Derivatives.

M.W.
 Mathematics Teaching and Distance Learning Centre Gdańsk University of Technology

2011-2017

(1) Derivative

(2) Differentiation

Definition (Notation of the derivative)

Let f be a function defined on an interval I. We say that f is differentiable at a point x_{0} in I if the limit

$$
\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x}
$$

exists. The limit, when it exists, is called the derivative of f at x_{0}, and is denoted by $f^{\prime}\left(x_{0}\right)$.
The expression

$$
\frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x}
$$

where $\Delta x \neq 0$, is called a difference quotient of f at x_{0}.

Geometrical interpretation: the

derivative $f^{\prime}\left(x_{0}\right)$, if exists, is the slope of the tangent line to the graph of the function $y=f(x)$ at the point $\left(x_{0}, f\left(x_{0}\right)\right)$.

$$
y=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
$$

Physical interpretation: Suppose an object moves along a straight line and its distance from a fixed point on the line at time t is given by $y=f(t)$. Then the derivative $f^{\prime}\left(t_{0}\right)$ is the instantaneous velocity of the object at the time t_{0}.

Suppose $y=f(x)$. It is also common to use the notation

$$
\left.\frac{d y}{d x}\right|_{x=x_{0}}=\left.\frac{d f}{d x}\right|_{x=x_{0}}=f^{\prime}\left(x_{0}\right)=\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x}=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

Definition (Derivative function)

Given a function f. Suppose D is the set of all points at which f is differentiable. The derivative function of f, f^{\prime}, with domain D is defined by

$$
f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

Theorem (Differentiability \Rightarrow Continuity)

If f is differentiable at x_{0}, then f is continuous at x_{0}.

Theorem (Basic rules of differentiation)

Suppose f and g are differentiable at a point x and c is a constant. Then

$$
\begin{aligned}
& (c f)^{\prime}(x)=c \cdot f^{\prime}(x) ; \\
& (f+g)^{\prime}(x)=f^{\prime}(x)+g^{\prime}(x) ; \\
& (f-g)^{\prime}(x)=f^{\prime}(x)-g^{\prime}(x) ; \\
& (f g)^{\prime}(x)=f^{\prime}(x) \cdot g(x)+f(x) \cdot g^{\prime}(x) \text { (Product Rule); } \\
& \left(\frac{f}{g}\right)^{\prime}(x)=\frac{f^{\prime}(x) \cdot g(x)-f(x) \cdot g^{\prime}(x)}{g^{2}(x)}(\text { Quotient Rule) }
\end{aligned}
$$

Theorem (Derivatives of some common functions)

$$
\begin{aligned}
& \frac{d}{d x}(C)=0 \text { for any constant } C \\
& \frac{d}{d x}\left(x^{\alpha}\right)=\alpha x^{\alpha-1} \text { for any nonzero real number } \alpha ; \\
& \frac{d}{d x}(\sin x)=\cos x \\
& \frac{d}{d x}(\cos x)=-\sin x \\
& \frac{d}{d x}(\tan x)=\frac{1}{\cos ^{2} x}=\sec ^{2} x \\
& \frac{d}{d x}(\cot x)=-\frac{1}{\sin ^{2} x} \\
& \frac{d}{d x}\left(e^{x}\right)=e^{x} \\
& \frac{d}{d x}(\ln x)=\frac{1}{x}
\end{aligned}
$$

Theorem (Derivatives of some common functions)

$$
\begin{aligned}
& \frac{d}{d x}(\arcsin x)=\frac{1}{\sqrt{1-x^{2}}} \\
& \frac{d}{d x}(\arccos x)=-\frac{1}{\sqrt{1-x^{2}}} \\
& \frac{d}{d x}(\arctan x)=\frac{1}{1+x^{2}} \\
& \frac{d}{d x}(\operatorname{arccot} x)=-\frac{1}{1+x^{2}} \\
& \frac{d}{d x}\left(a^{x}\right)=a^{x} \ln a \\
& \frac{d}{d x}\left(\log _{a} x\right)=\frac{1}{x \ln a}
\end{aligned}
$$

Theorem (Chain rule)

Suppose h is differentiable at x_{0} and g is differentiable at $h\left(x_{0}\right)$. Let $f=g \circ h$. Then f is differentiable at x_{0} and

$$
f^{\prime}\left(x_{0}\right)=g^{\prime}\left(h\left(x_{0}\right)\right) \cdot h^{\prime}\left(x_{0}\right) .
$$

Theorem (Derivative of inverse function)
Suppose f is differentiable at x_{0} with $f\left(x_{0}\right)=y_{0}$. Then f^{-1} is differentiable at $y_{0}=f\left(x_{0}\right)$ and

$$
\left(f^{-1}\right)^{\prime}\left(y_{0}\right)=\frac{1}{f^{\prime}\left(x_{0}\right)}
$$

Theorem (Differentiation of parametric function)

Suppose

$$
x=f(t) \text { and } y=g(t)
$$

are differentiable functions of t. Then

$$
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}
$$

provided that $\frac{d x}{d t} \neq 0$.

Theorem (Differentiation of parametric function)

Suppose

$$
x=f(t), y=g(t) \text { and } \frac{d y}{d x}
$$

are differentiable functions of t. Then

$$
\frac{d^{2} y}{d x^{2}}=\frac{\frac{d y}{d t}\left(\frac{d y}{d x}\right)}{\frac{d x}{d t}}
$$

provided that $\frac{d x}{d t} \neq 0$.

Definition (Higher derivatives)

Let f be a function.
The n-th derivative of f, if exists, is denoted by $f(n)$ and is defined inductively by

$$
f^{(n)}(x)=\frac{d}{d x} f^{(n-1)}(x),
$$

with the convention that $f^{(0)}(x)=f(x)$.
We also use the symbol $\frac{d^{n} y}{d x^{n}}$ to denote the n-th derivative of $y=f(x)$.
In particular

$$
\begin{gathered}
f^{(1)}(x)=f^{\prime}(x) \\
f^{(2)}(x)=\left(f^{\prime}\right)^{\prime}(x)=f^{\prime \prime}(x) \\
\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right) \\
\frac{d^{3} y}{d x^{3}}=\frac{d}{d x}\left(\frac{d^{2} y}{d x^{2}}\right)
\end{gathered}
$$

Theorem (Product rule)

If f and g are functions with derivatives up to order 2, then

$$
\begin{gathered}
(f g)^{\prime}=f g^{\prime}+f g^{\prime} \\
(f g)^{\prime \prime}=f g^{\prime \prime}+2 f^{\prime} g^{\prime}+f^{\prime \prime} g
\end{gathered}
$$

Theorem (Leibniz's formula)

If f and g are functions with derivatives up to order n, then

$$
(f g)^{(n)}=\sum_{k=0}^{n}\binom{n}{k} f^{(k)} g^{(n-k)}=
$$

$$
\binom{n}{0} f^{(0)} g^{(n)}+\binom{n}{1} f^{(1)} g^{(n-1)}+\binom{n}{2} f^{(2)} g^{(n-2)}+\ldots+\binom{n}{n} f^{(n)} g^{(0)}
$$

Theorem (L'Hôpital's rule)

Suppose

$$
\begin{aligned}
& \lim _{x \rightarrow a} f(x)=0 \text { and } \lim _{x \rightarrow a} g(x)=0 \text {, or } \\
& \lim _{x \rightarrow a} f(x)= \pm \infty \text { and } \lim _{x \rightarrow a} g(x)= \pm \infty .
\end{aligned}
$$

If f and g are differentiable, then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

provided that the limit on right hand side exists. Similar result also holds for one-sided limits.

Examples

Example

- $\lim _{x \rightarrow 0} \frac{e^{x}-e^{-x}+3 x}{x}$
- $\lim _{x \rightarrow 0^{+}} \frac{\ln \sin x}{\ln \sin 2 x}$
- $\lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{e^{x}-1}\right)$
- $\lim _{x \rightarrow 1^{+}}(x-1) \ln (x-1)$
- $\lim _{x \rightarrow 1^{+}}(x-1)^{(x-1)}$
- $\lim _{x \rightarrow 2^{+}}\left(\ln \frac{1}{x-2}\right)^{x-2}$
- $\lim _{x \rightarrow \frac{\pi}{4}}(\tan x)^{\tan 2 x}$

Definition (Increasing / decreasing functions)

A function f is increasing on an interval l if for any $x, y \in I$,

$$
x \leq y \Rightarrow f(x) \leq f(y)
$$

and f is decreasing on I if for any $x, y \in I$,

$$
x \leq y \Rightarrow f(x) \geq f(y)
$$

Theorem (Condition for monotonic functions)

Suppose a function f is differentiable on an interval I.

- If $f^{\prime}(x) \geq 0$ for all $x \in I$, then f is increasing on I;
- If $f^{\prime}(x)>0$ for all $x \in I$, then f is strictly increasing on I;
- If $f^{\prime}(x) \leq 0$ for all $x \in I$, then f is decreasing on I.
- If $f^{\prime}(x)<0$ for all $x \in I$, then f is strictly decreasing on I.
- If $f^{\prime}(x)=0$, then f is constant on I.

Definition (Absolute Maximum and Minimum)

Suppose f is a function with domain D. f has an absolute maximum on D at a point x_{0} if

$$
f\left(x_{0}\right) \geq f(x) \text { for all } x \in D
$$

f has an absolute minimum on D at x_{0} if

$$
f\left(x_{0}\right) \leq f(x) \text { for all } x \in D
$$

$$
\psi
$$

Definition (Local Maximum and Minimum)

Suppose f is a function with domain D.
f has an local (relative) maximum at x_{0} if there is a number $\delta>0$ such

$$
f\left(x_{0}\right) \geq f(x) \text { for all } x \in\left(x_{0}-\delta, x_{0}+\delta\right) \cap D
$$

f has an local (relative) minimum at x_{0} if there is a number $\delta>0$ such

$$
f\left(x_{0}\right) \leq f(x) \text { for all } x \in\left(x_{0}-\delta, x_{0}+\delta\right) \cap D .
$$

$$
木
$$

Theorem (Derivative at local minimum / maximum)

Given a function f with domain D. Suppose

- f is differentiable at x_{0}, and
- f has a local minimum / maximum at x_{0},
then

$$
f^{\prime}\left(x_{0}\right)=0
$$

Example

Find local extrema of the function

$$
f(x)=\left|1-x^{2}\right| .
$$

Definition (Critical point)

Given a function f with domain D. An interior point $x_{0} \in D$ is a critical point if either $f^{\prime}\left(x_{0}\right)=0$, or f is NOT differentiable at $x=x_{0}$.

Theorem (First Derivative Test)

Suppose x_{0} is a critical point of a continuous function f If there is $\delta>0$ such that

$x \in$	$\left(x_{0}-\delta, x_{0}\right)$	$\left(x_{0}, x_{0}+\delta\right)$
$f^{\prime}(x)$	≥ 0	≤ 0

then x_{0} is a local maximum point of f; If there is $\delta>0$ such that

$x \in$	$\left(x_{0}-\delta, x_{0}\right)$	$\left(x_{0}, x_{0}+\delta\right)$
$f^{\prime}(x)$	≤ 0	≥ 0

then x_{0} is a local minimum point of f.

Theorem (Second Derivative Test)

Let f be a differentiable function in some open interval with $f^{\prime}\left(x_{0}\right)=0$. Suppose $f^{\prime \prime}\left(x_{0}\right)$ exists.

- If $f^{\prime \prime}\left(x_{0}\right)>0$, then x_{0} is a local minimum of f;
- If $f^{\prime \prime}\left(x_{0}\right)<0$, then x_{0} is a local maximum of f.

Definition (Concavity)

Let f be a function on an interval I.
The curve $y=f(x)$ is convex on the interval I if for any $a, b \in I$, the line segment joining two points ($a, f(a))$ and ($b, f(b)$) always lies above the curve between that two points;
The curve $y=f(x)$ is concave on the interval I if for any $a, b \in I$, the line segment joining two points $(a, f(a))$ and $(b, f(b))$ always lies below the curve between that two points.

Theorem (Condition for Concavity)

Let f be a function defined on an open interval I and $f^{\prime \prime}(x)$ exists for all $x \in I$.

- If $f^{\prime \prime}(x) \geq 0$ for all $x \in I$, then the curve $y=f(x)$ is convex;
- If $f^{\prime \prime}(x) \leq 0$ for all $x \in I$, then the curve $y=f(x)$ is concave.

Definition (Point of inflection)

A point x_{0} where the graph $y=f(x)$ changes its behaviour from convex to concave or concave to convex is called a point of inflection of the curve.

Theorem

Let $x_{0} \in \mathbb{R}$ and let f be defined at least in the neighbourhood $U\left(x_{0}\right)$ of x_{0}. If there exists positive number δ, such that

$x \in$	$\left(x_{0}-\delta, x_{0}\right)$	$\left(x_{0}, x_{0}+\delta\right)$
$f^{\prime \prime}(x)$	≤ 0	≥ 0

or

$x \in$	$\left(x_{0}-\delta, x_{0}\right)$	$\left(x_{0}, x_{0}+\delta\right)$
$f^{\prime \prime}(x)$	≥ 0	≤ 0

then $\left(x_{0}, f\left(x_{0}\right)\right)$ is a point of inflection on the graph of function f.

Theorem

Let $x_{0} \in \mathbb{R}$ and let f be defined at lest in the neighbourhood $U\left(x_{0}\right)$ of x_{0}. Then, if
(1) $f^{\prime \prime}\left(x_{0}\right)=f^{\prime \prime \prime}\left(x_{0}\right)=\ldots=f^{(n-1)}\left(x_{0}\right)=0$,
(2) $f^{(n)}\left(x_{0}\right) \neq 0$,
(3) n is an odd number, such that $n \geq 3$,
then $\left(x_{0}, f\left(x_{0}\right)\right)$ is a point of inflection on the graph of function f.

Examples

Example

Find points of inflection

(1) $f(x)=x^{4}-24 x^{2}+6 x+5$
(2) $f(x)=\ln (x)+3 x-1$
(3) $f(x)=x e^{x}$

Definition (Asymptote)

- A straight line $x=a$ is called a vertical asymptote to the curve $y=f(x)$ if

$$
\begin{gathered}
\lim _{x \rightarrow a^{-}} f(x) \rightarrow \pm \infty \text { and /or } \\
\lim _{x \rightarrow a^{+}} f(x) \rightarrow \pm \infty .
\end{gathered}
$$

- A straight line $y=m x+b$ is called an inclined asymptote to the curve $y=f(x)$ if

$$
\begin{gathered}
\lim _{x \rightarrow \infty}(f(x)-(m x+b))=0 \text { and /or } \\
\lim _{x \rightarrow-\infty}(f(x)-(m x+b))=0
\end{gathered}
$$

- If $m=0$, then $y=b$ is called a horizontal asymptote.

Theorem (Rolle's Theorem)

Let f be a function on $[a, b]$. Suppose
f is continuous on $[a, b]$, and
f is differentiable in (a, b)
If $f(a)=f(b)=0$, then there is a point $c \in(a, b)$ such that

$$
f^{\prime}(c)=0 .
$$

Theorem (Mean Value Theorem)

Let f be a function on $[a, b]$. Suppose
f is continuous on $[a, b]$, and
f is differentiable in (a, b).
Then there is a point $c \in(a, b)$ such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Examples

Example

Investigate functions
(1) $f(x)=(x-1)^{2}(x+1)$
(2) $f(x)=\frac{x^{3}}{2\left(4-x^{2}\right)}$
(3) $f(x)=x^{2} e^{\frac{1}{x}}$
(3) $f(x)=(x-1) \ln x$

