Bernoulli equations

M.W.

Mathematics Teaching and Distance Learning Centre Gdańsk University of Technology

2010-2017

1 The Bernoulli equation

The Bernoulli equation

Definition

The Bernoulli equation is an equation of the form

$$\frac{dy}{dx} + p(x)y = q(x)y^n \tag{1}$$

where p(x) and q(x) are given functions of x continuous in the range in which it is required to integrate equation (1) $n \neq 0, 1$ (for n = 0, 1 the equation is linear).

3 / 9

By the substitution $z=\frac{1}{y^{n-1}}$ the Bernoulli equation can be reduced to a linear form and integrated as a linear equation.

Solve the equation

$$y' - xy = -xy^3$$

Solve the equation

$$y' - xy = -xy^3$$

Solution

$$y^2(1+Ce^{-x^2})=1$$

Solve the equation

$$xy' + y = y^2 \ln x$$

by the methods of variation of a constant.

Solve the equation

$$xy' + y = y^2 \ln x$$

by the methods of variation of a constant.

Solution

$$y = \frac{1}{1 + Cx + \ln x}$$

Substitution of variables may reduce some nonlinear equations of the first order to linear or Bernoulli equations.

Example

Solve the equation

$$y' + \sin y + x \cos y + x = 0$$

Hint: use identities $\sin 2y = 2\sin y\cos y$, $\cos 2y = 2\cos^2 y - 1$ and then substitution $\tan\frac{y}{2} = z$.

Substitution of variables may reduce some nonlinear equations of the first order to linear or Bernoulli equations.

Example

Solve the equation

$$y' + \sin y + x \cos y + x = 0$$

Hint: use identities $\sin 2y = 2\sin y\cos y$, $\cos 2y = 2\cos^2 y - 1$ and then substitution $\tan\frac{y}{2} = z$.

Solution

$$\tan\frac{y}{2} = 1 - x + Ce^{-x}$$

Exercises

$$y' + 2xy = 2xy^2,$$

$$3xy^2y' - 2y^3 = x^3,$$

$$(x^3 + e^y)y' = 3x^2$$

1
$$2y' \ln x + \frac{y}{x} = y^{-1} \cos x$$
.

Exercises

By substituting the variable reduce the following nonlinear equation to linear or Bernoulli equations and solve them

②
$$y' = y(e^x + \ln y),$$

3
$$y' \cos y + \sin y = x + 1$$
,

$$yy' + x \sin 2y = 2xe^{-x^2} \cos^2 y.$$