10.20. Yy +2y"+y=0 10.21. y¥—y=0
10.22. Yy +2y” -2y —y=0 10.23. y¥ —4y” + 16y +32y=0
10.24. Y9 +5y7=0 10.25. y¥+2y”" +3y"+2y +y=0
d'x d’x d’x dx
10.26. ¥ — 5y® + 16y” +36y” — 16y’ — 32y =0 10.27. —+4—+6——+4—+x=0
Y Y Y Y Y Y art a4t dt
3 d4 dZ
1028, X0 1029. S +1055 +9x=0
dt dt dt
3 2
10.30. d—f - sd—f o5 _1asi—0 1031. ¢¥+q"—-2¢=0
dt dt dt
10.32. ¢®—-3¢"+29=0 10.33. N” — 12N" — 28N + 480N = 0
5 4 3 2
1034, L0590 0 dr 10l s,y
do do do do do

In Problems 10.35 through 10.41, a complete set of roots is given for the characteristic equation of an nth-order near homoge-
neous differential equation in y(x) with real numbers as coefficients. Determine the general solution of the differential equation.

10.35. 2,8,-14 10.36. 0, %i19
10.37. 0,0,2+:9 10.38. 2+£i9,21i9
10.39. 5,5,5,-5,-5 10.40. =6, £i6, £i6

10.41. -3+, -3+i3+i3+;

10.42. Determine the differential equation associated with the roots given in Problem 10.35.
10.43. Determine the differential equation associated with the roots given in Problem 10.36.
10.44. Determine the differential equation associated with the roots given in Problem 10.37.
10.45. Determine the differential equation associated with the roots given in Problem 10.38.
10.46. Determine the differential equation associated with the roots given in Problem 10.39.

10.47. Find the general solution to a fourth-order linear homogeneous differential equation for y(x) with real numbers as
coefficients if one solution is known to be x’¢™.

10.48. Find the general solution to a fourth-order linear homogeneous differential equation for y(x) with real numbers as
coefficients if two solutions are cos 4x and sin 3x.

10.49. Find the general solution to a fourth-order linear homogeneous differential equation for y(x) with real numbers as
coefficients if one solution is x cos 4x.

10.50. Find the general solution to a fourth-order linear homogeneous differential equation for y(x) with real numbers as
coefficients if two solutions are xe* and xe™.



The Method of
Undetermined
Coefficients

The general solution to the linear differential equation L(y) = ¢(x) is given by Theorem 8.4 as y =y, +y,
where y, denotes one solution to the differential equation and yj, is the general solution to the associated homo-
geneous equation, L(y) = 0. Methods for obtaining y, when the differential equation has constant coefficients
are given in Chapters 9 and 10. In this chapter and the next, we give methods for obtaining a particular solution
¥, once yy is known.

SIMPLE FORM OF THE METHOD

The method of undetermined coefficients is applicable only if ¢(x) and all of its derivatives can be written
in terms of the same finite set of linearly independent functions, which we denote by {y,(x), y2(x), ..., y,(x)}.
The method is initiated by assuming a particular solution of the form

VplX) = Ay (x) + Agya(x) + -+ + A, y,(x)

where A, A,, ... , A, denote arbitrary multiplicative constants. These arbitrary constants are then evaluated by
substituting the proposed solution into the given differential equation and equating the coefficients of like terms.

Case 1. ¢(x) =p,(x), an nth-degree polynomial in x. Assume a solution of the form

Vp=Apx"+ A xP e p A+ A (11.1)
where A; (j=0, 1.2, ..., n)is a constant to be determined.
Case 2. ¢(x) = ke™ where k and a are known constants. Assume a solution of the form

v, = Ae™ (11.2)
where A is a constant to be determined.
Case 3. ¢(x) =k, sin Bx +k, cos Bx where k;, k,, and f§ are known constants. Assume a solution
94
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of the form
yp,=Asin fx+ B cos fx (11.3)

where A and B are constants to be determined.

Note: (11.3) in its entirety is assumed even when &; or k, is zero, because the derivatives of sines or
cosines involve both sines and cosines.

GENERALIZATIONS

If ¢(x) is the product of terms considered in Cases 1 through 3, take y, to be the product of the corresponding
assumed solutions and algebraically combine arbitrary constants where possible. In particular, if ¢(x) = ¢®p,(x)
is the product of a polynomial with an exponential, assume

V=" (A, X" + A X+ o+ A+ Ag) (11.4)

where A; is as in Case 1. If, instead, @(x)=e®p,(x) sin Bx is the product of a polynomial, exponential,
and sine term, or if ¢(x) = ¢“p,(x) cos Bx is the product of a polynomial, exponential, and cosine term, then
assume

yp=e®sin fx (A,x" + - + A+ Ag) + e¥ cos fx (B X"+ - + Bix + By) (11.5)

where Aj and Bj (j=0,1, ..., n) are constants which still must be determined.
If ¢(x) is the sum (or difference) of terms already considered, then we take y, to be the sum (or difference)
of the corresponding assumed solutions and algebraically combine arbitrary constants where possible.

MODIFICATIONS

If any term of the assumed solution, disregarding multiplicative constants, is also a term of y;, (the homoge-
neous solution), then the assumed solution must be modified by multiplying it by x”, where m is the smallest
positive integer such that the product of x” with the assumed solution has no terms in common with ;.

LIMITATIONS OF THE METHOD

In general, if ¢(x) is not one of the types of functions considered above, or if the differential equation does
not have constant coefficients, then the method given in Chapter 12 applies.

Solved Problems

11.1.  Solve v’ —y — 2y = 4x2.

From Problem 9.1, y;, = c1¢* + c,e*. Here ¢(x) = 432, a second-degree polynomial. Using (11.1), we assume that
¥, = A + Aix + Ay 0
Thus, y, = 2A,x + A; and y, = 24, Substituting these results into the differential equation, we have

24y — QA + A)) — 2(Ap® + A + Ag) = 42
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or, equivalently,
(24062 + (24, = 24)x + (24, — A, — 2A0) =4x% + (0)x + O
Equating the coefficients of like powers of x, we obtain
—24,=4 —24,-2A,=0 24, - A —2A,=0
Solving this system, we find that A, =-2, A; =2, and A; =—3. Hence (/) becomes
Y= 232 +2x-3
and the general solution is

Y=Yu+ Y= e+ e — 2% +2x -3

Solve ¥’ —y — 2y =&,

From Problem 9.1, y, = c;e™ + c,¢**. Here ¢(x) has the form displayed in Case 2 with k=1 and &= 3. Using
(11.2), we assume that

yp= Ae> H
Thus, y, = 3Ae* and yy = 9A€™. Substituting these results into the differential equation, we have
A —3Ae* — 248 = &F or 4Ae¥ =&

It follows that 44 = 1, or A=<, so that (/) becomes y, = %es". The general solution then is

1
el
3x

- 1
y=ce " +ce” +Ze

Solve y” —y" — 2y = sin 2x.

Again by Problem 9.1, y, = c,e™ + ¢,e?*. Here ¢(x) has the form displayed in Case 3 with k; =1, k, =0, and
B=2. Using (11.3), we assume that

¥p=Asin 2x + B cos 2x @)

Thus, y), = 24 cos 2x — 2B sin 2x and y, = —4A sin 2x — 4B cos 2x. Substituting these results into the differential
equation, we have

(—4A sin 2x — 4B cos 2x) — (2A cos 2x — 2B sin 2x) — 2(A sin 2x + B cos 2x) = sin 2x

or, equivalently,
(—6A + 2B) sin2x + (—6B — 2A) cos 2x = (1) sin 2x + (0) cos 2x
Equating coefficients of like terms, we obtain
—6A + 2B =1 —-2A-6B=0

Solving this system, we find that A = —3/20 and B = 1/20. Then from (1),
¥, = —isian + Lcost
20 20

and the general solution is

3 . 1
y=ce” + e’ ——sin2x + —cos2x
20 20
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11.4. Solve -6y +25y= ZSiHé— cos%.

11.5.

From Problem 9.10,

V, = ¢1€% cos 4 + c,e sin 4t

97

Here ¢(#) has the form displayed in Case 3 with the independent variable ¢ replacing x, k; =2, kK, =—1, and B =1.

Using (11.3), with f replacing x, we assume that

L 1
= Asin—+ Bcos—
Ve 2 2

Consequently,
=—C0s— — —sin—
Ye 2 2 2 2
d y ——Asint—Bcost
an YT TN TR

Substituting these results into the differential equation, we obtain

—ésini—ﬁcosi -6 écosi—gsini +25 Asin£+Bcosi :2sin£—cos£
4 2 2 2 2 2 2 2

2

or, equivalently

%A+3B sin£+ —3A+%B cos£:25in£—cos£
4 2 4 2 2 2

Equating coefficients of like terms, we have
%A+3B:2; —3A+%B:—l
4 4

It follows that A = 56/663 and B = —20/663, so that (/) becomes

56 .t 20 ¢

= sin c
Y 663 2 663 2

The general solution is

. 56 .t 20 t
y=y, +y, =ce cosdt +c,e sindt + ——sin— — ——cos—
? 663 2 663 2

Solve  — 6y +25y=64e™".
From Problem 9.10,

v, = c1€% cos 4t + ¢y sin 4t

()

Here ¢(#) has the form displayed in Case 2 with the independent variable ¢ replacing x, k=64 and o= —1. Using

(11.2), with t replacing x, we assume that
v, =Ae”

1

Consequently, y, =—Ae”

Ae™ — 6(—Ae™) + 25(Ae™) = 6de™!

and ¥, = Ae”’. Substituting these results into the differential equation, we obtain

o)

or, equivalently, 324e™ = 64e™". It follows that 324 = 64 or A =2, so that () becomes y, =2¢™". The general

solution is

Y=Y+ Y= 1€ cos 4t + oy sin At + 2¢7
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11.6.

11.7.

THE METHOD OF UNDETERMINED COEFFICIENTS

Solve % — 69+ 25y =508 — 361" — 63t +18.

Again by Problem 9.10,
Vi = 1€ cos 4t + ¢y sin 4t

Here ¢(%) is a third-degree polynomial in . Using (/1.1) with f replacing x, we assume that

yp = A3l3 + Azlz + All + AO
Consequently,
¥, =3A0° + 240+ A

and ¥, =0A+24,

Substituting these results into the differential equation, we obtain
(6Ast + 24,) — 6(3A3? + 2A,51 + A1) + 25(AsP + A2 + Al + Ag) = 508 — 3612 — 631 + 18

or, equivalently,

(25A5)P + (1845 + 254 + (645 — 124, + 25A)) + (24, — 64, + 254g) = 508 — 361> — 631 + 18

Equating coefficients of like powers of ¢, we have

254, =50, —184; + 254, =36, GAs— 124, + 254, = —63; 24, —6A, + 254,= 18

[CHAP. 11

o)

Solving these four algebraic equations simultaneously, we obtain A; =2, A, =0, A; =-3, and A; =0, so that (I)

becomes
Y= 28 -3¢
The general solution is

Y=Y+ Y, =1 cos At + e sin 4t + 26 -3t

Solve ¥y — 6y” + 11y — 6y = 2xe™.

From Problem 10.1, y, = c1€* + ;> + c3¢>*. Here ¢(x) = e™p,(x), where oc=—1 and p,(x) = 2x, a first-degree

polynomial. Using Eq. (/1.4), we assume that y, = e *(A1x + Ag), or
Yp=Apxe™ + Age™

Thus, Vp=—Axe ™ + Aje™ — Ape™

V=Axe™ — 24167 + Age™

W =—AxeF + 3417 — Ape™
Substituting these results into the differential equation and simplifying, we obtain

—24Axe™* + (26A; — 24Ap)e* =2xe™* + (0)e™

Equating coefficients of like terms, we have

—24A,=2 264, -244,=0

from which A; =—-1/12 and A; =-13/144.
Equation (I) becomes

_ 1 [ 13 o
e 12 144
and the general solution is
x 2x 3x —x 13 —x
y=ce +c,e +oe ——xe ——e

o)
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11.8.

11.9.

11.10.

11.11.

Determine the form of a particular solution for y” = 9x% + 2x —1.

Here ¢(x)=9x>+2x—1, and the solution of the associated homogeneous differential equation y”=0 is
Yi = C1X + ¢o. Since ¢(x) is a second-degree polynomial, we first try y, = A,x% + Ajx + A,. Note, however, that this
assumed solution has terms, disregarding multiplicative constants, in common with y,: in particular, the first-power
term and the constant term. Hence, we must determine the smallest positive integer m such that x¥™(A,x% + A;x + Ag)
has no terms in common with y,.

For m=1, we obtain

X(A2X2 + Alx + Ao) = A2X3 + A1x2 +A0x
which still has a first-power term in common with y,. For m = 2, we obtain
xz(Azxz + Alx + Ao) = A2x4 + A1X3 +A0x2

which has no terms in common with y,; therefore, we assume an expression of this form for y,.

Solve ¥’ = 9x* + 2x —1.
Using the results of Problem 11.8, we have y, = ¢1x + ¢y and we assume
¥p = At + A + Agd? @)
Substituting (/) into the differential equation, we obtain
124,0° + 6Ax + 2A0=9x% + 2x— 1

from which A, = 3/4, A; = 1/3, and A;=—1/2. Then (/) becomes

and the general solution is

—cx+c+3x4+1x3—1x2
YTatTaTy 3 2

The solution also can be obtained simply by twice integrating both sides of the differential equation with
respect to x.

Solve y — 5y = 2¢%.

From Problem 10.3, y, = c;e™. Since ¢(x) = 2¢*, it would follow from Eq. (11.2) that the guess for ¥, should
be y, = Age™. Note, however, that this ¥, has exactly the same form as y;; therefore, we must modify y,. Multiplying
¥, by x (m=1), we obtain

¥p = Agxe™ o)

As this expression has no terms in common with yy; it is a candidate for the particular solution. Substituting (/) and
Yy = Age™ + 5A4pxe™ into the differential equation and simplifying, we obtain Aje™ = 2%, from which A, =2.
Equation (/) becomes y, = 2xe>, and the general solution is y = (¢ + 2x)e™.

Determine the form of a particular solution of
Y -5y=(@x-1sinx+ (x+ 1) cos x
Here ¢(x) = (x—1) sin x+ (x+ 1) cos x, and from Problem 10.3, we know that the solution to the associated

homogeneous problem y'— 5y =0 is y, = c;e>*. An assumed solution for (x — 1) sin x is given by Eq. (/1.5) (with
a=0) as

(Ax + Ap) sinx + (Byx + By) cos x
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11.12.

11.13.
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and an assumed solution for (x + 1) cos x is given also by Eq. (/1.5) as
(Cix + Cp) sinx + (D1x + D) cos x

(Note that we have used C and D in the last expression, since the constants A and B already have been used.)
We therefore take

¥p = (A1x + Ag) sin x + (Byx + Bp) cos x + (Cyx + Cp) sin x + (D1x + D) cos x
Combining like terms, we arrive at
¥p = (E1x + Ep) sin x + (Fyx + F) cos x

as the assumed solution, where E;=A; + C;and F;=B; + D; (j=0, 1).

Solve y —5y=(x— 1) sin x+ (x+ 1) cos x.
From Problem 10.3, y, = ¢;¢>. Using the results of Problem 11.11, we assume that
¥p = (Eyx + Eg) sin x + (Fix + Fy) cos x @)
Thus, Vo=(E) - Fix—Fp)sinx+ (Eyx + Eg+ E;) cos x
Substituting these values into the differential equation and simplifying, we obtain
(-5E{—Fp)xsinx + (—5Ey+ E; — Fp) sinx + (=5F + E}) x cos x + (-5Fy + Ey + F}) cos x
=(Dxsinx+ (—1)sinx+ (1)xcos x+ (1)cos x

Equating coefficients of like terms, we have

—SEl—Flzl
—5Ey+ E;— Fy=—1
E1—5F1:1

Ey—5F,+F =1

Solving, we obtain £; =-2/13, E,=71/338, F'; =-3/13, and F,; = —69/338. Then, from (1),

2 713 . 3 69
y,=| ——x+— [sinx+| ——Xx+—— |cosx
i 13 338 13 338

and the general solution is
se [ 2 713 . 3 69
y=ce* +| —x+— [sinx—| —x+— |cosx
13 338 13 338

Solve ¥y — 5y =3¢ —2x + 1.
Sx

From Problem 10.3, y,=c;e>. Here, we can write ¢(x) as the sum of two manageable functions:
O(x) = (3" + (—2x + 1). For the term 3¢* we would assume a solution of the form Ae*; for the term —2x+ 1 we
would assume a solution of the form Byx + By. Thus, we try

y,=Ac + Bix+ By ()
Substituting (/) into the differential equation and simplifying, we obtain
(—4A)e* + (=5B1)x + (B1 — 5Bg) = 3)¢* + (2)x + (1)

Equating coefficients of like terms, we find that A = —3/4, B; =2/5, and B, = —3/25. Hence, (1) becomes
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and the general solution is

11.14. Solve y — 5y = x%* — xe™*.
From Problem 10.3, y, = c;¢. Here ¢(x) = x%¢* — xe>*, which is the difference of two terms, each in manageable
form. For x2¢* we would assume a solution of the form

(A + Arx + Ag) ()
For xe>* we would try initially a solution of the form

e (B1x+By) = Bixe> + Bye™

Sx

But this supposed solution would have, disregarding multiplicative constants, the term > in common with y,. We

are led, therefore, to the modified expression
xe™(Bx + By) = e¥(B1x% + Byx) 2
We now take y, to be the sum of (/) and (2):
¥p = € (AP + Aix + Ag) + (B + Byx) 3
Substituting (3) into the differential equation and simplifying, we obtain
EL(—4ANX + (24, — 4A DX + (A — 44p)] + e [(2B1)x + Byl
=112 + 0)x + (0)] + eX[(=Dx + (0)]
Equating coefficients of like terms, we have

—4A,=1 24, —4A,=0 A —-44,=0 2B,=-1 By=0

from which
) :—% B,=0
Equation (3) then gives
s e

and the general solution is

Supplementary Problems

In Problems 11.15 through 11.26, determine the form of a particular solution to L(y) = ¢(x) for ¢ (x) as given if the solution
to the associated homogeneous equation L(y) = 0 is y, = c;>* + c,e>*.

11.15. ¢(x)=2x—7 11.16. ¢(x) =32
11.17.  ¢(x) =132x — 388x + 1077 11.18. ¢(x)=0.5¢%

11.19. ¢(x) = 13e% 11.20. ¢(x) = e
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1 .
11.21. ¢(x) =2 cos 3x 11.22. ¢(x)= Ecos3x —3sin3x
11.23. ¢(x) =x cos 3x 11.24.  §(x) =2x+3e™
11.25. ¢(x) = 2xe™ 11.26. ¢(x) = 2xe™

In Problems 11.27 through 11.36, determine the form of a particular solution to L(y) = ¢(x) for ¢(x) as given if the solution

5.

to the associated homogeneous equation L(y) = 0 is y, = c;e>* cos 3x + c,¢>* sin 3x.

11.27. ¢(x)=2&* 11.28. ¢(x) = xe*

11.29. ¢(x) =-23¢> 11.30.  ¢(x) = (x* = Ne™

1131 ¢(x)=5cosv2x 1132, §(x)=x"sinV2x
11.33. ¢(x) =—cos 3x 11.34. ¢(x) =2 sin 4x — cos 7x
11.35. ¢(x) =31e™ cos 3x 11.36. ¢(x)=— ées" cos3x

In Problems 11.37 through 11.43, determine the form of a particular solution to L(x) = ¢(f) for ¢(¢) as given if the solution
to the associated homogeneous equation L(x) = 0 is x;, = ¢1 + cze’ + cste’.

11.37. ¢()=t 11.38. ¢()=21—31+82
11.39. ¢()=te ¥ +3 11.40. () =—6¢'
1141 o) =te' 1142, ¢(t)=3 +1cost

11.43. ¢(f) = te* cos 3t

In Problems 11.44 through 11.52, find the general solutions to the given differential equations.

1144, v -2y +y=x>—1 1145, v -2y +y=3e*
11.46. y"—2y'+y=4cosx 11.47. y" =2y +y=3¢"
11.48. y"—2y +y=xe* 11.49. y—y=¢"

11.50. v —y=xe*+1 11.51. y" —y=sinx+ cos 2x

11.52. y”7-3y"+3y —y=¢€"+1



Variation of
Parameters

Variation of parameters is another method (see Chapter 11) for finding a particular solution of the nth-order
linear differential equation

L) =¢(x) (12.1)

once the solution of the associated homogeneous equation L(y) =0 is known. Recall from Theorem 8.2 that if
vi(x), ¥2(x), ... , v,(x) are n linearly independent solutions of L(y) = 0, then the general solution of L(y) =0 is

¥, =y, (x)+ ey, (x)+-+c,y, (x) (12.2)

THE METHOD
A particular solution of L(y) = ¢ (x) has the form

Y, =V vy, ety (12.3)

where y;=y{x) (i=1,2,...,n)is givenin Eq. (/12.2)and v; (i =1, 2, ... , n) is an unknown function of x which
still must be determined.
To find v;, first solve the following linear equations simultaneously for v;":

o3+ Ly, =0
Vg ¥t 9,y =0
fo(n—2) s (n=2) f o (n=2) ([24}
vy Ty et vy =0

oy 5 =
T e 3 =00

Then integrate each v/ to obtain v, disregarding all constants of integration. This is permissible because we are
seeking only ene particular solution.
Example 12.1. For the special case n =3, Eqgs. (/12.4) reduce to
v |’_"| + \’2’_\'2 + l‘_{_\‘j =0
viyi+vays +viyi=0 (12.5)
VIXTHvayy +viys = 0(x)
103
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For the case n =2, Egs. (12.4) become

vy, +v3y, =0

VIV viyi = 9(%) (12.6)

and for the case n =1, we obtain the single equation
= 9 (12.7)
Since y;(x), y5(x), ..., v,(x) are n linearly independent solutions of the same equation L(y) =0, their

Wronskian is not zero (Theorem 8.3). This means that the system (/2.4) has a nonzero determinant and can be
solved uniquely for v{(x), v5(x), ... ,v,(X).

SCOPE OF THE METHOD

The method of variation of parameters can be applied to all linear differential equations. It is therefore more
powerful than the method of undetermined coefficients, which is restricted to linear differential equations with
constant coefficients and particular forms of ¢(x). Nonetheless, in those cases where both methods are applicable,
the method of undetermined coefficients is usually the more efficient and, hence, preferable.

As a practical matter, the integration of v/(x) may be impossible to perform. In such an event, other methods
(in particular, numerical techniques) must be employed.

Solved Problems

12.1. Solve y” +y = sec x.

This is a third-order equation with
Yp=C1+CyCO8 X+ Cy8in X
(see Chapter 10); it follows from Eq. (/2.3) that
¥p =¥+ ¥, €08 X+ v 8in X @)
Here y; =1, y, = cos x, y3 =sin x, and ¢(x) = sec x, so (I2.5) becomes
vi(1) + v5(cos x) + v4(sin x) = 0

v{(0) + v5(=sin x) + v4(cos x) =0

v1(0) + v;(—cos x) + v5(—sin x) = sec x

Solving this set of equations simultaneously, we obtain v{ = sec x, v =—1, and v3 = —tan x. Thus,

v, = J.vf dx = J.secx dx =1Inlsecx + tan x|
v, :J.v; dx :J.—l dx=—x

sin x
Vs :J.vg dx :J.—tanx dx:—J.—dx: In lcos x|
COosX

Substituting these values into (), we obtain
¥, =InIsec x + tan xI — x cos x + (sin x) In lcos xI
The general solution is therefore

Y=Yp+yp=C1+ ¢y 008 X+ css8in X+ In Isec x + tan x| — x cos x + (sin x) In Icos x|
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X

12.2. Solve y” —3y"+2y' =

I+e™
This is a third-order equation with
Vi =€) + " + c3€F
(see Chapter 10); it follows from Eq. (12.3) that
Yp=V1+ e+ v3ezx @)

Here y, =1, vy, =¢", y3 =¥, and ¢ (x) = &%/(1 + &™), so Eq. (12.5) becomes

V(D) +vy(e") +vi(e™) =0

Vi(0) + vy (") + v5(2¢”) =0

x

V(0) + vy (") + Vi (de™) =
1+e

Solving this set of equations simultaneously, we obtain

, 1 e
== -
21 1+¢e™*
, 1 e”
V3=— =
201+e™

Thus, using the substitutions # =e¢*+ 1 and w = 1 + ¢™*, we find that

1 e 1y €
y, =— dx=— e*dx
! 2'[1+e”‘ 2'[ex+1

1eu—-1 1
:—J.M—du:—u—llnlul

29 u 2 2

1 1
=—(e"+1)—=In(e" +1

2( ) 2 ( )

e[

:—J.ﬂ:—lnlulz—ln(e"+l)
u

1 —X
vy =— ¢ — dx:—l d—W:—llnlwlz—lln(l+e”‘)
2714¢" 279w 2 2

Substituting these values into (), we obtain
1 x 1 X x x 1 —X 2x
v, =z +)—=In(e" +1) |+[-In(e" +D]e" +|—=In(1+e7") |e
2 2 2
The general solution is
x 2x 1 X 1 x X x 1 2x —X
Y=V FY, =t oe toe +E(e +1)—Eln(e +1)—¢€"In (e +1)—Ee In(1+¢™)

This solution can be simplified. We first note that
In(I+e®=Inle e+ 1D]=ne*+In(+1)=-1+In(e"+1)

1 2x —X 1 2x X 1 2x 1 2x X
SO ——e"In(l+e)=—=e"[~1+In(e" +D)]==€e"—=e"In(e" +1
5 ( ) > [ ( )] 5 5 ( )
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Then, combining like terms, we have

1 1 1Y, 1 1,
=l +=|+H|l+=le+H|lg+=— e +|———e"—=¢e" |In(e" +1
y [1 2] [2 2] [3 2] |:2 5 :| ( )

=c,+ ¢+ — %[1 +2e* + (e ln(e" + 1)

M 1o, M . 1 1 1
=c, + e+l —E(e +1)%1In (e +1)[WlthC4ZC1+E, cszcz+5, c6:cs+5]

X

e
12.3. Solve y" -2y +y=—.
X
Here n=2 and y;, = c1€* + ¢,xe"; hence,
Yp =€+ vpxe’ @)
Since y; = €, y, = x€*, and @(x) = €*/x, it follows from Eq. (/2.6) that
vi(e") + v (xe") =0
V(") + vy (e* + xe*) = <
X
Solving this set of equations simultaneously, we obtain v{ =—1 and v; = 1/x. Thus,

vlz'[vfdx:'[—ldx:—x

vzz'[v; dx:jidlenlxl

Substituting these values into (), we obtain
¥y =—xe* +xe* In Ixl
The general solution is therefore,
Y=y, +y,=ce +cxe’ —xe’ + xe'In x|

_ X X X —
=ce’ +coxe’ +xe’ Inlxl (c;=c¢,-1)

124. Solvey’ —y —2y=¢>
Here n=2 and y, = c;e™* + c,¢”*; hence,
Y= e+ vzez" @)
Since y; = e, y,= €%, and ¢(x) = &%, it follows from Eq. (/2.6) that
V(e +v3(e) =0
Vi(—e™) +v5(2e¥) = &F

Solving this set of equations simultaneously, we obtain v{=—e*/3 and v} = %3, from which v, =—e*/12 and
v, = ¢"/3. Substituting these results into (1), we obtain

1 o1 1 1 1
yp:__e4xe x+_ex62x:__63x+_63x2263x

12 3 12 3
The general solution is, therefore,

_ 1
y=ce +ce + Zes"

(Compare with Problem 11.2.)
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12.5. Solve ¥ + 4x =sin*21.

12.6.

This is a second-order equation for x(f) with
X, = ¢, cos 2t + ¢, sin 2¢
It follows from Eq. (12.3) that

X, =1 €Os 2 + v, sin 2¢ @)

where v; and v, are now functions of £. Here x; = cos 2, x, = sin 2f are two linearly independent solutions of the
associated homogeneous differential equation and ¢ (¢) = sin>2¢, so Eq. (12.6), with x replacing y, becomes

v{ cos 2t +v;sin 2t =0
v{(=2 sin 2£) + v5(2 cos 2f) = sin’ 2t

The solution of this set of equations is
1.
v =—=sin’ 2t
2

1.
v, = Esm2 2t cos2t

1¢. 1 1
Thus, v =— —J.sm3 2¢ dt = =c0s2t ——cos’ 21
2 4 12
1p., 1 .5
v, = —J.sm 2t cos2t dt =—sin” 2t
2 12
Substituting these values into (), we obtain
1 1 4 1 .5 .
X, =|—c082t ——cos 2f |cos2f +| —sin” 2f |sin 2f
Fol4 12 12
= lcos2 2t — i(cos4 21 —sin*2f)
4 12
1 1 . .
=cos’ 2t — —(cos® 2t — sin® 2f)(cos® 2¢ + sin” 2¢)
4 12
= lcos2 2t + isin2 2t
6 12
because cos? 2¢ + sin® 2¢ = 1. The general solution is

. 1 1 .
X=X, +x,=0¢c082t+c, s1n21+gcos221+—sm221

d°N _ dN
e 2t = + 2N =tInt if itis known that two linearly independent solutions of the associated

Solve 12

homogeneous differential equation are ¢ and 72,

We first write the differential equation in standard form, with unity as the coefficient of the highest derivative.
Dividing the equation by £, we obtain

2
N _2dv3y L,
dt tdt t

with ¢ () = (1/¢) In t. We are given N, = t and N, = £* as two linearly independent solutions of the associated second-
order homogeneous equation. It follows from Theorem 8.2 that

Ny=cyt +cpt?
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12.8.
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We assume, therefore, that

N,

=Vt + v212

Equations (12.6), with N replacing y, become
Vi) + V(1) =0
4 4 1
v +v, (20 = ;lnt
The solution of this set of equations is

1 1
vi=—=Int and v,==In¢
t t

Thus, vlz—'[%lntdt :—%lnzt

v, :J.%zlntdl:—%lnt—%

and (1) becomes

N = —llnzt [+ —llnt—l tzz—ilnzt—tlnt—t
’ 2 t t 2

The general solution is

t
N=N,+N,=ct+ct’ —=In’t—tInt—¢
2

t .
=ct+et —Elnzt—tlnt (with ey =¢; —1)

4
Solve y'+ —y = x*.
X
Here n=1 and (from Chapter 6) y, = c;x™* hence,

— oy
Yp=V1X

o)

o)

Since y;=x* and ¢(x)=x* Eq. (/2.7) becomes vix*=x* from which we obtain v{=x% and v;=2x9.

Equation (/) now becomes y, = x°/9, and the general solution is therefore
41
y=cxt+ §x5

(Compare with Problem 6.6.)

Solve y® = 5x by variation of parameters.
Here n=4 and y, = ¢; + ¢, + c3x% + c,x>; hence,
Vp =V + vax + v 4 v
Since y; =1, y,=x, 3 =x%, y4=x°, and ¢ (x) = 5x, it follows from Eq. (12.4), with n =4, that
V(1) +v500 + v () +v;(%) =0
v{(0) + v5(1) + v(2x) + v4(3xH) =0
v1(0) + v5(0) + v3(2) + v4(6x) =0
v1(0) + v5(0) + v3(0) + v4(6) = 5x

o)
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Solving this set of equations simultaneously, we obtain

v ——§x4 v'—éx3 v;=—§ 2 v4:§x
6 2 6
whence v, :—lx5 v, :§x4 Vv, :—éx3 v, —ix2
6 8 6 12
Then, from (1),
1 5 5 4 5 3 2 5 2 3 1 5
=— =X+ =X () - =X (x)+—=x"(x)=—x
Yo 6 8 =) 6 =) 12 ) 24

and the general solution is

1
v, =¢ +ox+ext +e,x + st

The solution also can be obtained simply by integrating both sides of the differential equation four times with
respect to x.

Supplementary Problems

Use variation of parameters to find the general solutions of the following differential equations:

12.9.

12.11.

12.13.
12.14.

12.15.
12.16.

12.18.

12.20.

12.22.

12.23.

12.24.

12.25.

12.27.

12.29.

12.30.

X

y"—2y’+y:% 1210. y"+y=secx
y' -y -2y=e 1212.  y’ — 60y’ — 900y = 5¢10

y//_7y/:_3

1 1 . . .
V+—=y - — y=Inx if two solutions to the associated homogeneous problem are known to be x and 1/x.
x x

x2y” — xy’ = x°¢* if two solutions to the associated homogeneous problem are known to be 1 and x2.

;1
y-—y=x' 1217. Y +2xy=x
X

Yy =12 12.19. x-2x+x=f—3
31

¥-6i+9x="2 1221, 5+ 4x =4sec’ 2
t

¥4 +3x=
1+¢

(f =¥ — 265 + 2x = (> — 1)* if two solutions to the associated homogeneous equations are known to be ¢ and £ + 1.

E+DX+ 2% — 2+ Hx =1t +1)* if two solutions to the associated homogeneous equations are known to be
¢ and 1t.

i

‘r“—3‘r‘+3r‘—r=e? 1226 # 467 +127 + 8 =12¢7%

3 2 36
7= 5% 4257 - 1257 =1000 1228, 4L 54z & ¢
d6° Tde* " Tdo 1+

£ +3t*y =1 if three linearly independent solutions to the associated homogeneous equations are known to be
1/t,1, and ¢.

¥ — 4y =30



Initial-Value
Problems for Linear
Differential Equations

Initial-value problems are solved by applying the initial conditions to the general solution of the differential
equation. It must be emphasized that the initial conditions are applied only to the general solution and not to the
homogeneous solution y;,, even though it is yj, that possesses all the arbitrary constants that must be evaluated.
The one exception is when the general solution is the homogeneous solution; that is, when the differential equation
under consideration is itself homogeneous.

Solved Problems

13.1. Solvey” -y —2y=4x* y(0)= 1,y (0)=4.

The general solution of the differential equation is given in Problem 11.1 as
y=ce e — 2624+ 2x -3 (1)
Therefore. Y =—cie + 20,67 —dx + 2 (2)
Applying the first initial condition to (/), we obtain
W(0) =167 + ™™ = 2(00* +2(0) - 3 = | or ¢ t+ce=4 (3)
Applying the second initial condition to (2), we obtain
V(0)=—c1e® + 20, —40) +2=4  or —e;+2c,=2 (4)

Solving (3) and (4) simultaneously, we find that ¢; = 2 and ¢, = 2. Substituting these values into (/), we obtain the
solution of the initial-value problem as

y=2e"+2e"-2x>+2x—3

110
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13.2.

13.3.

X

Solve y" =2y +y = %; W1)=0,y(1)=1.
The general solution of the differential equation is given in Problem 12.3 as
y=c1€" + c3xe’ + xe* In Ixl @)
Therefore, Y =€ + 3 + o3xe’ + € In x| + xe¥ In 1x] + & 2
Applying the first initial condition to (/), we obtain
Y1) =ciet +c;(Del + (el In 1=0
or (noting that In 1 =0),
cie+tce=0 &)
Applying the second initial condition to (2), we obtain
YD) =cie +czel +es(Det +elln 1+ (Delln1+el=1
or cie+2c¢=1—-¢ €))

Solving (3) and (4) simultaneously, we find that ¢; = —c; = (¢ — 1)/e. Substituting these values into (/), we obtain
the solution of the initial-value problem as

y=¢e"Ye—1)(1—x)+xe* In Ixl

Solve v” + 4y + 8y =sin x; y(0) = 1, y'(0) = 0.

Here y;, = e >(c; cos 2x + ¢, sin 2x), and, by the method of undetermined coefficients,

¥, =—=Sinx ——cosx
65

65

Thus, the general solution to the differential equation is

7 4

—2x . .

=¢ 7(c;co82x + ¢,81n2x) + —sin X ——COS X 1
y (¢ 2 ) 65 65 )
Therefore,

v =-2e(c,co82x + ¢, sin2x) + € ¥ (—2¢, sin 2x + 2¢, cos2x) + écosx + %sin X 2

Applying the first initial condition to (/), we obtain

69

¢, =— 3
175 &)

Applying the second initial condition to (2), we obtain
—2c,+2c, =~ Z (C))]

65

Solving (3) and (4) simultaneously, we find that ¢; = 69/65 and ¢, = 131/130. Substituting these values into (1),
we obtain the solution of the initial-value problem as

[ 69 131 . 7 . 4
=¢ —co082x+ ——sin2x |+ —sinx ——cCcosx
65 130 65 65



112

13.4.

13.5.

13.6.

INITIAL-VALUE PROBLEMS [CHAP. 13

Solve y” —6y" + 11y — 6y =0, y(m) =0, y'(m) =0, y"(m) = 1.

From Problem 10.1, we have
V= 15 + Cpe® + 03¢ €))

Vi = c1€° + 20,67 + 3c3e™
Vi = 016"+ dc,e™ + 9cze

Since the given differential equation is homogeneous, y, is also the general solution. Applying each initial condition
separately, we obtain
V() = c1€" + 2"+ 33" =0

V() = c1€™ + 20,€* + 30, =0
V(1) = ¢+ dcye?™ + 9cze’ =1

Solving these equations simultaneously, we find

1 27 1 —3r

— —7 — _ —
c,=—e’" c,=-¢ c

Substituting these values into the first equation (I), we obtain

1 _ 1 5
y:Ee(x ™ _ 2w o 2 30w

Solve % + 4x = sin?2t; x(0) = 0, %(0) = 0.

The general solution of the differential equation is given in Problem 12.5 as

x=c¢cos2t+c, sin21+éc05221+%sin2 2t )
Therefore, X =-2c sin2t +2c, cos2t — %cos 2tsin2t (2)
Applying the first initial condition to (/), we obtain

x(O)=c, + l =0
6
Hence ¢; =—1/6. Applying the second initial condition to (2), we obtain
x(0)=2¢, =0

Hence ¢, = 0. The solution to the initial-value problem is

x=-— école + lcos2 2t + isin221

Solve ¥+ 4x = sin? 21, x(7/8) = 0, #(7/8) = 0.

The general solution of the differential equation and the derivative of the solution are as given in (/) and (2)
of Problem 13.5. Applying the first initial condition, we obtain

T T .z 1 L, 1 . ,r
0=x| = |=c,cos—+¢,sin—+—=cos” — +—sin" —
8 4 4 6 4 12

zclﬁmﬁg[i} 1[1]

2 2 6l2] 1212

or c1+c2:—— (])
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Applying the second initial condition, we obtain

. 1 .
0=x Il=- 2¢, s1nZ +2¢, cosZ ——coszsmE
8 4 4 3 4

4
££[£][£]
2 2 31 2 2
or —cl+c2:£ 2
12

Solving (/) and (2) simultaneously, we find that
1) :—i 2 and ¢, :—L\/E
48 48
whereupon, the solution to the initial-value problem becomes

5 1 . 1 1 .
Xx=—— 200521——\/5s1n21+—c0s221+—s1n221
48 48 6 12

Supplementary Problems

Solve the following initial-value problems.

13.7.

13.8.

13.9.

13.10.

13.11.

13.12.

13.13.

13.14.

13.15.

Y=y =2y="3(0)=1,y(0) =2
Y=y =2y="3(0)=2,y(0) =1
Y=y -2y=0;30)=2,y(0)=1
Y=y =2y=y()=2,y(1)=1
Y+y=xy1)=0y1)=1

v+ 4y =sin® 2x; y(m) = 0, y'(m) =0
Y +y=0;%2)=0,y(2)=0
Y7=12;3(1)=0,y(1)=0,y"(1)=0

J=2y+2y=sin2f+cos 2, y(0) =0, (0) =1



Applications of
Second-Order
Linear Differential
Equations

SPRING PROBLEMS

The simple spring system shown in Fig. 14-1 consists of a mass m attached to the lower end of a spring
that is itself suspended vertically from a mounting. The system is in its equilibrium position when it is at rest.
The mass is set in motion by one or more of the following means: displacing the mass from its equilibrium
position, providing it with an initial velocity, or subjecting it to an external force F(1).

Equilibrium position Initial position at t =0

Z 2

F(1)

Y
Positive x-direction

Fig. 14.1

114
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Hooke’s law: The restoring force F of a spring is equal and opposite to the forces applied to the spring and
is proportional to the extension (contraction) I of the spring as a result of the applied force; that is, I' = —kl,
where k denotes the constant of proportionality, generally called the spring constant.

Example 14.1. A steel ball weighing 128 1b is suspended from a spring, whereupon the spring is stretched 2 ft from its
natural length. The applied force responsible for the 2-ft displacement is the weight of the ball, 128 Ib. Thus, F'=—-128 Ib.
Hooke’s law then gives —128 = —4(2), or k= 64 1b/ft.

For convenience, we choose the downward direction as the positive direction and take the origin to be the
center of gravity of the mass in the equilibrium position. We assume that the mass of the spring is negligible
and can be neglected and that air resistance, when present, is proportional to the velocity of the mass. Thus, at
any time ¢, there are three forces acting on the system: (1) F(¥), measured in the positive direction; (2) a restoring
force given by Hooke’s law as Fy = —kx, k > 0; and (3) a force due to air resistance given by F, =—ax, a> 0,
where a is the constant of proportionality. Note that the restoring force /¢ always acts in a direction that will
tend to return the system to the equilibrium position: if the mass is below the equilibrium position, then x is
positive and —kx is negative; whereas if the mass is above the equilibrium position, then x is negative and —kx
is positive. Also note that because a > O the force F, due to air resistance acts in the opposite direction of the
velocity and thus tends to retard, or damp, the motion of the mass.

It now follows from Newton’s second law (see Chapter 7) that m¥ =—kx —ax+ F(t), or

i+ lpp B FO (14.1)
m m m

If the system starts at =0 with an initial velocity v, and from an initial position x;, we also have the initial
conditions

x(0)=x, x0)=v, (14.2)

(See Problems 14.1-14.10.)

The force of gravity does not explicitly appear in (/4.1), but it is present nonetheless. We automatically
compensated for this force by measuring distance from the equilibrium position of the spring. If one wishes to
exhibit gravity explicitly, then distance must be measured from the bottom end of the natural length of the
spring. That is, the motion of a vibrating spring can be given by

L oa. k F@)
it—d+—x=g+—=
m m m

if the origin, x= 0, is the terminal point of the unstretched spring before the mass m is attached.
ELECTRICAL CIRCUIT PROBLEMS

The simple electrical circuit shown in Fig. 14-2 consists of a resistor R in ohms; a capacitor C in farads;
an inductor L in henries; and an electromotive force (emf) £(7) in volts, usually a battery or a generator, all

O+
E(t)T C
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connected in series. The current / flowing through the circuit is measured in amperes and the charge g on the
capacitor is measured in coulombs.

Kirchhoff’s loop law: The algebraic sum of the voltage drops in a simple closed electric circuit is zero.

It is known that the voltage drops across a resistor, a capacitor, and an inductor are respectively R/, (1/C)q,
and L(dl/dt) where g is the charge on the capacitor. The voltage drop across an emf is —F(?). Thus, from
Kirchhoft’s loop law, we have

d 1
RI+L—+—qg-E®H=0 14.3
ol Q) (14.3)
The relationship between ¢ and / is
7 _dq dl _ d’q

dt di di* (4.4

Substituting these values into (/4.3), we obtain

d’q Rdg 1 1

— ===+ —g=—E( (14.5)

a T Ta et
The initial conditions for g are

d
q(0)=q, 7? =1(0)=1, (14.6)

t=0

To obtain a differential equation for the current, we differentiate Eq. (/4.3) with respect to ¢t and then
substitute Eq. (/4.4) directly into the resulting equation to obtain

d*I Rdl ll_ldE(z)

— = 14.
a*> Ldt LC L dt (14.7)
The first initial condition is /(0) = /;. The second initial condition is obtained from Eq. (/4.3) by solving for
dlldt and then setting ¢ = 0. Thus,

1 R 1
=—FE0)——[, —— 14.8
I3 ) AR LC% ( )

dl
dt =0

An expression for the current can be gotten either by solving Eq. (/4.7) directly or by solving Eq. (/4.5) for
the charge and then differentiating that expression. (See Problems 14.12-14.16.)

BUOYANCY PROBLEMS

Consider a body of mass m submerged either partially or totally in a liquid of weight density p. Such a body
experiences two forces, a downward force due to gravity and a counter force governed by:

Archimedes’ principle: A body in liquid experiences a buoyant upward force equal to the weight of the liquid
displaced by that body.

Equilibrium occurs when the buoyant force of the displaced liquid equals the force of gravity on the body.
Figure 14-3 depicts the situation for a cylinder of radius r and height H where % units of cylinder height are
submerged at equilibrium. At equilibrium, the volume of water displaced by the cylinder is 72/, which provides
a buoyant force of 7r2hp that must equal the weight of the cylinder mg. Thus,
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Positive x-direction
A

Equilibrium state Equilibrium position

T
” x(1)
x=
~ _ . 2 o Water line
1 h
h l

M ————

. -

-

G e e i e

———

Fig. 14.3

Motion will occur when the cylinder is displaced from its equilibrium position. We arbitrarily take the
upward direction to be the positive x-direction. If the cylinder is raised out of the water by x(z) units, as shown
in Fig. 14-3, then it is no longer in equilibrium. The downward or negative force on such a body remains mg
but the buoyant or positive force is reduced to 7r2[h — x(2)]p. It now follows from Newton’s second law that

mit = r’[h— x()|p — mg
Substituting (/4.9) into this last equation, we can simplify it to
mi=— 7rr2x(l)p

2

or i+ 2 Py=0 (14.10)
m

(See Problems 14.19-14.24.)

CLASSIFYING SOLUTIONS

Vibrating springs, simple electrical circuits, and floating bodies are all governed by second-order linear
differential equations with constant coefficients of the form

K+ ax+ax= f(t) (14.11)

For vibrating spring problems defined by Eq. (/4.1), a; = a/m, ay= k/m, and f(f) = F(f)/m. For buoyancy problems
defined by Eq. (14.10), a, =0, ag = mr’p/m, and f(¢) = 0. For electrical circuit problems, the independent variable
x is replaced either by g in Eq. (/4.5) or [ in Eq. (14.7).

The motion or current in all of these systems is classified as free and undamped when f(f) = 0 and a; = 0.
It is classified as free and damped when f(?) 1s identically zero but @, is not zero. For damped motion, there are
three separate cases to consider, depending on whether the roots of the associated characteristic equation (see
Chapter 9) are (1) real and distinct, (2) equal, or (3) complex conjugate. These cases are respectively classified
as (1) overdamped, (2) critically damped, and (3) oscillatory damped (or, in electrical problems, underdamped).
If f(?) is not identically zero, the motion or current is classified as forced.

A motion or current is transient if it “dies out” (that is, goes to zero) as t — . A steady-state motion or
current is one that is not transient and does not become unbounded. Free damped systems always yield transient
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motions, while forced damped systems (assuming the external force to be sinusoidal) yield both transient and
steady-state motions.
Free undamped motion defined by Eq. (/4.11) with ¢; = 0 and f(?) = 0 always has solutions of the form

x(1) = c; cos Wi+ ¢, sin Wt (14.12)

which defines simple harmonic motion. Here ¢y, c,, and @ are constants with @ often referred to as circular
Jfrequency. The natural frequency fis

and it represents the number of complete oscillations per time unit undertaken by the solution. The period of
the system of the time required to complete one oscillation is

r=1
/
Equation (/4.12) has the alternate form
x(1) = (1)* A cos (w1 — ¢) (14.13)

where the amplitude A = ,/cf +¢; , the phase angle ¢ = arctan (c,/c;), and kis zero when ¢, is positive and unity
when c¢; 1s negative.

Solved Problems

14.1. A steel ball weighing 128 1b is suspended from a spring, whereupon the spring is stretched 2 ft from its
natural length. The ball is started in motion with no initial velocity by displacing it 6 in above the equi-
librium position. Assuming no air resistance, find (a) an expression for the position of the ball at any
time 7, and (b) the position of the ball at 1 = /12 sec.

(@) The equation of motion is governed by Eq. (I4.1). There is no externally applied force, so F'(#) =0, and no
resistance from the surrounding medium, so @ = 0. The motion is free and undamped. Here g =32 ft/sec?,

m=128/32 =4 slugs, and it follows from Example 14.1 that k = 64 1b/ft. Equation (/4.1) becomes ¥ + 16x =0.
The roots of its characteristic equation are A = £44, so its solution is

X(f) = c; cos 4t + ¢, sin 4¢ @)
At =0, the position of the ball is x, =—+ ft (the minus sign is required because the ball is initially displaced

above the equilibrium position, which is in the negative direction). Applying this initial condition to (1), we
find that

1 .
3 =x(0) =¢,cos0+c,sin0=c,
so (1) becomes

1 .
x(f)=— Ecos4t +c,sindt

2

The initial velocity is given as v, = O ft/sec. Differentiating (2), we obtain

v(t) = X(t) = 2sin 4t + 4c, cos 4t
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14.2.

14.3.

whereupon 0=v(0)=2sin 0+ 4c,cos 0=4c,

Thus, ¢, =0, and (2) simplifies to
1
x(H)y=— ECOS At )

as the equation of motion of the steel ball at any time .

T 1 4r 1
x| — |=——cos—=—— ft
[12] 2 12 4

() Att=n/12,

A mass of 2 kg is suspended from a spring with a known spring constant of 10 N/m and allowed to come
to rest. It is then set in motion by giving it an initial velocity of 150 cm/sec. Find an expression for the
motion of the mass, assuming no air resistance.

The equation of motion is governed by Eq. (14.1) and represents free undamped motion because there is no
externally applied force on the mass, F(f) = 0, and no resistance from the surrounding medium, ¢ = 0. The mass and
the spring constant are given as m = 2 kg and k = 10 N/m, respectively, so Eq. (14.1) becomes ¥ + 5x =0. The roots
of its characteristic equation are purely imaginary, so its solution is

x()=c, cos/5t + C, sin/5t @)
At =0, the position of the ball is at the equilibrium position xo=0 m. Applying this initial condition to (1),
we find that
0=x(0)=cycos0+c,sin0=¢;

whereupon (/) becomes
x(t) =c,sin Jst )
The initial velocity is given as vy = 150 cm/sec = 1.5 m/sec. Differentiating (2), we obtain

v(t)=x(t) = \/gcz cosx/gt

whereupon, 1.5=v(0)= \/gcz cos0= \/gcz c, = 13 =0.6708

J5

and (2) simplifies to

x(t) = 0.6708 sin~/51 3

as the position of the mass at any time £.

Determine the circular frequency, natural frequency, and period for the simple harmonic motion
described in Problem 14.2.

Circular frequency: w=5=2.236 cycles/sec =2.236 Hz

Natural frequency: f=w/2r= 2£ =0.3559Hz
74

2r

NG

Period: T=1lf= =2.81sec
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14.4.

14.5.

14.6.

14.7.

SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS [CHAP. 14

Determine the circular frequency, natural frequency, and period for the simple harmonic motion
described in Problem 14.1.

Circular frequency: ®=4cycles/sec=4 Hz
Natural frequency: f=427=0.6366 Hz
Period: T=1/f=m2=1.57 sec

A 10-kg mass is attached to a spring, stretching it 0.7 m from its natural length. The mass is started in
motion from the equilibrium position with an initial velocity of 1 m/sec in the upward direction. Find
the subsequent motion, if the force due to air resistance is —90x N.

Taking g = 9.8 m/sec?, we have w = mg = 98 N and k= w/{ = 140 N/m. Furthermore, a = 90 and F(f) = O (there
is no external force). Equation (74.1) becomes

£+ 9% +14x=0 )

The roots of the associated characteristic equation are A; =—2 and A, =—7, which are real and distinct; hence this
problem is an example of overdamped motion. The solution of (7) is

x=ce ¥+ et

The initial conditions are x(0) = O (the mass starts at the equilibrium position) and x(0) =—1 (the initial velocity is
in the negative direction). Applying these conditions, we find that ¢, =—¢, =—+, so that x = %(6’7’ —¢e™™). Note that
x — 0 as t — o0; thus, the motion is transient.

A mass of 1/4 slug is attached to a spring, whereupon the spring is stretched 1.28 ft from its natural length.
The mass is started in motion from the equilibrium position with an initial velocity of 4 ft/sec in the down-
ward direction. Find the subsequent motion of the mass if the force due to air resistance is —2xl1b.

Here m=1/4, a=2, F(t)=0 (there is no external force), and, from Hooke’s law, k=mg/l
= (1/4)(32)/1.28 = 6.25. Equation (I4.1) becomes

¥ +8i+25x=0 )

The roots of the associated characteristic equation are A; = —4 + i3 and A, = —4 — i3, which are complex conjugates;
hence this problem is an example of oscillatory damped motion. The solution of (7) is

x = e ¥(cy cos 3t + ¢, sin 31)

The initial conditions are x(0) =0 and X(0) =4. Applying these conditions, we find that ¢; =0 and ¢, =3, thus,
x= %e"“ sin3t. Since x — 0 as t — oo, the motion is transient.

A mass of 1/4 slug is attached to a spring having a spring constant of 1 1b/ft. The mass is started in motion
by initially displacing it 2 ft in the downward direction and giving it an initial velocity of 2 ft/sec in the
upward direction. Find the subsequent motion of the mass, if the force due to air resistance is —1x1b.

Here m=1/4, a=1, k=1, and F(¢) = 0. Equation (/4.]) becomes
X+4x+4x=0 @)

The roots of the associated characteristic equation are A; = A, = —2, which are equal; hence this problem is an example
of critically damped motion. The solution of (7) is

x=ce ¥+ cpte ™

The initial conditions are x(0) =2 and x(0) = —2 (the initial velocity is in the negative direction). Applying these
conditions, we find that ¢; = ¢, = 2. Thus,

x=2e% 4267

Since x — 0 as f — o0, the motion is transient.
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14.8. Show that the types of motions that result from free damped problems are completely determined by the
quantity a* — 4 km.

For free damped motions F(#) = 0 and Eq. (I4.1) becomes
k
P+ ZLi+—x=0
m m
The roots of the associated characteristic equation are

3 _—a+\[a2—4km 3 =0~ a’ —4km
= =

2m ? 2m

If a*> — 4 km > 0, the roots are real and distinct; if a®> — 4 km = 0, the roots are equal; if @® — 4 km < 0, the roots
are complex conjugates. The corresponding motions are, respectively, overdamped, critically damped, and oscillatory
damped. Since the real parts of both roots are always negative, the resulting motion in all three cases is transient.

(For overdamped motion, we need only note that ,/ a* — 4km < a, whereas for the other two cases the real parts are
both —a/2m.)

14.9. A 10-kg mass is attached to a spring having a spring constant of 140 N/m. The mass is started in motion
from the equilibrium position with an initial velocity of 1 m/sec in the upward direction and with an
applied external force F(f) =5 sin z. Find the subsequent motion of the mass if the force due to air
resistance 18 —90xN.

Here m= 10, k=140, a =90, and F(¢) = 5 sin £. The equation of motion, (/4.1), becomes
. . 1.
x+9x+14x:551nt )

The general solution to the associated homogeneous equation ¥ + 9x + 14x =0 is (see Problem 14.5)
X, =cre X+ e
Using the method of undetermined coefficients (see Chapter 11), we find

X, zﬁsint—icost 2
500 500

The general solution of (7) is therefore

2 o 13 9
xX=x,+x,=ce" +c,e” +——sinf——_——cost

500 500
Applying the initial conditions, x(0) = 0 and x(0) =—1, we obtain

€

=0 (90 +99¢™" +13sint — 9cost)

x =
Note that the exponential terms, which come from X, and hence represent an associated free overdamped motion,

quickly die out. These terms are the transient part of the solution. The terms coming from x,, however, do not die
out as f — o0; they are the steady-state part of the solution.

14.10. A 128-1b weight is attached to a spring having a spring constant of 64 1b/ft. The weight is started in
motion with no initial velocity by displacing it 6 in above the equilibrium position and by simultaneously
applying to the weight an external force F(¢) = 8 sin 4z. Assuming no air resistance, find the subsequent
motion of the weight.

Here m=4, k=64, a=0, and F(¢) = 8 sin 4¢; hence, Eq. (14.1) becomes

% +16x=2sin4s )
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This problem is, therefore, an example of forced undamped motion. The solution to the associated homogeneous
equation is

Xp = cos 4t + ¢, sin 4f

A particular solution is found by the method of undetermined coefficients (the modification described in Chapter 11
is necessary here): x,=—1cos 4z, The solution to (/) is then

. 1
x=c,cos 4 +c, sin 4 — Zl cos 4t
Applying the initial conditions, x(0) =—+ and x(0) =0, we obtain
x:—l cos 4t+i sin 41—11 cos 4¢

Note that x| — oo as f — oo. This phenomenon is called pure resonance. It is due to the forcing function F(¥)
having the same circular frequency as that of the associated free undamped system.

Write the steady-state motion found in Problem 14.9 in the form specified by Eq. (14.13).
The steady-state displacement is given by (2) of Problem 14.9 as
9 13 .
x(f) = ———cost + —sint
500 500

Its circular frequency is @= 1. Here

2 2
A= = + 2 =0.0316
500 500

13/500 =—0.965 radians
500

and ¢ = arctan

The coefficient of the cosine term in the steady-state displacement is negative, so k= 1, and Eq. (/4.13) becomes

x(1) =—0.0316 cos (£ + 0.965)

An RCL circuit connected in series has R = 180 ohms, C = 1/280 farad, L = 20 henries, and an applied
voltage £(#) = 10 sin . Assuming no initial charge on the capacitor, but an initial current of 1 ampere at
t = 0 when the voltage is first applied, find the subsequent charge on the capacitor.

Substituting the given quantities into Eq. (/4.5), we obtain
o 1.
G +9q +14q:5s1nt

This equation is identical in form to (I) of Problem 14.9; hence, the solution must be identical in form to the
solution of that equation. Thus,

Tt

13 . 9
g=ce™ +ce’ + ——sint — —— cost
500

500
Applying the initial conditions g(0) = 0 and ¢(0) =1, we obtain ¢; = 110/500 and ¢, =-101/500. Hence,
q= L(l 10e™® —101e”™" +13sinf — 9cosf)
500
As in Problem 14.9, the solution is the sum of transient and steady-state terms.
An RCL circuit connected in series has R = 10 ohms, C = 1072 farad, I = +henry, and an applied voltage

E =12 volts. Assuming no initial current and no initial charge at 1 = 0 when the voltage is first applied,
find the subsequent current in the system.
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14.14.

14.15.

Substituting the given values into Eq. (74.7), we obtain the homogeneous equation [since E£(f) = 12, dE/dt = 0]

2
d—21+20£+200120
dt dt

The roots of the associated characteristic equation are A; =—10 + 10i and A, = —10 — 10; hence, this is an example
of a free underdamped system for the current. The solution is

I=¢1%(c; cos 10f+ ¢, sin 10£) (1)
The initial conditions are /(0) = 0 and, from Eq. (/4.8),

12 (10 1
T2 (ﬁ](o) C(1/2)1072) (O=24

dl
dt

=0

Applying these conditions to (1), we obtain ¢; =0 and ¢, =%2; thus, [:%e’w’ sin10¢, which is completely
transient.

Solve Problem 14.13 by first finding the charge on the capacitor.

We first solve for the charge g and then use / = dg/dt to obtain the current. Substituting the values given in
Problem 14.13 into Eq. (14.5), we have ¢ +20g +200g =24, which represents a forced system for the charge, in
contrast to the free damped system obtained in Problem 14.3 for the current. Using the method of undetermined
coefficients to find a particular solution, we obtain the general solution

. 3
q=e""(c,cos10t + ¢, sin10¢) + 5

Initial conditions for the charge are g(0) =0 and ¢(0) =0; applying them, we obtain ¢; = ¢, = —3/25. Therefore,

g=—e'" icolet + isinlOlf + 3
25 25 25

dg 12 .
and =% == o gin10r
a 5
as before.
Note that although the current is completely transient, the charge on the capacitor is the sum of both transient
and steady-state terms.

An RCL circuit connected in series has a resistance of 5 ohms, an inductance of 0.05 henry, a capacitor
of 4 x 107*farad, and an applied alternating emf of 200 cos 100z volts. Find an expression for the current
flowing through this circuit if the initial current and the initial charge on the capacitor are both zero.
Here R/L = 5/0.05 = 100, 1/(LC) = 1/[0.05(4 x 107)] = 50,000, and
l@ = L200(—100 sin 100¢) =—400,000 sin 100¢
L dt 0.05
so Eq. (14.7) becomes
2
d—zl + lOOﬂ + 50,000/ = —400,000 sin100¢
dt dt
The roots of its characteristic equation are —50 + 50\/1_91', hence the solution to the associated homogeneous
problem is

I, =ce™ cos 504191 + c,e” sin 50/19¢

Using the method of undetermined coefficients, we find a particular solution to be

I = @ cos 100f — @ sin 100¢
17 17

P
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so the general solution is
. 40 160 .
I=1,+1,=ce™ cos50,/191 + c,e™ sin 50,191 + 'l cos100f — SEl sin100¢
The initial conditions are /(0) = 0 and, from Eq. (/4.8),

dl 200 5 1
= === (-

——(0)=4000
dr|,_, 005 005 0054x10™

Applying the first of these conditions to (/) directly, we obtain
0=171(0)=¢,(1) +c,(0)+ %

or ¢; =—40/17 = —-2.35. Substituting this value into (/) and then differentiating, we find that

% = —2.35(=50¢">" cos 507191 — 504/19¢ ™ sin 504/191)

+¢, (=50e™" sin 50\/1_91 + 50\/1_9€’5°’ cos 50\/1_91) — % sin100¢f — @coslom

whereupon 4000 = % =—2.35(=30) + ¢, (50 \/1_9) _ 16,1(;00

=0

and ¢, = 22.13. Equation () becomes

[ =—2.35¢"" cos 50419t + 22.13¢>" sin 504/19¢ + %COSIOOI - %sinlOOt

14.16. Solve Problem 14.15 by first finding the charge on the capacitor.

Substituting the values given in Problem 14.15 into Eq. (14.5), we obtain

2
% i 100% + 50,000¢ = 4000 cos100¢

[CHAP. 14

o)

The associated homogeneous equation is identical in form to the one in Problem 14.15, so it has the same solution
(with [, replaced by ¢g;). Using the method of undetermined coefficients, we find a particular solution to be

16 4 .
q, =—— c0s100¢ + —— sin100¢
170 170
so the general solution is
501 -50¢ 16 4 .
9=q,+q,=ce c08504/191 + ¢, sin 504/191 + 70 cos 100¢ + 70 sin 100¢

The initial conditions on the charge are g(0) = 0 and

4q

| =10=0

=0
Applying the first of these conditions to (/) directly, we obtain
0=q0)=c,()+c (O)+£
q 1 2 170

or ¢; =—16/170 = — 0.0941. Substituting this value into (/) and then differentiating, we find that
% = —0.0941(=50¢>" cos 504{191 — 504197 sin 504/191)

+c, (=50 sin 50\/1_91 + 50\/1_9€’SO’ cos 50\/1_91) — %Sin 100¢ + % cos100¢

o)

2
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whereupon 0= % =—0.0941(=50) + ¢,(504/19) + %

=0

and ¢, = —0.0324. Substituting this value into (2) and simplifying, we obtain as before

I(t) = %z —2.35¢ cos 504191 + 22.13¢ sin 504191 + % cos100f — % sin100¢ 3

14.17. Determine the circular frequency, the natural frequency, and the period of the steady-state current found
in Problem 14.16.

The current is given by (3) of Problem 14.16. As t — o, the exponential terms tend to zero, so the steady-state

current is
I(H)= 20 cos100f — 160 sin100¢
17 17
Circular frequency: ®=100 Hz
Natural frequency: f=w/2r=10027x=1592 Hz
Period: T=1/f=2#100=0.063 sec

14.18. Write the steady-state current found in Problem 14.17 in the form specified by Eq. (14.13).

2 2
A= 20 + _1e0 =9.701
17 17

o= arctan%(/)l/;7 =—1.326 radians

The circular frequency is @= 100. The coefficient of the cosine term is positive, so k=0 and Eq. (/4.13) becomes

The amplitude is

and the phase angle is

1,(1)=9.701 cos (100¢ + 1.326)

14.19. Determine whether a cylinder of radius 4 in, height 10 in, and weight 15 1b can float in a deep pool of
water of weight density 62.5 Ib/f¢.

Let /i denote the length (in feet) of the submerged portion of the cylinder at equilibrium. With r = £ft, it follows
from Eq. (14.9) that

ms _ L: 0.688 ft =8.251in

:nz - 2
TP n(%] 62.5

Thus, the cylinder will float with 10 — 8.25=1.75 in of length above the water line at equilibrium.

14.20. Determine an expression for the motion of the cylinder described in Problem 14.19 if it is released with
20 percent of its length above the water line with a velocity of 5 ft/sec in the downward direction.

Here 7 = 1t, p = 62.5 Ib/f, m = 15/32 slugs and Eq. (14.10) becomes

X +465421x =0
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The roots of the associated characteristic equation are +4/46.5421i =+ 6.82i; the general solution of the differential
equation is

X(f) = ¢; cos 6.82¢+ ¢, sin 6.82¢ @)
At =0, 20 percent of the 10-in length of the cylinder, or 2 in, is out of the water. Using the results of Problem 14.19,
we know that the equilibrium position has 1.75 in above the water, so at £ =0, the cylinder is raised 1/4 in or 1/48 ft
above its equilibrium position. In the context of Fig. 14-3, x(0) = 1/48 ft. The initial velocity is 5 ft/sec in the down-

ward or negative direction in the coordinate system of Fig. 14-3, so X(0) =— 5. Applying these initial conditions to
(1), we find that

¢ :%:0.021 and ¢, :6_—52=—0.73

Equation (I) becomes
x(#) =0.021 cos 6.82¢ — 0.73 sin 6.82¢

Determine whether a cylinder of diameter 10 cm, height 15 cm, and weight 19.6 N can float in a deep
pool of water of weight density 980 dynes/cm?.

Let £ denote the length (in centimeters) of the submerged portion of the cylinder at equilibrium. With =5 cm
and mg = 19.6 N = 1.96 x 10° dynes, it follows from Eq. (/4.9) that

6
_ ng _ 1.962><10 —155
wr p  7w(5)7(980)

Since this is more height than the cylinder possesses, the cylinder cannot displace sufficient water to float and will
sink to the bottom of the pool.

Determine whether a cylinder of diameter 10 cm, height 15 cm, and weight 19.6 N can float in a deep
pool of liquid having weight density 2450 dynes/cm?.

Let /& denote the length of the submerged portion of the cylinder at equilibrium. With =5 cm and mg = 19.6 N
=1.96 x 10° dynes, it follows from Eq. (14.9) that

_mg _ 1.96x10°
nr’p  m(5)(2450)

Thus, the cylinder will float with 15— 10.2 = 4.8 cm of length above the liquid at equilibrium.

Determine an expression for the motion of the cylinder described in Problem 14.22 if it is released at
rest with 12 cm of its length fully submerged.

Here » =5 cm, p = 2450 dynes/cm>, m = 19.6/9.8 = 2 kg = 2000 g, and Eq. (14.10) becomes
X+96.21x=0

The roots of the associated characteristic equation are +4/96.21; =+ 9.8i; the general solution of the differential
equation is

x(t) =¢; cos 9.81¢+ ¢, sin 9.81¢ @)

At =0, 12 cm of the length of the cylinder is submerged. Using the results of Problem 14.22, we know that the
equilibrium position has 10.2 cm submerged, so at =0, the cylinder is submerged 12 —10.2 = 1.8 cm below its
equilibrium position. In the context of Fig. 14-3, x(0) = —1.8 cm with a negative sign indicating that the equilibrium
line 1s submerged. The cylinder begins at rest, so its initial velocity is £(0) =0. Applying these initial conditions to
(1), we find that ¢; =—1.8 and ¢, = 0. Equation (/) becomes

x(t)= —1.8 cos 9.81¢
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14.24.

14.25.

A solid cylinder partially submerged in water having weight density 62.5 Ib/f€, with its axis vertical, oscil-
lates up and down within a period of 0.6 sec. Determine the diameter of the cylinder if it weighs 2 Ib.

With p = 62.5 Ib/ft® and m = 2/32 slugs, Eq. (14.10) becomes

¥ +10007r’x =0

which has as its general solution
x(£) = ¢, cos{10007rt + ¢, sin V100077t )

Its circular frequency is @ =r+/10007; its natural frequency is f=/27x =ry250/ 7 =8.92r; its period is
T=1/f=1/892r. We are given 0.6 =T = 1/8.92r, thus r = 0.187 ft = 2.24 in with a diameter of 4.48 in.

A prism whose cross section is an equilateral triangle with sides of length / floats in a pool of liquid of
weight density p with its height parallel to the vertical axis. The prism is set in motion by displacing it
from its equilibrium position (see Fig. 14-4) and giving it an initial velocity. Determine the differential
equation governing the subsequent motion of this prism.

Equilibrium occurs when the buoyant force of the displaced liquid equals the force of gravity on the body. The
area of an equilateral triangle with sides of length /is A= J312/4. For the prism depicted in Fig. 14-4, with 4 units
of height submerged at equilibrium, the volume of water displaced at equilibrium is NN 4, providing a buoyant
force of \Elzhp /4. By Archimedes’ principle, this buoyant force at equilibrium must equal the weight of the prism
mg; hence,

Blhpld=mg 0

We arbitrarily take the upward direction to be the positive x-direction. If the prism is raised out of the water by
x(?) units, as shown in Fig. 14-4, then it is no longer in equilibrium. The downward or negative force on such a body
remains /ng but the buoyant or positive force is reduced to \/3_ PPLh— x(H)]p /4. It now follows from Newton’s second
law that

2 —
e SOl
4
Substituting (/) into this last equation, we simplify it to

JBlp

4m

X+ x=0

Positive x-direction
A

Equilibrium state Equilibrium position

Water line

-
e ———
~
rd
£

Fig. 14.4
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Supplementary Problems

A 10-1b weight is suspended from a spring and stretches it 2 in from its natural length. Find the spring constant.
A mass of 0.4 slug is hung onto a spring and stretches it 9 in from its natural length. Find the spring constant.
A mass of 0.4 g is hung onto a spring and stretches it 3 cm from its natural length. Find the spring constant.

A mass of 0.3 kg is hung onto a spring and stretches it 15 cm from its natural length. Find the spring constant.

A 20-1b weight is suspended from the end of a vertical spring having a spring constant of 40 1b/ft and is allowed to
reach equilibrium. It is then set into motion by stretching the spring 2 in from its equilibrium position and releasing
the mass from rest. Find the position of the weight at any time ¢ if there is no external force and no air resistance.

Solve Problem 14.30 if the weight is set in motion by compressing the spring by 2 in from its equilibrium position
and giving it an initial velocity of 2 ft/sec in the downward direction.

A 20-g mass is suspended from the end of a vertical spring having a spring constant of 2880 dynes/cm and is
allowed to reach equilibrium. It is then set into motion by stretching the spring 3 cm from its equilibrium position
and releasing the mass with an initial velocity of 10 cm/sec in the downward direction. Find the position of the mass
at any time ¢ if there is no external force and no air resistance.

A 32-1b weight is attached to a spring, stretching it 8 ft from its natural length. The weight is started in motion by
displacing it 1 ft in the upward direction and by giving it an initial velocity of 2 ft/sec in the downward direction.
Find the subsequent motion of the weight, if the medium offers negligible resistance.

Determine (a) the circular frequency, (b) the natural frequency, and (c¢) the period for the vibrations described in
Problem 14.31.

Determine (a) the circular frequency, (b) the natural frequency, and (c¢) the period for the vibrations described in
Problem 14.32.

Determine (a) the circular frequency, (b) the natural frequency, and (c¢) the period for the vibrations described in
Problem 14.33.

Find the solution to Eq. (/4.1) with initial conditions given by Eq. (/4.2) when the vibrations are free and
undamped.

A 1-slug mass is hung onto a spring, whereupon the spring is stretched 6 in from its natural length. The mass is
then started in motion from the equilibrium position with an initial velocity of 4 ft/sec in the upward direction. Find
the subsequent motion of the mass, if the force due to air resistance is —2x 1b.

A L-slug mass is attached to a spring so that the spring is stretched 2 ft from its natural length. The mass is started
in motion with no initial velocity by displacing it 2ft in the upward direction. Find the subsequent motion of the
mass, if the medium offers a resistance of —4x 1b.

A L-slug mass is attached to a spring having a spring constant of 6 Ib/ft. The mass is set into motion by displacing
it 6 in below its equilibrium position with no initial velocity. Find the subsequent motion of the mass, if the force
due to the medium is —4x Ib.

A 1-kg mass is attached to a spring having a spring constant of 8 N/m. The mass is set into motion by displacing
it 10 cm above its equilibrium position with an initial velocity of 2 m/sec in the upward direction. Find the
subsequent motion of the mass if the surrounding medium offers a resistance of —4xN.

Solve Problem 14.41 if instead the spring constant is 8.01 N/m.

Solve Problem 14.41 if instead the spring constant is 7.99 N/m.
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A 1-slug mass is attached to a spring having a spring constant of 8 Ib/ft. The mass is initially set into motion from
the equilibrium position with no initial velocity by applying an external force F(f) = 16 cos 4¢. Find the subsequent
motion of the mass, if the force due to air resistance is —4x b.

A 64-1b weight is attached to a spring whereupon the spring is stretched 1.28 ft and allowed to come to rest. The
weight is set into motion by applying an external force F(¥) = 4 sin 2¢. Find the subsequent motion of the weight if
the surrounding medium offers a negligible resistance.

A 128-1b weight is attached to a spring whereupon the spring is stretched 2 ft and allowed to come to rest. The weight is
set into motion from rest by displacing the spring 6 in above its equilibrium position and also by applying an external
force F(f) =8 sin 4+ Find the subsequent motion of the weight if the surrounding medium offers a negligible resistance.

Solve Problem 14.38 if, in addition, the mass is subjected to an externally applied force F(f) = 16 sin 8t.

A 16-1b weight is attached to a spring whereupon the spring is stretched 1.6 ft and allowed to come to rest. The
weight is set into motion from rest by displacing the spring 9 in above its equilibrium position and also by applying
an external force F(#) =5 cos 2¢t. Find the subsequent motion of the weight if the surrounding medium offers a
resistance of —2x1b.

Write the steady-state portion of the motion found in Problem 14.48 in the form specified by Eq. (14.13).

A 1-kg mass is attached to a spring having a spring constant of 6 N/m and allowed to come to rest. The mass is set
into motion by applying an external force F(f) = 24 cos 31 =33 sin 3£. Find the subsequent motion of the mass if the
surrounding medium offers a resistance of —3x N.

Write the steady-state portion of the motion found in Problem 14.50 in the form of Eq. (14.13).

An RCL circuit connected in series with R =6 ohms, C'=0.02 farad, and L= 0.1 henry has an applied voltage
E(#) =6 volts. Assuming no initial current and no initial charge at £ = 0 when the voltage is first applied, find the
subsequent charge on the capacitor and the current in the circuit.

An RCL circuit connected in series with a resistance of 5 ohms, a condenser of capacitance 4 X 10 farad, and an
inductance of 0.05 henry has an applied emf E(#) = 110 volts. Assuming no initial current and no initial charge on the
capacitor, find expressions for the current flowing through the circuit and the charge on the capacitor at any time £.

An RCL circuit connected in series with R = 6 ohms, C =0.02 farad, and L. = 0.1 henry has no applied voltage. Find
the subsequent current in the circuit if the initial charge on the capacitor is 7 coulomb and the initial current is zero.

An RCL circuit connected in series with a resistance of 1000 ohm, a condenser of capacitance 4 X 107 farad, and
an inductance of 1 henry has an applied emf E(f) = 24 volts. Assuming no initial current and no initial charge on the
capacitor, find an expression for the current flowing through the circuit at any time .

An RCL circuit connected in series with a resistance of 4 ohms, a capacitor of 1/26 farad, and an inductance of
1/2 henry has an applied voltage E(f) = 16 cos 2¢. Assuming no initial current and no initial charge on the capacitor,
find an expression for the current flowing through the circuit at any time 7.

Determine the steady-state current in the circuit described in Problem 14.56 and write it in the form of Eq. (14.13).
An RCL circuit connected in series with a resistance of 16 ohms, a capacitor of 0.02 farad, and an inductance of
2 henries has an applied voltage £(f) = 100 sin 3¢. Assuming no initial current and no initial charge on the capacitor,
find an expression for the current flowing through the circuit at any time 7.

Determine the steady-state current in the circuit described in Problem 14.56 and write it in the form of Eq. (14.13).

An RCL circuit connected in series with a resistance of 20 ohms, a capacitor of 107 farad, and an inductance of
0.05 henry has an applied voltage E(f) = 100 cos 200z. Assuming no initial current and no initial charge on the
capacitor, find an expression for the current flowing through the circuit at any time .

Determine the steady-state current in the circuit described in Problem 14.60 and write it in the form of Eq. (14.13).
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An RCL circuit connected in series with a resistance of 2 ohms, a capacitor of 1/260 farad, and an inductance of
0.1 henry has an applied voltage E(#) = 100 sin 60f. Assuming no initial current and no initial charge on the capacitor,
find an expression for the charge on the capacitor at any time 7.

Determine the steady-state charge on the capacitor in the circuit described in Problem 14.62 and write it in the form
of Eq. (14.13).

An RCL circuit connected in series has R = 5 ohms, C = 107 farad, L =1 henry, and no applied voltage. Find the
subsequent steady-state current in the circuit. Hinf: Initial conditions are not needed.

An RCL circuit connected in series with R =5 ohms, C = 107 farad, and L = + henry has applied voltage F() = sin «.
Find the steady-state current in the circuit. Hint: Initial conditions are not needed.

Determine the equilibrium position of a cylinder of radius 3 in, height 20 in, and weight 57 1b that is floating with
its axis vertical in a deep pool of water of weight density 62.5 Ib/ft>,

Find an expression for the motion of the cylinder described in Problem 14.66 if it is disturbed from its equilibrium
position by submerging an additional 2 in of height below the water line and with a velocity of 1 ft/sec in the
downward direction.

Write the harmonic motion of the cylinder described in Problem 14.67 in the form of Eq. (14.13).

Determine the equilibrium position of a cylinder of radius 2 ft, height 4 ft, and weight 600 1b that is floating with
its axis vertical in a deep pool of water of weight density 62.5 1b/ft>,

Find an expression for the motion of the cylinder described in Problem 14.69 if it is released from rest with 1 ft of
its height submerged in water.

Determine (a) the circular frequency, (b) the natural frequency, and (c¢) the period for the vibrations described in
Problem 14.70.

Determine (a) the circular frequency, (b) the natural frequency, and (c¢) the period for the vibrations described in
Problem 14.67.

Determine the equilibrium position of a cylinder of radius 3 cm, height 10 cm, and mass 700 g that is floating with
its axis vertical in a deep pool of water of mass density 1 g/cm?.

Solve Problem 14.73 if the liquid is not water but another substance with mass density 2 g/cm®.

Determine the equilibrium position of a cylinder of radius 30 cm, height 500 cm, and weight 2.5 x 107 dynes that
is floating with its axis vertical in a deep pool of water of weight density 980 dynes/cm’.

Find an expression for the motion of the cylinder described in Problem 14.75 if it is set in motion from its equilib-
rium position by striking it to produce an initial velocity of 50 cm/sec in the downward direction.

Find the general solution to Eq. (/4.10) and determine its period.

Determine the radius of a cylinder weighing 5 Ib with its axis vertical that oscillates in a pool of deep water
(p = 62.5 1b/ft®) with a period of 0.75 sec. Hint: Use the results of Problem 14.77.

Determine the weight of a cylinder having a diameter of 1 ft with its axis vertical that oscillates in a pool of deep
water (p = 62.5 Ib/ft®) with a period of 2 sec. Hint: Use the results of Problem 14.77.

A rectangular box of width w, length /, and height / floats in a pool of liquid of weight density p with its height
parallel to the vertical axis. The box is set into motion by displacing it X, units from its equilibrium position and
giving it an initial velocity of vy. Determine the differential equation governing the subsequent motion of the box.

Determine (a) the period of oscillations for the motion described in Problem 14.80 and (b) the change in that period
if the length of the box is doubled.



