Improper integrals. Definite integral - applications

M.W.
Mathematics Teaching and Distance Learning Centre Gdańsk University of Technology

2012-2017

(1) Improper integral
(2) Area between curves
(3) Solid of Revolution

4 Arc length of a curve
(5) Area of a surface of Revolution

Improper integral

Definition (Improper integrals - first kind)

Suppose a $\int_{a}^{t} f(x) d x$ exists for every $t \in[a, \infty)$. The improper integral is defined by

$$
\int_{a}^{\infty} f(x) d x=\lim _{t \rightarrow \infty} \int_{a}^{t} f(x) d x
$$

- If the limit exists, we say that $\int_{a}^{\infty} f(x) d x$ is convergent.
- If the limit does not exist, we say that $\int_{a}^{\infty} f(x) d x$ is divergent.

Improper integral

Definition

The improper integral $\int_{-\infty}^{b} f(x) d x$ can be defined similarly.
If both $\int_{a}^{\infty} f(x) d x$ and $\int_{-\infty}^{a} f(x) d x$ are convergent, then we define

$$
\int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{a} f(x) d x+\int_{a}^{\infty} f(x) d x
$$

Improper integral

Example

(1) $\int_{1}^{\infty} \frac{d x}{x^{4}}$
(2) $\int_{-\infty}^{\infty} \frac{d x}{x^{2}+2 x+2}$

- $\int_{1}^{\infty} x \sin x d x$

Exercise

(1)

$$
\int_{-\infty}^{0} \frac{1}{1+x^{2}} d x
$$

(2)

$$
\begin{aligned}
& \int_{e^{2}}^{\infty} \frac{1}{x \ln x} d x \\
& \int_{-\infty}^{\infty} 2 x e^{-x^{2}} d x
\end{aligned}
$$

Improper integral

Definition (Improper integrals - second kind)

If f is continuous on $[a, b)$ and is discontinuous at b, then

$$
\int_{a}^{b} f(x) d x=\lim _{t \rightarrow b^{-}} \int_{a}^{t} f(x) d x
$$

If f is continuous on $(a, b]$ and is discontinuous at a, then

$$
\int_{a}^{b} f(x) d x=\lim _{t \rightarrow a^{+}} \int_{t}^{b} f(x) d x
$$

If the limit exists, we say that $\int_{a}^{b} f(x) d x$ is convergent.

Improper integral

Example

(1) $\int_{0}^{1} \frac{d x}{\sqrt{1-x^{2}}}$
(3) $\int_{0}^{1} \frac{d x}{x \ln x}$
(2) $\int_{1}^{2} \frac{x d x}{\sqrt{x-1}}$
(4) $\int_{0}^{2} \frac{d x}{x \ln ^{2} x}$

Exercise

(1)

$$
\int_{0}^{1} \frac{1}{\sqrt[5]{x^{3}}} d x
$$

(3)

$$
\int_{1}^{2} \frac{1}{\sqrt{4 x-x^{2}-3}} d x
$$

(4)

$$
\int_{-1}^{1} \frac{1}{x \sqrt[3]{x}} d x
$$

Comparison test

Theorem

Let f and g be defined for all $x \geq a$ and integrable on each interval $[a, A], A \geq a$.

- If $0 \leq f(x) \leq g(x)$ for all $x \geq x$, then from convergence of the integral $\int_{a}^{\infty} g(x) d x$ it follows that the integral $\int_{a}^{\infty} f(x) d x$ is also convergent, and $\int_{a}^{\infty} f(x) d x \leq \int_{a}^{\infty} g(x) d x$;
- from divergence of the integral $\int_{a}^{\infty} f(x) d x$ it follows that the integral $\int_{a}^{\infty} g(x) d x$ is also divergent.

Comparison test

Theorem

$$
\int_{1}^{\infty} \frac{1}{x^{\alpha}} d x= \begin{cases}\text { divergant } & \text { for } \quad \alpha \in(0,1] \\ \text { convergant } & \text { for } \alpha>1\end{cases}
$$

Theorem

$$
\int_{0}^{1} \frac{1}{x^{\alpha}} d x= \begin{cases}\text { convergant } & \text { for } \alpha \in(0,1) \\ \text { divergant } & \text { for } \alpha \geq 1\end{cases}
$$

Area between curves

If f and g are integrable on $[a, b]$ and

$$
f(x) \geq g(x) \text { for } x \in[a, b],
$$

then the area of the region R between the curves $y=f(x)$ and $y=g(x)$ and the vertical lines $x=a$ and $x=b$ is given as

$$
\text { Area of } R=\int_{a}^{b}(f(x)-g(x)) d x
$$

Area between curves

Area between curves

Example

Compute the area of the figure bounded by the straight lines $x=0, x=2$ and the curve $y=2^{x}, y=2 x-x^{2}$.

Example

Compute the area of the figure bounded by the parabolas $x=-2 y^{2}, x=1-3 y^{2}$

Area between curves

Example

Compute the area of the figure bounded by the straight lines $x=0, x=2$ and the curve $y=2^{x}, y=2 x-x^{2}$.

Answer: $\frac{3}{\ln 2}-\frac{4}{3}$

Example

Compute the area of the figure bounded by the parabolas $x=-2 y^{2}, x=1-3 y^{2}$

Area between curves

Example

Compute the area of the figure bounded by the straight lines $x=0, x=2$ and the curve $y=2^{x}, y=2 x-x^{2}$.

Answer: $\frac{3}{\ln 2}-\frac{4}{3}$

Example

Compute the area of the figure bounded by the parabolas $x=-2 y^{2}, x=1-3 y^{2}$

Area between curves

Example

Compute the area of the figure bounded by the straight lines $x=0, x=2$ and the curve $y=2^{x}, y=2 x-x^{2}$.

Answer: $\frac{3}{\ln 2}-\frac{4}{3}$

Example

Compute the area of the figure bounded by the parabolas $x=-2 y^{2}, x=1-3 y^{2}$

Answer: $\frac{4}{3}$

Area between curves

Example

Find the area of the figure contained between the parabola $x^{2}=4 y$ and the witch of Agnesi $y=\frac{8}{x^{2}+4}$.

Example

Compute the area of the figure which lies in the first quadrant inside the circle $x^{2}+y^{2}=3$ and is bounded by the parabolas $x^{2}=2 y$ and $y^{2}=2 x$

Area between curves

Example

Find the area of the figure contained between the parabola $x^{2}=4 y$ and the witch of Agnesi $y=\frac{8}{x^{2}+4}$.

$$
\text { Answer: } 2 \pi-\frac{4}{3}
$$

Example

Compute the area of the figure which lies in the first quadrant inside the circle $x^{2}+y^{2}=3$ and is bounded by the parabolas $x^{2}=2 y$ and $y^{2}=2 x$

Area between curves

Example

Find the area of the figure contained between the parabola $x^{2}=4 y$ and the witch of Agnesi $y=\frac{8}{x^{2}+4}$.

$$
\text { Answer: } 2 \pi-\frac{4}{3}
$$

Example

Compute the area of the figure which lies in the first quadrant inside the circle $x^{2}+y^{2}=3$ and is bounded by the parabolas $x^{2}=2 y$ and $y^{2}=2 x$

Area between curves

Example

Find the area of the figure contained between the parabola $x^{2}=4 y$ and the witch of Agnesi $y=\frac{8}{x^{2}+4}$.

$$
\text { Answer: } 2 \pi-\frac{4}{3}
$$

Example

Compute the area of the figure which lies in the first quadrant inside the circle $x^{2}+y^{2}=3$ and is bounded by the parabolas $x^{2}=2 y$ and $y^{2}=2 x$

Answer: $\frac{\sqrt{2}}{3}+\frac{3}{2} \arcsin \frac{1}{3}$

Solid of Revolution

Suppose $f(x)$ is a continuous non-negative function for $x \in[a, b]$. If D is the solid obtained by rotating the graph of $y=f(x)$ about the x-axis, then the volume of D is given by

$$
\text { Volume of } D=\pi \int_{a}^{b}(f(x))^{2} d x
$$

Volume of Solid of Revolution

Example

Compute the volume of the solid generated by revolting about the x-axis the figure bounded by the parabola $y=0.25 x^{2}+2$ and the straight line $5 x-8 y+14=0$

Example

Compute the volume of the solid generated by revolting about the y-axis the figure bounded by the parabolas $y=x^{2}$ and $8 x=y^{2}$

Volume of Solid of Revolution

Example

Compute the volume of the solid generated by revolting about the x-axis the figure bounded by the parabola $y=0.25 x^{2}+2$ and the straight line $5 x-8 y+14=0$

Answer: $\frac{891}{1280} \pi$

Example

Compute the volume of the solid generated by revolting about the y-axis the figure bounded by the parabolas $y=x^{2}$ and $8 x=y^{2}$

Volume of Solid of Revolution

Example

Compute the volume of the solid generated by revolting about the x-axis the figure bounded by the parabola $y=0.25 x^{2}+2$ and the straight line $5 x-8 y+14=0$

Answer: $\frac{891}{1280} \pi$

Example

Compute the volume of the solid generated by revolting about the y-axis the figure bounded by the parabolas $y=x^{2}$ and $8 x=y^{2}$

Volume of Solid of Revolution

Example

Compute the volume of the solid generated by revolting about the x-axis the figure bounded by the parabola $y=0.25 x^{2}+2$ and the straight line $5 x-8 y+14=0$

Answer: $\frac{891}{1280} \pi$

Example

Compute the volume of the solid generated by revolting about the y-axis the figure bounded by the parabolas $y=x^{2}$ and $8 x=y^{2}$

Answer: $\frac{24}{5} \pi$

Arc length of a curve

Let f is a continuously differentiable function on $[a, b]$. The arc length of the curve $y=f(x)$ from a to b is given by

$$
\text { Arc length }=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
$$

Arc length of a curve

Example

Compute the length of the arc of the semicubical parabola $y^{2}=x^{3}$ between the points $(0,0)$ and $(4,8)$

Example

Compute the arc length of the curve $y=\ln \cos x$ between the points with the abscissas $x=0$, $x=\frac{\pi}{4}$

Arc length of a curve

Example

Compute the length of the arc of the semicubical parabola $y^{2}=x^{3}$ between the points $(0,0)$ and $(4,8)$

Answer: $\frac{8}{27}(10 \sqrt{10}-1)$

Example

Compute the arc length of the curve $y=\ln \cos x$ between the points with the abscissas $x=0$, $x=\frac{\pi}{4}$

Arc length of a curve

Example

Compute the length of the arc of the semicubical parabola $y^{2}=x^{3}$ between the points $(0,0)$ and $(4,8)$

Answer: $\frac{8}{27}(10 \sqrt{10}-1)$

Example

Compute the arc length of the curve $y=\ln \cos x$ between the points with the abscissas $x=0$, $x=\frac{\pi}{4}$

Arc length of a curve

Example

Compute the length of the arc of the semicubical parabola $y^{2}=x^{3}$ between the points $(0,0)$ and $(4,8)$

Answer: $\frac{8}{27}(10 \sqrt{10}-1)$

Example

Compute the arc length of the curve $y=\ln \cos x$ between the points with the abscissas $x=0$, $x=\frac{\pi}{4}$

Answer: $\ln \tan \frac{3 \pi}{8}$

Area of a surface of Revolution

Suppose $f(x)$ is a continuous non-negative function for $x \in[a, b]$. If S is the surface obtained by rotating the graph of $y=f(x)$ about the x-axis, then the area of the surface of revolution is given by

$$
\text { Area of Surface } S=2 \pi \int_{a}^{b} f(x) \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
$$

Area of a surface of Revolution

Example

Compute the area of the surface formed by revolting $y=\sin x, 0 \leq x \leq \pi$ about the x-axis.

