The Laplace
Transform

DEFINITION
Let f(x) be defined for 0 < x < e and let s denote an arbitrary real variable. The Laplace transform of f(x).
designated by either £{ f(x)} or F(s), is
FLf(x)y=F(s)= jm e f(x)dx (21.1)
0
for all values of s for which the improper integral converges. Convergence occurs when the limit
lim [ e f(x)d 212
RILEJ'”.«:' f(x)ydx (21.2)
exists. If this limit does not exist, the improper integral diverges and f(x) has no Laplace transform. When evaluating
the integral in Eq. (21.1), the variable s is treated as a constant because the integration is with respect to x.

The Laplace transforms for a number of elementary functions are calculated in Problems 21.4 through 21.8;
additional transforms are given in Appendix A.

PROPERTIES OF LAPLACE TRANSFORMS

Property 21.1. (Linearity). If £{f(x)} = F(s) and £{g(x)} = G(s), then for any two constants ¢; and ¢,

Flef(x) + cg(x)} = L0} + aF{g(0)} = 1 F(s) + c,G(s) (21.3)
Property 21.2. If £{f(x)} = F(s), then for any constant a

FL{e™f(x)} = F(s —a) (21.4)
Property 21.3. If £{ f(x)} = F(s), then for any positive integer n

n N n d"

Hx"f(x)}=(=1) FIF(S)I (21.5)
R (& N

Property 21.4. If £{f(x)} = F(s) and if lm‘1 —— exists, then

D %
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THE LAPLACE TRANSFORM

sﬁ{i f(x)} = fF(z) dt

Property 21.5. If £{f(x)} = F(s), then

sg{j: £ dz} - %F(s)

Property 21.6. If f(x) is periodic with period @, that is, f(x + ®) = f(x), then

le e f(x)dx
{f()} =m0

1 _ e*U)S‘

FUNCTIONS OF OTHER INDEPENDENT VARIABLES

[CHAP. 21

1.6)

1.7)

(21.8)

For consistency only, the definition of the Laplace transform and its properties, Eqs. (217.7) through (21.8),

are presented for functions of x. They are equally applicable for functions of any independent variable and
are generated by replacing the variable x in the above equations by any variable of interest. In particular, the
counterpart of Eq. (27.1) for the Laplace transform of a function of 7 is

21.1.

21.2.

21.3.

UOy=F =] e fd

Solved Problems

. . . © 1
Determine whether the improper integral .[ — dx converges.
2 x

Since

R
lim Rizdleim(—l] -
R—00d2 X R—>0o X N

the improper integral converges to the value %

Determine whether the improper integral J: 1 dx converges.
X

Since

R
tim [* Ly =limIn x| =lim@nR—1n9)=eo
R—0d9 X R—e0 9 R—>oco

the improper integral diverges.

Determine those values of s for which the improper integral J: edx converges.

For s =0,

sk g o g 1o (R T
Jyerdes] e dv=lim [ ) de=fimx

R
=limR =00
0 R—o0
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hence the integral diverges. For s # 0,

. . 1 x=R
J.O e dx=1lim| e “dx=1im [— —e’”‘}

R—e0d0 R—eo 5

=lim [_—lem +l]
Rl g s

when s < 0, —sR > 0; hence the limit is % and the integral diverges. When s > 0, —sR < O; hence, the limit is 1/s and
the integral converges.

x=0

21.4. Find the Laplace transform of f(x) = 1.

Using Eq. (21.1) and the results of Problem 21.3, we have

F&)= %W = [ e Ode=2 (fors>0)
s
(See also entry 1 in Appendix A.)

21.5. Find the Laplace transform of f(x) = x.

Using Eq. (21.1) and integration by parts twice, we find that

oo R
2 — 2 3 2 -
F(s)=%{x"}= Oe”‘x dx=1im | x‘e¥dx
R—co

2 2 2 x=R
. x° x _

lem|:——€ Y-t e ”‘}
R—eo

s s s o
. R* .z 2R . 2 . 2
=lim|——eF - F -+ =
R s s 5 5

For s <0, limg_,.. [~ (R?/s)e” k] = o0, and the improper integral diverge. For s >0, it follows from repeated use of
[’ Hopital’s rule that

. R ) .. (-R*)Y . (-2R
(=2
_}QIEEG[SSesR]_O

1im[—£eS”]:lim[_%f]zlim[;—i]zo

R—eo Ky R—eo se R‘”"S@

Also, limp_.. [~ (2/5*)e™F] = 0 directly; hence the integral converges, and F(s) = 2/s>. For the special cases s = 0, we have

- - . R
J. e xldx= J. e Oxdx = lim | xidx =lim = oo
0 0 R—e0d0 R—eo 3
Finally, combining all cases, we obtain £{x*} = 2/s>, s > 0. (See also entry 3 in Appendix A.)

21.6. Find ${e*Y}.

Using Eq. (21.1), we obtain

el . R —
F()=%e™y=| e¥e™dx=1lim | ¢“ ™ dx
0 R—00 0
xX=R
) e(a—s)x ) e(a—s)R _ 1
=lim =lim|——
Roel g—g R—e a—s
x=0
1
= (for s > a)

sS—a

Note that when s < a, the improper integral diverges. (See also entry 7 in Appendix A.)
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21.7. Find $£{sin ax}.
Using Eq. (21.1) and integration by parts twice, we obtain

. el _ . . R _ .
{smwc}:J. e ¥sinaxdx =lim | ¢ ¥ sinax dx
0 R—>eo

. _ x=R
. | —se¥sinax ae ™ cosax
=lim

2 2 2 2
Ree s +a s +a

x=0

sS+ad sS+d sS+d

. | —se*FsinaR ae *cosaR a
=lim +

= Za 5> (for s >0)
+a

(See also entry 8 in Appendix A.)

. et x<2
21.8. Find the Laplace transform of f(x)= .
3 x>2

Ff(0)}= '[Owe’”‘f(x) dx = J.OZ e “erdx + J.: e (3)dx

a-sox|F=2 .
= [ a4 31im [e v =2 ~Zlime |
0 R—>e0 1—=5 ~ § Roeo x=2
2(1-35) _ 20D
=& —L—élim[e’m—e’zs]zle—+—e’2’C (for 5 >0)
-5 1—-5 sRo= s—1 s
21.9. Find the Laplace transform of the function graphed in Fig. 21-1.
700 -1 x<4
xX)=
1 x>4
fx)
A
1F I
I
1 1 1 | 1 1 1 1 1 » x
1 2 3 4: 5.6 7 8 9
| °

Fig. 21-1

[CHAP. 21
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o 4 o
(=] e fdv=[ e D+ [ e 1) dx
—sx =4
R
=< +lim | e ¥dx
S _ R0 dd
—4s
=< ——+1im[—16 ® ot 16‘43]
s 5 ko= s
—4s
_2e 1 (for s >0)
s

21.10. Find the Laplace transform of f(x) =3 + 2x2.

Using Property 21.1 with the results of Problems 21.4 and 21.5, or alternatively, entries 1 and 3 (n=3) of
Appendix A, we have

F(s) =B +2x") =3F{} + 2%
S Y S S

21.11. Find the Laplace transform of f(x) = 5 sin 3x — 17¢ 2,

Using Property 21.1 with the results of Problems 21.6 (@ =—2) and 21.7 (a = 3), or alternatively, entries 7 and
8 of Appendix A, we have

F(s) = ${5sin3x — 17¢72*} = 5%F{sin3x} — 1 7¥{e >}

:5[%]—17[ 1 ]: 215 17
s°+3) s—(=2)) s+9 s+2

21.12. Find the Laplace transform of f(x) =2 sin x + 3 cos 2x.
Using Property 21.1 with entries 8 (¢ =1) and 9 (a =2) of Appendix A, we have

F(s)=%${2sinx + 3cos2x} = 2% {sin x} + 3¥{cos2x}
1 +3 s 2 + 3s
sf+1 sS+4 sf 41 sT+4

21.13. Find the Laplace transform of f(x) = 2x? — 3x + 4.
Using Property 21.1 repeatedly with entries 1, 2 and 3 (n =3) of Appendix A, we have

F(s)=$2x" —3x + 43 = 2F(x"} - 3%{x} + 41}
2 1 1\ 4 3 4
=2\ S -3 = |44 - =-S5+
[SS] [SZ] [S] SS SZ S

21.14. Find ${xe*}.

This problem can be done three ways.
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(@) Using entry 14 of Appendix A with n=2 and a = 4, we have directly that

1

Plxe ) =
L& J (S _ 4)2

(b) Setf(x) =x. Using Property 21.2 with @ =4 and entry 2 of Appendix A, we have
1
Fls)= %] (x)} = £} ==
s

and Fle"xy=F(s—4) =

(s—4y

(c) Set f(x) = e*. Using Property 21.3 with n=1 and the results of Problem 21.6, or alternatively, entry 7 of
Appendix A with a =4, we find that

F(s)= £ (1) = He™) =—
s—4
a1 1
and Plxe™V=— Fl(s)=— = =
we ) ds(s—4] (s—4)°

21.15. Find ${e~* sin 5x}.
This problem can be done two ways.
(@) Using entry 15 of Appendix A with b=-2 and a = 5, we have directly that

5 5

gr —2x 5 — —
A T P+ () (5427 +25

(b) Set f(x) = sin 5x. Using Property 21.2 with @ =2 and the results of Problem 21.7, or alternatively, entry 8 of
Appendix A with @ =5, we have

5
F(s)=9%f Y= Preins5xt =
(s) {fx 81N DXy 7105
5
d Ple Psindx}=F(s~(-2)=F(s+2)=——
an 6 V=P () = Fls+2) =

21.16. Find ${xcosy/7x}.

This problem can be done two ways.

(@) Using entry 13 of Appendix A with g= 7 , we have directly that

T =7 =7

U Tx}= =
UCCOS‘\/—-XJ [52 + (ﬁ)z]z (SZ + 7)2

(b) Set f(x)= cos/7x. Using Property 21.3 with n =1 and entry 9 of Appendix A with a = \/7, we have

s

S
F(s)=%{cosVTx}=————=
= ooy = i =
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2_
and SB{xcosﬁx} =— 4 > ' |- s2—72
s\ s*+7 ) (s°+7)

21.17. Find £{e™ cos 2x}.
Let f(x) =x cos 2x. From entry 13 of Appendix A with @ =2, we obtain

st —4

o=

Then, from Property 21.2 with a=—1,

(s+D*-4

Fle*xcos2x}=F(s+1)=————————
h y=Fs+l) [(s+1)% + 4T

21.18. Find £{x7?}.

Define f(x)= \/; Then x* =x’vx = X f(x) and, from entry 4 of Appendix A, we obtain

F(9)= ()= $0l) = s

It now follows from Property 21.3 with n =3 that
3
g{xsﬁ}:(_ 1)3d_3 l\/;S*S/Z :ﬁ\/;fwz
ds | 2 16

which agrees with entry 6 of Appendix A for n=4.

21.19. Find 55{51“3x}.
X

Taking f(x) = sin 3x, we find from entry 8 of Appendix A with @ =3 that

3

F(s)=
(<) 49

or F(t)=

s +9
Then, using Property 21.4, we obtain

sin3x w3 R
* = dt=1im
{ x } J.S £+9 ’H‘”J.S

R

dt

49

. t
= lim arctan —
R—c0

s

R—c0

. R s
=lim| arctan— — arctan —
3 3

T s
=——arctan—

21.20. Find sg{j: sin 2/ dz}.

Taking f(f) = sinh 2¢, we have f(x) = sinh 2x. It now follows from entry 10 of Appendix A with a=2 that
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F(s) = 2/(s* — 4), and then, from Property 21.5 that

se{jxsinhzzdz}zl[ 2 ]:_22
0 sls =4 ) s(s"=4)

21.21. Prove that if fix + ) =— f(x), then

we’”‘f(x)dx
()= ".()1_’_7 @))]

Since

fa+20)=flx+ o)+ 0] =- fx+ @) = - [- fW)] =F(x)

f(x) 1s periodic with period 2. Then, using Property 21.6 with @ replaced by 2@, we have

J.Ozw e f(x)dx B J.w e f(x)dx + J.:w e f(x)dx

0
1— efzws 1— efzws

S0} =
Substituting y = x — @ into the second integral, we find that

[Peo pean= e fy+ @)dy=e [ e 1= f(y)ldy
== [ e f)dy

The last integral, upon changing the dummy variable of integration back to x, equals
—e J.O e f(x)dx

a- e*”“)jo’” e f(x)dx

Thus, {f(x0)}= T
a- e”‘”)'[:l e f(x)dx B '[Owe’”‘f(x)dx

o (l—e™)14e ™) 1+e™

A=)

A

! I I I I I I I
R R A R LR
: : | | | | :

-l¢- L—4 —¢ L ¢ Lo

Fig. 21-2
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21.22. Find £{f(x)} for the square wave shown in Fig. 21-2.

This problem can be done two ways.

(@) Note that f(x) is periodic with period @= 2, and in the interval O <x <2 it can be defined analytically by

1 0<x<1
-1 1<x<2

f(X)={

From Eq. (21.8), we have

J.Z e f(x)dx

0
2.
1-¢*

()=

J.Ozeisxf(x) dx = J.Oleisx(l)dx + '[lle,sx (= Iydx

= %(e*“ -2 +1)= %(e*s -1’

Since

it follows that

R S (e S S
sl—e) sd—e)1+e’) sl+e)

es/Z 1_6—3 es/Z _e—s/Z 1 s
=~z | Tz, 2 =—tanh>
e s(l+e™)| s(e""+e'") s 2

(b) The square wave f(x) also satisfies the equation f(x + 1) = — f(x). Thus, using (/) of Problem 21.21 with @=1,
we obtain

F(s)=

e o ) '[:e’”‘(l)dx

E{f(x))==2 = =
1+e” 1+e”
_ 1A/s)y(1—e) :ltanhi
1+¢e* s 2
f(x)

A

T 2 3n 4n Sm 6m  Tm

Fig. 21-3
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21.23. Find the Laplace transform of the function graphed in Fig. 21-3.
Note that f(x) is periodic with period @= 2, and in the interval O <x < 2w it can be defined analytically by

b 0<x<x
f(X)={

2r—x mw<x<2xw

From Eq. (21.8), we have

J.Z” e f(x)dx

{f(0)}= 01_7

. 2 T 2
Since J.O e f(x)dx= J.O e “x dx+ J.O e (2r — x)dx
1 —i7s —7s 1 —7s
:S—z(e2 —2e +1):S—2(e -1

it follows that

1/ s*)e™ ™ =1)* _ (1755 (e ™ =1)*

LN =
lf( )J 1_6727” (1—6‘77”)(1"1‘6‘7“)
o e
sl 1+e s 2

x1 .
21.24. Find 58{64)‘)6.[0 ;e"” sin 3¢ dl}.
Using Eq. (21.4) with a =— 4 on the results of Problem 21.19, we obtain

s+4

1 .
5/3{—6’4" sm3x} = % — arctan

X

It now follows from Eq. (21.7) that

and then from Property 21.3 withn=1,

* x'[xle"” sin3t dt :LZ—LZarctanS+4+ 3 >
0t 2s” s 3 SO+ (s+4)7]

Finally, using Eq. (21.4) with @ =4, we conclude that the required transform is

T 1 s 3

—_—— — ————arcta _—
25— (5= 3 (s=d(sT+9)

21.25. Find the Laplace transforms at (@) z, (b) ¢*, and () sin at, where a denotes a constant.

Using entries 2, 7, and 8 of Appendix A with x replaced by ¢, we find the Laplace transforms to be,
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respectively,

1 .
@ H== () Fe= (©) ${sinafy=—

A sS—a A +a2

21.26. Find the Laplace transforms of (a) 82, (b) cos a8, (c) €9 sin a8, where a and b denote constants.

Using entries 3 (with n=3), 9, and 15 of Appendix A with x replaced by 6, we find the Laplace transforms to
be, respectively.

A a

(s—b)"+a*

(@) 5/3{9%:% (b) {cosaf}=— () F{”sinad)y=

5 5 +Ll2

Supplementary Problems

In Problems 21.27 and 21.42, find the Laplace transforms of the given function using Eq. (21.1).

21.27. f(x =3 21.28. f(x)=/5
21.29. f(x)=e* 21.30. f(x)=e &
21.31. f(x)=x 21.32. f(x)=—8x
21.33. f(x) =cos 3x 21.34. f(x) =cos 4x
21.35. f(x) = cos bx, where b denotes a constant 21.36. f(x)=xe &
21.37. f(x) = xe™, where b denotes a constant 21.38. f(x)=x"
1 0<x<1
0<x<2 x
2139, j=1" ~°F 21.40. f(0)=4¢" l<x<4
2 x>2 0 x>4
21.41. f(x)in Fig. 21-4 21.42. f(x) in Fig. 21-5

In Problems 21.43 and 21.76, use Appendix A and the Properties 21.1 through 21.6, where appropriate, to find the Laplace
transforms of the given functions.

fix)
A

—
(S}
[SCY)
IS
W

Fig. 21-4
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21.43.

21.45.

21.47.

21.49.

21.51.

21.53.

21.55.

21.57.

21.59.

21.61.

21.63.

21.65.

21.67.

21.60.

21.71.

21.73.

21.75.

THE LAPLACE TRANSFORM
fx)
A
6 -
5 -
4 -
I
L |
3 |
|
2 - |
|
|
L '
I
1 1 1 1 1 1 1 > x
1 2 3 4 5 6 7
Fig. 21-5
fE)=x" 21.44. f(x) =x cos 3x
f)=xe* 21.46. f(x)= L
1 —X
J=ze ? 21.48. f(x) =53
f(x)=2sin*Bx 21.50. f(x) =8¢
X
Jx)=3sin 2152, f(x)=—cosy/19x
fx)=-1 21.54. f(x) =e ¥ sin 2x
f(x)=¢e"sin 2x 21.56. f(x) =€ cos 2x
f(x) =& cos 2x 21.58. f(x) =€ cos 5x
Foo)=e"Nx 21.60.  f(x)=e>x
f(x)=e P sin’*x 21.62. x> +3cos 2x
S5e* + Te™> 21.64. f(x)=2+3x
) =3-4x 21.66. f(x) =2x+ 5sin3x
J(x)=2 cos 3x —sin 3x 21.68. 2x% coshx
2x% e~ * cosh x 21.70. x°sin 4x
N 2072, [ tsinhide
jo ¥ cost dt 21.74. f(x)in Fig 21-6

f(x) in Fig. 21-7

21.76.

f(x) in Fig. 21-8

[CHAP. 21
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Six)
A
oY Y T
— 1 >
1 2 3 4 5 6 7
Fig. 21-6
fix)
A
B | | |
1 1 1 1
X
2 3 4 5 6 7

Fig. 21-7

AV
4NN N T

Fig. 21-8



Inverse Laplace
Transforms

DEFINITION

An inverse Laplace transform of F(s), designated by ¥£'{F(s)}, is another function f{x) having the prop-
erty that £{ fix)} = F(s). This presumes that the independent variable of interest is x. If the independent vari-
able of interest is 7 instead, then an inverse Laplace transform of F(s) if f{z) where £{f(1)} = F(s).

The simplest technique for identifying inverse Laplace transforms is to recognize them, either from mem-
ory or from a table such as Appendix A (see Problems 22.1 through 22.3). If F(s) is not in a recognizable form,
then occasionally it can be transformed into such a form by algebraic manipulation. Observe from Appendix A
that almost all Laplace transforms are quotients. The recommended procedure is to first convert the denominator
to a form that appears in Appendix A and then the numerator.

MANIPULATING DENOMINATORS

The method of completing the square converts a quadratic polynomial into the sum of squares, a form that
appears in many of the denominators in Appendix A. In particular, for the quadratic as®+ bs + ¢, where a, b, and
¢ denote constants,

2 . b
as +bs+c=a|s +—s5|+c
a

, b ( b ] b

=als +—s5s+| — +|le——

a 2a da
[ b ) b
=a|ls+— | +| c——
2a da

=a(s+ k¥ +h

where k= b/2a and h=+/c — (b’ / 4a) . (See Problems 22.8 through 22.10.)

The method of partial fractions transforms a function of the form a(s)/b(s), where both a(s) and b(s) are
polynomials in s, into the sum of other fractions such that the denominator of each new fraction is either a first-
degree or a quadratic polynomial raised to some power. The method requires only that (1) the degree of a(s) be
less than the degree of b(s) (if this is not the case, first perform long division, and consider the remainder term)
and (2) b(s) be factored into the product of distinct linear and quadratic polynomials raised to various powers.

224
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The method is carried out as follows. To each factor of b(s) of the form (s — a)™”, assign a sum of m frac-
tions, of the form
A 4 4 St A,
s—a (—a) Gs—-a)"

To each factor of b(s) of the form (s? + bs + c)¥, assign a sum of p fractions, of the form

Bis+C, Bys+C, B,s+C,
st+bs+c (sP+bs+c) (s*+bs+cy

Here A;, B, and C, (1=1,2,...,m; j, k=1, 2,..., p) are constants which still must be determined.

Set the original fraction a(s)/b(s) equal to the sum of the new fractions just constructed. Clear the resulting
equation of fractions and then equate coefficients of like powers of s, thereby obtaining a set of simultaneous
linear equations in the unknown constants A,, B, and Cy. Finally, solve these equations for A, B, and C}. (See
Problems 22.11 through 22.14.)

MANIPULATING NUMERATORS

A factor s — a in the numerators may be written in terms of the factor s — b, where both a and b are
constants, through the identity s — a = (s — b) + (b — a@). The multiplicative constant a in the numerator may be
written explicitly in terms of the multiplicative constant & through the identity

a==()

Both identities generate recognizable inverse Laplace transforms when they are combined with:

Property 22.1. (Linearity). If the inverse Laplace transforms of two functions F'(s) and G(s) exist, then
for any constants ¢; and ¢,,

LTHeF () + G()} = e ETHF O} + . L7H{G(9)}

(See Problems 22 .4 through 22.7.)

Solved Problems

22.1. Find & {1}
S

Here F(s)=1/s. From either Problem 21.4 or entry 1 of Appendix A, we have {1} = 1/s. Therefore,
Fsy=1.

22.2. Find ggl{ 1 }

s—8

From either Problem 21.6 or entry 7 of Appendix A with a =8, we have

Therefore, 351{ 1 }:es"



226 INVERSE LAPLACE TRANSFORMS [CHAP. 22

22.3. Find sgl{szi 6}

From entry 9 of Appendix A with g = J6 . we have

s s
{cosfox} == ———
h ’ s2+(\/€)2 s +6

Therefore, ¥t { > d 6} = cos/6x
+

s

224. Find 1) |
(s> +1)°

The given function is similar in form to entry 12 of Appendix A. The denominators become identical if we take
a=1. Manipulating the numerator of the given function and using Property 22.1, we obtain

SBI{ 255 2}:331{ %2(25)2}25351{ 22S 2}:§xsinx
"+1) G+ 2 (DY) 2

22.5. Find &' {%}

The given function is similar in form to entry 5 of Appendix A. Their denominators are identical; manipulating
the numerator of the given function and using Property 22.1, we obtain

O

22.6. Find ¢1] S+
s1—9

The denominator of this function is identical to the denominator of entries 10 and 11 of Appendix A with a =3.
Using Property 22.1 followed by a simple algebraic manipulation, we obtain

gl{i"‘l}:gl{ = }+§£1{%}:cosh3x+$l{l[%]}
s°=9 s =9 sT=9 3\ =0

_3
SZ _ (3)2

=cosh3x + %SB’I { } = cosh3x + ésinh3x

22.7. Find ¥ {;}
(s—2°+9

The denominator of this function is identical to the denominators of entries 15 and 16 of Appendix A witha =3
and b = 2. Both the given function and entry 16 have the variable s in their numerators, so they are the most closely
matched. Manipulating the numerator of the given function and using Property 22.1, we obtain

I K _ g (s—2)+2 _ g s—2 e 2
(s—2%+9] (s—=2%+9] (s=2)%+9 (s=2)%+9

=ecos3x+ £ {;2} =e¥cos3x+ ! {2[;2]}
(s—2)"+9 3L (s—2)"+9

3
(s—=2)°+9

= e cos3x+ %35’1 {

2 .
} =™ cos3x+ gez" sin 3x
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28 Fndg'l—L |
s2—25+9

No function of this form appears in Appendix A. But, by completing the square, we obtain

=25+ 9= (s =25+ 1)+ (9—1)= (s — 1)’ + (J8)*

Hence,

1 1 _(Lj J8
ST-25+9 (s—17+@WB8)Y (s— 1)+ (/8

V8

Then, using Property 22.1 and entry 15 of Appendix A with a = 8 and b= 1, we find that
1 1 V8 1
[/ (R— U/ N L L O
{sz —2s+9} NE] {(s—l)z +(J§)2} J8

229, Find '] 2*% |
s°+4s+8

No function of this form appears in Appendix A. Completing the square in the denominator, we have
S +aAs+8=(+4s+ D)+ (8 -4 = (s +2)2+(2)°
s+4 s+4

Hence, =
SS+45+8 (s+2)7+(2)?

This expression also is not found in Appendix A. However, if we rewrite the numerator as s + 4= (s +2) + 2 and
then decompose the fraction, we have

s+4 s+2 2
2 = 2 zt 2 2
sSS+4s+8 (5+2) +(2) (s+2) +(2)

Then, from entries 15 and 16 of Appendix A,

gil_s+4 | s+2 L 2
S +4s+8[ (s+2)% +(2) (s+2) +(2)

= e cos2x + ¢ sin 2x

22.10. Find ¢ —2*2 |
s*=3s+4

No function of this form appears in Appendix A. Completing the square in the denominator, we obtain

S2—3S+4=(s2—3s+§j+(4_§j:(s_%j2+[g]2

s+2 s+2

sP—3s+4 3y (7Y
s—= | +|—
(-3 +(%
We now rewrite the numerator as

Hz:s_Lz:(s_gjm[%

so that

2 2 2
s 3 ﬁ
+2 T T
so that s 2 +\/7 2
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22.11.

22.12.

INVERSE LAPLACE TRANSFORMS [CHAP 22
Then,
3 V7
. s+2 . ) . X
N = — 22— T ————
s —3s+4 3V (J7 3V (J7
s—=1| +| — s—=1| +| —=—
SRk SRk
=% cosﬁx +f7e5 sinﬁx
2 2
Use partial function to decompose 1

(s+1)(s*+1)

To the linear factor s + 1, we associate the fraction A/(s + 1); whereas to the quadratic factor s+ 1, we asso-
ciate the fraction (Bs + C)/(s*> + 1). We then set

1 _ A Bs+C (])
(s+D1(s*+1) s+1 s*+1

Clearing fractions, we obtain

1=AE2+ D)+ Bs+C) (s+ 1) 2
or s20)+s5(0)+1=s2(A+B)+s(B+C)+(A+C)
Equating coefficients of like powers of s, we conclude that A+ B=0, B+ C=0, and A+ C=1. The solution of
this set of equations is A = % B= —%, and C= % Substituting these values into (), we obtain the partial-fractions
decomposition
L4 s

DG +1) s+1 0 sP41

The following is an alternative procedure for finding the constants A, B, and C in (J). Since (2) must hold for
all s, it must in particular hold s = —1. Substituting this value into (2), we immediately find A = % Equation (2) must
also hold for s = 0. Substituting this value along with A = %into (2), we obtain C = % Finally, substituting any other
value of s into (2), we find that B = —%.

1

Use partial fractions to decompose — > .
(5" +1)(s" +4s+8)

To the quadratic factors s>+ 1 and s*>+4s+8, we associate the fractions (As+ B)/(s*>+ 1) and
(Cs + D)/(s* + 45 + 8). We set

1 =AS+B Cs+ D
(P +1(s*+45+8)  sP+1  sP+4s+8

o)

and clear fractions to obtain
1=(As+B)(s*> + 45+ 8) + (Cs + D)(s* + 1)
or SO +52)+50)+1=5A+C)+5*(4A+ B+ D) + (84 + 4B+ C) + (8B + D)

Equating coefficients of like powers of 5, we obtain A+ C=0,4A+B+D=0,84+4B+C=0,and 8B+ D =1.
The solution of this set of equation is
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22.13.

22.14.

22.15.

4 7 4 9

——s+ — 5+ =
Therefore, - 21 = 652 65 ?5 65
(s"+D(s"+45+8) s +1 s +4s5+8

s+3
(s—2)(s+1)

To the linear factors s —2 and s + 1, we associate respectively the fractions A/(s — 2) and B/(s + 1). We set

Use partial fractions to decompose

s+3 A B

= +
(s=2)(s+1) s5s-2 s+1

and, upon clearing fractions, obtain
s+3=A(s+1)+B(s—2) H

To find A and B, we use the alternative procedure suggested in Problem 22.11. Substituting s =—1 and then s =2
into (), we immediately obtain A =5/3 and B =-2/3. Thus,

s+3  _5/3 2/3
(s=2s+1) s—-2 s+1

Use partial fractions to decompose ———————.
(s —5—-2)
Note that s> — 5 — 2 factors into (s — 2)(s + 1). To the factor 5° = (s — 0)?, which is a linear polynomial raised to

the third power, we associate the sum A;/s + A,/s> + As/s>. To the linear factors (s — 2) and (s + 1), we associate the
fractions B/(s —2) and C/(s + 1). Then

B C
DY Sy =t +
s(s"—=5-2) s s s s=2 s+1

53

8 1+ﬁ2+A

or, clearing fractions,
8=A12(s =D+ 1)+ Aps(s = 2)(s + 1) + A3(s = 2)(s + 1) + B’ (s + 1) + Cs°(s — 2)

Letting s =—1, 2, and O, consecutively, we obtain, respectively, C =8/3, B=1/3, and A; =—4. Then choosing s =1
and s =—2, and simplifying, we obtain the equations A; + A, =—1 and 24; — A, =—8, which have the solutions
A; =-3 and A, =2. Note that any other two values for s (not —1, 2, or 0) will also do; the resulting equations may
be different, but the solution will be identical. Finally,

2 3 2 4 1/3 8/3
St oot +

53(52—5—2)_ s s 5 s=2 s+1

Find £ {L}
-2 +1)

No function of this form appears in Appendix A. Using the results of Problem 22.13 and Property 22.1, we

obtain
521{ s+3 }25531{ 1 }_g 1{ 1 }
(s=2)(s+1) 3 s—=2 3 s+1

5 2
:_elx__e

3 3

—X
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8
. b(£—1
22.16. Find {—s3 o’ s 2)}.

No function of this form appears in Appendix A. Using the results of Problem 22.14 and Property 22.1, we obtain
g2 Ao sglliogl L
s(s"—s5-2) s s
a2l Lgn) 1L By 1
s 3 s=2] 3 s+1

1 8
=-3+2x-2x"+=&" +=¢"
3 3

1
. b(£—1
22.17. Find {—(s el 1)}

Using the result of Problem 22.11, and noting that

—5s+3 1 s 1 1
T 2.1 Al a2 T3 =2
s +1 20 57 +1 20 57 +1
gy 1 (L) b [ Tgpa) s [ 1
G+DP+D[ 2 s+1[ 2 sSS+1[0 2

1 1

- 1.
=—¢ ——cosx+—sinx
2 2

we find that

1
b(£71
{52 + 1}

2
22.18. Find £ !
S1O in P+ + 45+ 8) ]
From Problem 22.12, we have
7 4 9
1 -—5+— —s5+—
-1 _gt] 65 650, 1) 65 65
(P +1D(s*+45+8) sP+1 sP+4s5+8

The first term can be evaluated easily if we note that

4 7
N (s
—) DD +| —
sT+1 65 )s*+1 65 )57 +1

To evaluate the second inverse transforms, we must first complete the square in the denominator,
s2+4s + 8= (s +2)> + (2)%, and then note that

65 "5 _ 4 s+2 L B S
S +4s5+8 65| (s+2) +(2)° | 130| (s+ 2 +(2)°
Therefore,
b(£71 1 :_ig’l L + lg’l ;
(" +1)(s* +45+8) 65  (s7+1) 65 [sT+1
i i§£71 s+2 + Lg—l 2
657 |G+2%+@%] 130 (s+27+(2)°

4 7 . 4 ., 1 .
=——CosX+—sinx+—e cos2x+—e sin2x
65 65 65 130



CHAP. 22] INVERSE LAPLACE TRANSFORMS

22.19. Find ¥ {;}

s(sP+4)

By the method of partial fractions, we obtain

1 1/4  (-1/4)s
—m =t
s(s"+4) s s +4
Thus, %! % :li’l{l}—lﬂf’l 25 :l—lcos 2x
s(s"+4) 4 s 4 s +4 4 4

Supplementary Problems

Find the inverse Laplace transforms, as a function of x, of the following functions:

22.20.

22.22.

22.24.

22.26.

22.28.

22.30.

22.32.

22.34.

22.36.

22.38.

22.40.

22.42.

1
= 22.21. =
2 1
= 22.23. =
1 1
= 22.25.
s s+2
-2 227, 22
=2 35+9
1

! 22.29. ——
25 -3 (s-2)

12 35
_ 2231, —/——
(s+5° s*+D?
s 22.33 !
(S2+3)2 .33, )
S R— 2235, ——
(s-2)"+9 (s+1*+5

25 +1 1
——— 2237, ——
(s=1)"+7 257 +1

1 +3
-— 2239, ——=
sT 2542 s +2s+5
—— 2241 5L
sS—s+17/4 5T+3s+5
(s —D(s+1) ¢

231
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22.44.

22.46.

22.48.

22.50.

22.52.

INVERSE LAPLACE TRANSFORMS

_z
P+ D -D?

—5+6

3
A

12+ 15Js

4
s

2(s —1)
sT—s5+1

1 1/2

2s=D(s*—s=1) :(5—1)(52—5—1)

22.45.

22.47.

22.49.

22.51.

22.53.

25—13
s(s? —4s +13)

5
(s*+9)°

s _ (1/2)s

25 +ds+5/2 sS+25+5/4

[CHAP. 22



Convolutions and
the Unit Step Function

CONVOLUTIONS

The convolution of two functions f(x) and g(x) is
f@)# g0 =] fgx=nar (23.1)
Theorem 23.1. f(x) * g(x) =g (x) = f(x).
Theorem 23.2. (Convolution theorem). If £{f(x)} = F(s) and £{g (x)} = G(s), then
FLF(x) = g0} = L0 P {g ()} = F(s)G(s)
It follows directly from these two theorems that
FHF(5) G(9)} =f(x) * g (x) = g (x) % f(x) (23.2)
If one of the two convolutions in Eq. (23.2) is simpler to calculate, then that convolution is chosen when

determining the inverse Laplace transform of a product.

UNIT STEP FUNCTION

The unit step function u(x) is defined as

) 0 x<0
u(x) =
1 x=0

As an immediate consequence of the definition, we have for any number c,

{U x<c
u(x—c)=

Il x=2¢

The graph of u(x — c) is given if Fig. 23-1.

233
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u(x—c)
A

Fig. 23-1
1
Theorem 23.3. F{u(x—c)y==e".

TRANSLATIONS

Given a function f(x) defined for x > 0, the function

{ 0 x<c
ux-co)f(x—o)=

flx—¢c) x2c

represents a shift, or translation, of the function f(x) by ¢ units in the positive x-direction. For example, if f(x)
is given graphically by Fig. 23-2, then u (x — ¢) f(x — ¢) is given graphically by Fig. 23-3.

F® u(x—c)f (x—)
A A

TN — TN

|

|

| > x
c

Fig. 23-2 Fig. 23-3

Theorem 23.4. 1f F(s) = £{f(x)}, then

{u(x—c)f(x— o)} = F(s)
Conversely,

I ) N 0 x<c
{eF@$)}=ul(x-o)f(x—c)= f(x—c) x=c



CHAP. 23] CONVOLUTIONS AND THE UNIT STEP FUNCTION 235
Solved problems

23.1. Find f(x) * g (x) when f(x) = &* and g (x) = €**.
Here f( =€, g(x — £) =€*>*, and
o 3 20— g F 30 2x —n
f(x)*g(x)—'[oee dt—J.Oee e dt
:elx'[xezdt:ebc[ez]zig :eZ)c(ex _1) :eS)c _eZ)c

o i

23.2.  Find g(x) * f(x) for the two functions in problem 23.1 and verify Theorem 23.1.
With f(x — £) = 379 and g(£) = €,
50 f) = g0 fx—ndi=[ ey
=" fletd=e-e 1
2x

= (e + )= —¢

which, from Problem 23.1 equals f(x) * g(x).

23.3. Find f(x) * g(x) when f(x) = x and g(x) = x%.
Here f(f) =t and g(x — 1) = (x — H)?> = x> — 2xt + £. Thus,

S(x)*g(x)= '[:t(xz —2xt + 1Y) dt

= xzj.:tdt - 2x'|.0xtzdt + '[: £t

23.4. Tind 551{ by convolutions.

s2—5s+6}

Note that
1 1 1 1

S —55+6 (s—3)(5-2) s5-3s5-2

Defining F(s) = 1/(s —3) and G(s) = 1/(s — 2), we have from Appendix A that f(x) = ¢** and g(x) = €**. It follows from
Eq. (23.2) and the results of Problem 23.1 that

il{;}:f(x) s g(x) =™ # e = —

sT—55+6

s£ =1

23.5. Tind 551{ } by convolutions.

e e e
s —1 (s—D(s+1) (s=1) (s+1)

Note that
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Defining F(s) = 1/(s — 1) and G(s) = 1/(s + 1), we have from Appendix A that f(x) = ¢* and g(x) = ¢™*. It follows from
Eq. (23.2) that

2
5=

351{ 6 1} =6LHF(5)G(5)} = 6e* xe™

_ Xy —(x—1) _ x {* 2
_6,[066 dt =6e J.Oe dt

2x _
=6e™" e_l =3e" -3¢
2

_
s(sP+4)

Note that

23.6. Find §£1{ } by convolutions.

1 _1 1
ST+ sst+4

Defining F(s) = 1/s and G(s) = 1/(s> + 4), we have from Appendix A that f(x) = 1 and g(x) = 2sin2x . It now follows
from Eq. (23.2) that

-1 ; — iy p #
= J.:g(t)f(x —fydt = J.:[%sinm](l) dt

1
=—(1-cos2x
4( )

See also Problem 22.19.

1
_ 1)2

23.7. Tind 551{( } by convolutions.
s

If we define F'(s) = G (s) = 1/(s — 1), then f(x) = g (x) = ¢" and

sel{ ! 2}=se1{F(s)G(s)}=f(x)*g(x)
G-D)

= [, f0gx—ndi=[ e s

=e" J.O 1) dt = xe*

23.8. Use the definition of the Laplace transform to find £{u(x — ¢)} and thereby prove Theorem 23.3.
It follows directly from Eq. (21.1) that

Plu(x — )} = j: e u(x —c)dx = jo e (0)dx + f e (1) dx

R -
s : R s« el =
=] e¥dx=lim| e dx=1im
c R—>eodc R—eo —5

= le"“ (if s > 0)
s
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23.9. Graph the function f(x) =u (x — 2) — u(x — 3).

Note that
0 x<2 0 x<3
u(x—2)= and u(x—3)=
1 x22 1 x=3
0-0=0 x<2
Thus, fO=u(x-2)—u(x-3)=91-0=1 2<x<3
1-1=0 x23

the graph of which is given in Fig. 23-4.

23.10. Graph the function f(x) =5 — Su(x — 8) for x > 0.

Note that
0 x<8
Su(x —8)=
5 x28
5 x<8
Thus x)=5-5u(x—-8)=
S ( ) {0 8

The graph of this function when x > 0 is given in Fig. 23-5.

u(x=2)—u(x=3) F&)
A A
6 -
5 |
4+ |
3k |
1+ ?—| 2 - :
| I 1 1
| ' i | ! > | | | é ! ! > x
1 2 3 4 3 2 4 6 8 10 12
Fig. 23-4 Fig. 23-5

23.11. Use the unit step function to give an analytic representation of the function f(x) graphed in Fig. 23-6.

Note that f(x) is the function g(x) =x, x = O, translated four units in the positive x-direction. Thus,
JO =ux—-DHgx—4) =(x—Dux—4).

23.12. Use the unit step function to give an analytic description of the function g(x) graphed on the interval
(0, o0) in Fig. 23-7. If on the subinterval (0, @) the graph is identical to Fig. 23-2.

Let f(x) represent the function graphed in Fig. 23-2. Then g(x) = f(x)[1 — u(x — a)].
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gx)
A

Slope=1 /_\_A

|

l l l Py
a

Fig. 23-6 Fig. 23-7

23.13. Find £{g(x)} if g(x)= 0 s
.13. X))y g (x—4)2 >4

If we define f(x) = x°, then g(x) can be given compactly as g(x) = u(x — 4) f(x — 4) = u(x — 4)(x — 4)>. Then,
noting that £{ f(x)} = F(s) = 2/s* and using Theorem 23.4, we conclude that

L)} = Llu(x - H(x - H*}= 6743%

. . 0 x<4
23.14. Find £{g(x)} if g(x)= {

X x24

We first determine a function f(x) such that f(x — 4) = x> Once this has been done, g (x) can be written as
g (x) = u(x —4) f(x — 4) and Theorem 23.4 can be applied. Now, f(x — 4) = x* only if

JO=fx+4-DH=(x+4>=x>+8x+16

Since

2 8 16
LU (0} = L3+ 8L+ 16F 0 = S+ — +
A A

s
it follows that

SZ A

() =Lu(x—4) f(x—H}=e" (% + i + E]
A

23.15. Prove Theorem 23.1.

Making the substitution 7= x — ¢ in the right-hand side of Eq. (23.1), we have

J# g =] f0gx-ndi=] fx-)g)-dr)

~['s@ jx-ndr= g@ jx-)de
= 9(x) % ()
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23.16. Prove that f(x) = [g(x) + A (x)] = f(x) * g(x) + f(x) = h(x).

J) #1800+ k(o)1= [ FOlg(x =)+ h(x =) dr
= [ @sx =+ fohx—ldt

- jo"f(z)g(x —tydt+ jo"f(z)h(x —t)dt
= f(x) # g(x) + f(x) * A(x)

23.17. The following equation is called an integral equation of convolution type.

Assuming that the Laplace Transform for y(x) exists, we solve this equation, and the next two examples,
for y(x).

yx)=x+ ji-y(l) sin(x —t)dt

We see that this integral equation can be written as y(x) = x + y(x) * sin x. Taking the Laplace transform ¥ of
both sides and applying Theorem 23.2, we have

. 1 1
Eyy= L3+ EEBin G ==+ £y —.
s s*+1
Solving for £{y} yields
st +1

54

) =

3
This implies that y(x) = x + % which is indeed the solution, as can be verified by direct substitution as follows:

3

K £ x
x+J.[t+g]sm(x—l)dt:x+z:y(x)
0

23.18. Use Laplace Transforms to solve the integral equation of convolution type:
y(x)=2- j y(0)e* ' dt
0

Here we have y(x) = 2 — y(x) * ¢". Continuing as in Problem 23.17, we find that

25 -2

52

) =

which gives y(x) = 2 — 2x as the desired solution.
23.19. Use Laplace Transforms to solve the integral equation of convolution type:

yx)=x + j4y(z) dt

Noting that y(x) = x° + 4 % y(x), we find that £{y}=——— 6 which gives y(x)= i(—1 +e™ —4x —8x%) as
the solution. s s—4) 32
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23.20.

23.22.

23.24.

23.26.

CONVOLUTIONS AND THE UNIT STEP FUNCTION

Supplementary problems

Find x * x. 23.21. Find 2 * x.
Find 4x * e**. 23.23. Find e™ * &>,
Find x * &~ 23.25. Find x* xe™
Find 3 * sin 2x. 23.27. Find x * cos x.

[CHAP. 23

In Problems 23.28 through 23.35, use convolutions to find the inverse Laplace transforms of the given functions.

23.28.

23.30.

23.32.

23.33.

23.34.

23.36.

23.37.

23.38.

23.39.

; 23.29. !
(s—D(s-2) (5)(s)

2 2331
s(s+1) 5" +3s—-40
_3
SHsT+3)

——— with F(s) = Us* and G(s) = s/(s? + 4). Compare with Problem 23.6.
s(s"+4)

9 9
2— 23-35- #
s(s*+9) s(s°+9)

Graph f(x) = 2u(x — 2) — u(x — 4).

Graph f(x) = u(x — 2) — 2u(x — 3) + u(x — 4).

Use the unit step function to give an analytic representation for the function graphed in Fig. 23-8.

H
‘ >
o @---

Fig. 23-8

Graph f(x) = u(x — m) cos 2(x — 7).

In Problems 23.41 through 23.48, find ${g(x)} for the given functions.

23.41.

23.43.

23.45.

@) 0 x<1 2342 o(v) 0 x<3

X)= .42 X) =

§ sin(x—-1) x21 § x—=3 x23
@) 0 x<3 2344 o() 0 x<3
X) = 44, g(x) =

§ x x23 8 x+1 x23

@) 0 x<5 23.46 ) 0 x<5
x)= .46. x)=
8 & x25 8 e x=25

23.40. Graph f(x)= %(x D u(x-1).
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0 x<2
& x22

0 x<2

23.47. g(x):{ Sul vno

23.48. g(x)= {

In Problems 23.49 through 23.55, determine the inverse Laplace transforms of the given functions.

2349, ———e® 2350, -
s +4 s +4

23.51. 21 e 2352 2o
s +4 s-3

2353, > ¢ 23.54. ise*“
s+3 s

2355 ~o

23.56. Prove that for any constant &, [kf(x)] * g(x) = k[ f(x) * g(x)].

In Problems 23.57 through 23.60, assume that the Laplace Transform for y(x) exists. Solve for y(x).

23.57. y(x)=x"+ :i.(x — ) y(t)dt
23.58. y(x)=e" + j y(t)dt
23.59. y(x)=1+ j(z —x)y(t)dt

23.60. y(x)= j(z —x)y(t)dt

241



Solutions of

Linear Differential
Equations with
Constant Coefficients
by Laplace Transforms

LAPLACE TRANSFORMS OF DERIVATIVES

Denote £{v(x)} by Y¥(s). Then under broad conditions, the Laplace transform of the nth-derivative
(n=1,2,3,...) of y(x) is

ff{%} =5"Y(s) — 5" 'y(0) — s" 2y’ (0) — - — sy" " 2(0) — y"(0) (24.1)
X

If the initial conditions on y(x) at x =0 are given by

v0)=cy, YO =cp, ...,y N0)=c, (24.2)
then (24.1) can be rewritten as
¢4 'Vl =8"Y(s)—cys" ' =" ==, 5 —C,_, (24.3)
ey :

For the special cases of n =1 and n =2, Eq. (24.3) simplifies to

FLY(x0)y=s5Y(s)—c, (24.4)
B ()} =5"Y(s) — 5 — ¢, (24.5)
242
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SOLUTIONS OF DIFFERENTIAL EQUATIONS

Laplace transforms are used to solve initial-value problems given by the nth-order linear differential equation
with constant coefficients

n n-1
p Iy LY

"dxt T axe!

+~~+b1ﬂ+b0y:g(x) (24.6)
dx

together with the initial conditions specified in Eq. (24.2). First, take the Laplace transform of both sides of
Eq. (24.6), thereby obtaining an algebraic equation for Y(s). Then solve for Y(s) algebraically, and finally take
inverse Laplace transforms to obtain y(x) = £~ {Y(s)}.

Unlike previous methods, where first the differential equation is solved and then the initial conditions are
applied to evaluate the arbitrary constants, the Laplace transform method solves the entire initial-value problem
in one step. There are two exceptions: when no initial conditions are specified and when the initial conditions
are not at x = 0. In these situations, ¢, through ¢, in Eqs. (24.2) and (24.3) remain arbitrary and the solution to
differential Eq. (24.6) is found in terms of these constants. They are then evaluated separately when appropriate
subsidiary conditions are provided. (See Problems 24.11 through 24.13.)

Solved problems

24.1. Solve y —5y=0; y(0)=2.
Taking the Laplace transform of both sides of this differential equation and using Property 24.4, we obtain
L' — 535F{y} = £{0}. Then, using Eq. (24.4) with ¢;=2, we find

2

[sY(s)—2]—-5Y(s)=0 fromwhich Y(s)= S
§—

Finally, taking the inverse Laplace transform of Y(s), we obtain

X)) =LY ()I=< { 5}—235 {5—5} 2e

24.2. Solve y —5y=¢"; y(0) = 0.

Taking the Laplace transform of both sides of this differential equation and using Property 24.4, we find that
E{y'} — 5%{y} = £{e>}. Then, using Appendix A and Eq. (24.4) with co= 0, we obtain

! from which  Y(s)=

[s7(5) = 0= 5V () =—— T

Finally, taking the inverse transform of Y(s), we obtain

—1 g N —1 1 — Sx
Y =L TE)=& {(5—5)2} xe

(see Appendix A, entry 14).

24.3. Solve y + y=sinx; y(0)= 1.
Taking the Laplace transform of both sides of the differential equation, we obtain

1

LY+ Ly =Lsinx} or [sY(s)—1]+Y(s)= T
5T+
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Solving for ¥{(s), we find
1 1
="
(s+D(s"+1) s+1

Y(s)

Taking the inverse Laplace transform, and using the result of Problem 22.17, we obtain

_ -1 _ -1 1 -1 1
YW=y =2 {(5+1)(s2+1)}+§£ {s+l}

1, 1 1. L 3,1 1.
= —¢ ——COSX+—SInx [+¢ =—e ——COSX+—SInx
2 2 2 2 2 2

24.4. Solve y"+4y=0; y(0)=2,y'(0)=2.
Taking Laplace transforms, we have £{y"} + 4£{y} = £{0}. Then, using Eq. (24.5) with ¢;=2 and ¢;=2,
we obtain
[s2Y(s) — 25 — 2] + 4¥(s) = 0
_2s+2  2s 2

or Y(s = +
) sSS+4 S +4 0 sP+4

Finally, taking the inverse Laplace transform, we obtain

Yy =E Y (s)}= 2351{52 i 4} + 551{523-4} =2cos2x + sin2x

24.5. Solve y"—3y +4y=0; y(0)=1, y'(0) = 5.

Taking Laplace transforms, we obtain £{y"} —3£{y’} + 4£{y} = £{0}. Then, using both Eqs. (24.4) and
(24.5) with ¢y=1 and ¢; = 5, we have

[s2¥(s) — s — 5] = 3[s¥(s) — 1] + 4¥(s) =0

s+2

or Y(§)=——
(<) s =3s+4
Finally, taking the inverse Laplace transform and using the result of Problem 22.10, we obtain

B3I oy ﬁ x+ ﬁe(sm" sin ﬁ

X)=¢ S— —X
¥(x) 5 5

24.6. Solve y'—y —2y=4x%v(0) =1,y (0)=4.

Taking Laplace transforms, we have £{y”} — £{y'} — 2%{y} = 4%£{x?}. Then, using both Eqs. (24.4) and
(24.5) with ¢y=1 and ¢; = 4, we obtain

[s°Y(s) — s — 4] = [sY(s) — 1] - 2¥(s) = %
S

or, upon solving for Y{(s),

s+3 8
Y(S): 2 + 3742
sT=5=2 s5(s"—5-2)

Finally, taking the inverse Laplace transform and using the results of Problems 22.15 and 22.16, we obtain
5 2 1 8
yx)=| =™ —Ze” |[+| B+2x-2x" +=” +—e"
3 3 3 3
=2¢" +2¢" —2x" +2x -3

(See Problem 13.1.)
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24.7.

24.8.

24.9.

24.10.

Solve y” + 4" + 8y =sin x; y(0) =1, y'(0) = 0.

Taking Laplace transforms, we obtain £{y"} + 4£{y'} + 8L {y} = £{sin x}. Since ¢;=1 and ¢;=0, this
becomes

[s%Y(s)—5— 0]+ 4[sY(s) — 1] +8Y(s) = 5
sT+1
s+4 1

Thus, Y(s)= 7 +— 2
s +4s5+8 (s"+D(s"+45+8)

Finally, taking the inverse Laplace transform and using the results of Problems 22.9 and 22.18, we obtain
Y(x)= (e cos2x + e sin2x)

4 7 . 4 ., 1 .
+| ——cosx+—sinx+—e T cos2x+—e sin2x
65 65 65 130

o[ 69 131 . 7 . 4
=¢ —cos2x+—=sin2x |+ —sinx ——CcosXx
65 130 65 65

(See Problem 13.3.)

Solve y"— 2y + y = f(x); ¥(0) =0, y'(0) = 0.
In this equation f(x) is unspecified. Taking Laplace transforms and designating £{f(x)} by F(s), we obtain
F(s)
(s=1)°

[s°Y(s) = (0)s —0] = 2[sY(s) 0]+ Y(s)=F(s) or Y(s)=

From Appendix A, entry 14, £71{1/(s — 1)>} = xe*. Thus, taking the inverse transform of Y(s) and using convolutions,
we conclude that

y(x)=xe* * f(x) = J.: te' f(x—1t)dt

0 x<1
2 x21

Note that f(x) = 2u (x — 1). Taking Laplace transforms, we obtain

Solve "+ y=f(x); ¥(0) = 0, Y(0) = 0 if f(x) = {

[s2Y(s) — (0)s — O] + Y(s) = L{f ()} = 2% {u(x — 1)} = 2S5

2
Y(s)=¢ ———
o (5)=e s(sT+1)
Since 351{ 22 }:2331{1}—2351{ 25 }zZ—Zcosx
s(s"+1) s s +1

it follows from Theorem 23.4 that

s(sT+1)

y(x)= SBI{es } =[2—2cos(x — D]u(x —1)

Solve y” +y' =&, w(0) = y'(0) = y"(0) = 0.

Taking Laplace transforms, we obtain £{y"”} + £{¥'} = £(€*). Then, using Eq. (24.3) with n =3 and Eq. (24.4),
we have

! or Y(s) !

Y (5) = (O)s = ()5 =01+ [s¥(s) — 0] =— TGoDE )
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Finally, using the method of partial fractions and taking the inverse transform, we obtain
1 —1

1 5 1 1 1 1.
yx) =% ——+L+25—2 =—1+=¢"+=cosx —=sinx
s s—=1 s°+1 2 2 2

24.11. Solve y —5y=0.

No initial conditions are specified. Taking the Laplace transform of both sides of the differential equation,
we obtain
) = 3£} = £(0)

Then, using Eq. (24.4) with ¢;= ¥(0) kept arbitrary, we have

[sY(s)—c,] = 5Y(s)=0 or Y(s)=—2
s=5

Taking the inverse Laplace transform, we find that

¥ =L (9} =c, SBI{—l 5} =™
-

24.12. Solve y"—3y +2y=¢™"
No initial conditions are specified. Taking Laplace transforms, we have £{y"} —3£{y'} + 2¥{y} = L(e™), or
[s2Y(s) — scq — c1] — 3[sY(s) — co] + 2[Y(s)] = Li(s + 1)
Here ¢, and ¢; must remain arbitrary, since they represent y(0) and y’(0), respectively, which are unknown. Thus,

s — 1
2 +a 2 + 2
s"—=3s4+2 sT=35+2 (s+1)(s"—3s5+2)

Y(s)=c,

Using the method of partial fractions and noting that s> — 3s + 2 = (s — 1)(s — 2), we obtain

y(x):cob?i’l 2 . -1 +C15£71 -1 . 1 L 1/6+—1/2+1/3
s—1 s5-2 s—1 s5-2 s+1 s-1 s-2

1 1 1
=c,(2¢" —e) + ¢ (—e" + &) +| —eF — =& + =™
ol )+ af ) [6 5 3

1 x 1 2x 1 —X
=|2¢c,—c,—= |e"+| —c,tc+— | +—¢
2 3 6
x 2x 1 —X
=dye’ +de +ge

_ _ . _1 —_ L
where dy =2¢; —c,—5and d, =—c, + ¢, + 1.

24.13. Solve y"—3y +2y=¢™y(1)=0,y'(1)=0.
The initial conditions are given at x = 1, not x = 0. Using the results of Problem 24.12, we have as the solution
to just the differential equation

1
y=de" +de” + ge”‘

Applying the initial conditions to this last equation, we find that d, = — %672 and d, = e, hence,

1
3

-2 l 2x-3 1 —X

1 X
X)=——e
¥(x) >
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24.14.

24.15.

24.16.

Solve ”Z_N — 0.05N; N(0) = 20,000.
t

This is a differential equation for the unknown function N(f) in the independent variable £ We set
N(s) = L{N(1)}. Taking Laplace transforms of the given differential equation and using (24.4) with N replacing y,
we have

[sN(s) — N(0)] = 0.05N(s)
[sN(s) — 20,000] = 0.05N(s)

or, upon solving for N(s),
20,000

N =
() s—0.05

Then from Appendix A, entry 7 with @ = 0.05 and ¢ replacing x, we obtain

N(t) = £ {N(s)} = 551{20’—(())0(?5} - 20,0005/31{

=20,000¢*%
5

s—0.0

Compare with (2) of Problem 7.1.

Solve % + 507 =5;1(0)=0.

This is a differential equation for the unknown function I(#) in the independent variable ¢. We set I(s) = L{I(1)}.
Taking Laplace transforms of the given differential equation and using Eq. (24.4) with [ replacing y, we have

[sI(s) — 1(0)] + 501(s) = 5[1]
S

[sI(s) — O]+ 501(s) = s[l]
S

or, upon solving for /(s),
5

1&=5750

Then using the method of partial fractions and Appendix A, with ¢ replacing x, we obtain

5 /10 1/10
IO=F =% —— gt~ _
© () {s(s+50)} { s s+50}

:Lgfl l _igfl 1 :i_iedm
10 s) 10 s+50] 10 10

Compare with (/) of Problem 7.19.

Solve X +16x=2sin4t,x(0)=—-1,%(0)=0.

This is a differential equation for the unknown function x(f) in the independent variable f. We set
X(s) = £{x(8)}. Taking Laplace transforms of the given differential equation and using Eq. (24.5) with x replacing
v, we have

[SZX(S)—SX(O)—X(O)]+16X(S)=2[ > 4 ]
s +16

ryren o L) __8
{s X(s) s[ 2] O}+16X(s) 7116

8 s

sT+16)X(s) =
( )X sT+16 2
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. = f16)2 _%[52 i16]
Then using Appendix A, entries 17 and 9 with @ = 4 and ¢ replacing x, we obtain
*= LX)} = gl{(sz f16)2 B %[xz T ]}
- %gl{(szlf?@z } - %Sgl{sz i 16}
= %(sin 4t — At cosdt) — %cos At
Compare with the results of Problem 14.10.
Supplementary Problems
Use Laplace transforms to solve the following problems.
24.17. y+2y=0,y0)=1 24.18. y'+2y=2,y0)=1
24.19. y+2y=€5y0)=1 24.20. y+2y=0,y(1)=1
24.21. y+5y=0;y1)=0 2422, Y —-5y=¢%y(0)=2
24.23. y+y=xe™ y(0)=-2 24.24. y+y=sinx
24.25. y’'+20y=6sin2x, y(0)=6 24.26. v —y=0,y0)=1,y0)=1
24.27. y" —y=sinx, y0)=0,y(0) =1 24.28. v —y=¢59(0)=1,y(0)=0
24.29. y”+2y" —3y=sin 2x; y(0) =y’(0)=0 24.30. y"+y=sinx;, y(0)=0,y(0)=2
24.31. y"+y +y=0;y0) =4, y(0)=-3 2432, Y +2y +5y=3¢90)=1,y(0)=1
24.33. y"+ 5 -3y=u(x—4);y0)=0,y(0)=0 24.34. y"+y=0,y(m =0,y (m)=-1
24.35. y"—y=5,90)=0,y(0)=0, y"(0)=0 24.36. Y —y=0; y(0)=1,y(0)=0, y"(0) =0, y"(0)=0
24.37. ds—z - 3d—22) + 3ﬂ —y=x"¢"y(0)=1,y(0)=2,y"(0) =3
dx dx dx
24.38. dd_]:f] —0.085N =0; N(0) =5000 24.39. dd—Y; =37, T(0)=100
24.40. dd—Y; +37 =90, T(0)=100 24.41. % +2v=32
24.42. % g =4cos2t; g(0)=0 2443, %+9%+14x=0; x(0)=0, £(0)=—1
24.44. ¥+4x+4x=0,x(0)=2, x(0)=-2 24.45. Z—;C + 8% +25x =0, x(7)=0, X(7)=06
24.46. j—;q + 9% +14g= %sint; q(0)=0, §(0) =1



