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What are Differential equations

Definition
Differential equation A differential equation is an equation that relates in a nontrivial manner
an unknown function and one or more of the derivatives or differentials of the unknown

function with respect to one or more independent variables.

F(X,y,y’,...,y(”))zo (1)
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Classification of Differential Equations

Differential equations are classified in several different ways:

ordinary or partial

linear or nonlinear

o
@ homogeneous or nonhomogeneous
@ autonomous or nonautonomous

-]

first order, second order, ..., n th-order

Definition

The order of a differential equation is the order of the highest derivative that appears
(non-trivially) in the equation.
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o A differential equation is an ordinary differential equation if the only derivatives of the
unknown function are ordinary derivatives.

@ A differential equation is a partial differential equation if the only derivatives of the
unknown function are partial derivatives.

Example (Ordinary differential equations)

o % =1+ x2 (first-order, nonlinear)
2 5
° % + x = 3 cos(t) (second-order, linear, nonhomogeneous)

° % = 3% — 5y = 0 (third-order, linear, homogeneous)
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Ordinary differential equations

Definition (An Ordinary Differential Equation)

An ordinary differential equation of the n-th order is the equation of the form
F(x,y(x),5(0)s -,y (c)) = 0 @

where sought-for function is the function

y: [a, b] = RY
fulfilling condition (2) where

F:la,b] xR x ... xRY 5 R¥
~—_———
n+1

is at least continuous. )
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If k = d and one can solve F for y(")(x) then the equation (2) takes the form

y = F(x,y(x), ...,y (x) (3)

where
f:la,b] xRY x ... x RY - RY.
~—_——

n
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Solution of Differential Equations

Definition

To say that y = g(x) is a solution of the differential equation
F(x, 5y (%), -y (x)) = 0
on the interval [a, b] means that

F(x,g(x).8'(x),- -, 8" (x)) = 0

for every choice of x in an interval [a, b]

In other words, a solution, when substituted into the differential equation makes the equation
identically true for x € [a, b]
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Definition

A graph of a solution of differential equation is called an integral curve of the equation.

Figure: Vector field

M.W. (CNMiKnO PG Gdansk) Introduction 2011-2017 10 / 40



The Cauchy problem (the initial value problem)

The Cauchy problem is a problem of finding the solution y = y(x) of the equation

F(X?Y(X)’YI(X), e ’y(”)) =0

satisfying the initial condition

y(x0) = yo,

y/(X) = Y1,

y(n_l) = }/n—17
where xp € (a, b) and yo,y1,...,Yn—1 SOMe constants.
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First order differential equation

The general form of an equation of the first order is

F(x,y(x),y'(x)) =0 (4)
If the equation (4) can be solved for y’(x) then one has

y'(x) = f(x, y(x))

an equation of the first order solved for the derivative.
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The Cauchy problem (the initial value problem)

The Cauchy problem is a problem of finding the solution y = y(x) of the equation
Y'(x) = f(x,y(x))

satisfying the initial condition

y(x0) = yo.
Geometrically this means that an integral curve passing through a given point My(xo, yo) in the
xQy plane is sought.
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Existence and Uniqueness of a Solution

o Existence says that there is at least one solution.

@ Uniqueness says that there is at most one solution
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Theorem

Let a differential equation

y'(t) = f(x,y) (5)
be given, where the function f(x,y) is determined in some domain D in the xQOy plane
containing a point (xo, yo). If the function f(x,y) is a continuous and bounded function in the

domain D, then through each internal point (xy, yo) of the domain passes at least one integral
curve of the equation (5)
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Definition
A continuous function

f:[a, b] x G —RY,

where G C R is said to satisfy a Lipschitz condition in y if there is a constant L (a Lipschitz
constant) such that

Vxela,b]Vy.ze6lIf (X, ) = f(x, 2)|| < Llly — 2|

2011-2017 16 / 40
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Example

Let
f:[a,b] x G — R

be a C!-function (G is a convex set) such that

f‘
supHa (x, y)H =L <400
X,y Ay
Then by Lagrange mean theorem one has
(%, y) = f(x,2)l| < Hy—ZH P \ f(X y +0(y = 2))ll

< Lx =yl
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Let

f:[a,b] x G — R

(G C RY) be continuous and satisfy a Lipschitz condition in y with the constant L, then the
initial value problem y'(x) = f(x,y), y(x0) = yo, Yo € G has a unique solution.
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Equation not containing sought-for function

It is an equation of the form

where f is defined on an interval / C R.
If f is continuous function on /, then the form of general solution is

y() = [ Fx)x (7)

The solution of initial problem

{ y'=f(x)
y(x0) = yo
has the form

y=ﬂ@=m+/ﬂﬂm
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Solve the equation

y':3x2+4x—1+ex

y:/(3x2+4x—1+ex)dx:x3+2x2—x+eX+C
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Equation not containing independent variable

It is an equation of the form
y' =g(y) (9)
where g is defined on an interval J C R.

Let us note, that if yo € J is a root of a function g i.e. g(yp) = 0 then y(x) = yp is a specific
solution of the equation (9). If the function g is not equal zero in the interval J than

dx 1
& " 20) (10)

is an equation not containing sought-for function x = x(y).
If g is continuous function on J, then the form of general solution is

1
x(y) = / mdy (11)
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Solve an initial value problem

yY=1+y% y(z)=1

N X
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Equations with variables separable

Definition

A differential equation of the form

@(y)dy = f(x)dx (12)

is called an equation with separated variables.
An equation of the form

P1(x)P1(y)dx = pa(x)2(y)dy (13)

in which coefficients of the differentials are factors depending on x alone and on y alone is
called an equation with variables separable.
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Dividing the above equation by the product 1 (y)¢2(x) reduces it to an equation with
separated variables.

Dividing by the product 11(y)p2(x) may lead to the loss of particular solutions making the
product 1 (y)p2(x) zero.
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Proposition
A differential equation of the form

where a, b # 0, ¢ are constants, f is continuous function, is converted into an equation with

dy
ol f(ax + by + c)

variables separable by the substitution of the variables

u=ax+by+c

(15)

(16)

v
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From equation (16) we get
du dy
d_ =a+ ba
thus
G L (8T
d” b \dx
and ’
d—)l: = a+ bf(u)
Eventually
du
AT b
O
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Example 1

Solve the equation

1
3e* tan yd 2 — e
e* tan ydx + ( e)COS
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Example 1

Solve the equation

1
3e* tan yd 2 — e
e* tan ydx + ( e)COS

Solution
tany = C(2 — *)?
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Example 2

Find a particular solution of the equation

(1+e )y’ = e

satisfying the initial condition y(0) = 1.
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Example 2

Find a particular solution of the equation

(1+e )y’ = e

satisfying the initial condition y(0) = 1.

Solution

14 e<\?
y=4/14+In >
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Find a particular solution of the equation

y'sinx=ylny

satisfying the initial condition y(5) = e.
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Find a particular solution of the equation

y'sinx=ylny

satisfying the initial condition y(5) = e.

Solution
— atan(3)
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Example 4

Find the curve passing through the point (0, —2) such that the slope of the tangent at any of
its points is equal to the ordinate of that point increased by 3.
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Example 4

Find the curve passing through the point (0, —2) such that the slope of the tangent at any of
its points is equal to the ordinate of that point increased by 3.

Solution

M.W. (CNMiKnO PG Gdansk) Introduction 2011-2017 30 / 40



Exercises

Integrate the following equations:
O (1+y?)dx +xydy =0
Q@eV(1l+y)=1
Q y =sin(x—y)
Q y+xy/=a(l+xy) y(3)=—2a
Q tany’ =0
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Linear equations of the first order

Definition

A linear equation of the first order is an equation linear in an unknown function and its
derivative. It is of the form ;
Yy
= = 17
5 T PX)y =a(x) (17)
where p(x) and g(x) are given functions of x continuous in the range in which it is required to
integrate equation (17)
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Homogeneous linear equation

Definition

If g(x) = 0 then the equation
dy
& + P(X)y =0 (18)

is called a homogeneous linear equation.

The general solution of equation (18) is of the form

y = Ce~ J Pl)dx (19)
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Homogeneous linear equation

x)dx s the general solution of the

If the function p(x) is continuous in (a, b), then y = Ce~J P
homogeneous equation % + p(x)y = 0. Moreover there exists unique solution satisfying initial
condition y(xo) = yo., where (x0,%0) € {(x,y); x€ (a,b) ANy € (—o0,+00)}.
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Variation of an arbitrary constant

One of the methods of solving linear equations of the first order is the method of variation of
an arbitrary constant which consists in finding the solution of equation (17) in the form

y = C(x)e™ TP (20)

where C(x) is a new unknown function of x.
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Algorithm

o If the differential equation is given as
a(x)y" + b(x)y = c(x)

rewrite it in the form
dy

Ix + p(x)y = q(x)

where p(x) = 583 q(x) = ;g;

@ Find the solution of homogeneous linear equation

dy

-0
v p(x)y

y =u(x) = Ce—J PO)dx
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Algorithm

@ Evaluate the integral
_ q(x)
C(x) = / TP dx (21)

We get the above integral by substituting y and y’ in the equation (17) by C(x)e~JP()dx
and its derivative.

@ Write down the general solution
y = u(x) + C(x)e~ /P (22)

@ If you are given an initial condition, use the initial condition to find the constant C.

M.W. (CNMiKnO PG Gdansk) Introduction 2011-2017 37 / 40



Solve the equation

x2

y' 4+ xy = 2xe”
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Solve the equation

Solution
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It may turn out that the differential equation is linear in x as a function of y.

Solve the equation

dy 1
dx  xcosy -+ sin2y

M.W. (CNMiKnO PG Gdansk) Introduction 2011-2017 39 / 40



It may turn out that the differential equation is linear in x as a function of y.

Solve the equation

dy 1
dx  xcosy -+ sin2y

Solution _
x = Ce®"’ —2(1 +siny)
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Exercises

Q xy' — 2y = x3cos x,

Q y +ycosx =cosx, y(0) =1,
Q y — ye¥ = 2xe®,

o y/ + xe¥y = e(l—x)ex_
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