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@ Linear differential equations of the n-th order

© Homogeneous linear equations with constant coefficients.

© Nonhomogeneous linear equations with constant coefficients.

@ Linear differential equations with variable coefficients.
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Linear independence of functions

Let y1(x),y2(x),...,¥n(x) be a finite system of n functions defined on the interval (a, b). The
functions are said to be linearly dependant in the interval (a, b) if there exist constants
a1, sz, ..., a, not all equal zero, such that for all values of x in this interval the identity

a1y1(x) + azy2(x) + ... + anya(x) =0

is valid.
If identity holds only for a; = ap = ... = a, = 0 then the functions y;i(x), y2(x), ..., yn(x) are
said to be linearly independent in the interval (a, b)
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Examples of linearly independent functions

3

Show that functions 1, x, x?, x> are linearly independent in (—o0, +00
y p

Example

Show that the system of functions ehkix ekex gksx \where ki, ko, k3 are pairwise different, is

linearly independent in (—o0, +00).

Example

Show that the system of functions e**sin 5x, €™ cos 8x, where 3 = 0 is linearly independent
in (—o0, +00).

| 5\

A,
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Functions ¢1(x) and @2(x) are linearly independent in the interval (a, b) if their ratio is not
constant in that interval.
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Wronskian determinant

Let n functions have derivatives of the (n — 1) order The determinant

n(x) ya(x) o yn(x)

y1(x) () o ya(¥)

X

W[y17y27 oo 7)/n] —

W) W0 )

is called the Wronskian determinant.

It is in general a function of x defined in some interval.
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If a system of functions y1(x), y2(x), ..., yn(x) is linearly dependent in the interval [a, b] then
its Wronskian is identically equal to zero in this interval.
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Let y1(x), ¥2(x), ..., ¥n(x) be a system of functions given in the interval [a, b].

We set
b

(viryj) = /y,-(x)yj(x)dx, ij=1,...,n

a
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Gramian

Definition

The determinant
(}/17)/1) (}/17)/2) (}/IaYn)
(2ox) (2,%2) - (v2,¥n)
r(.y].’"".yn): .
(1) mry2) oo (Ynr¥n)
is called the Gramian of the system of functions y1(x), y2(x),. .., ya(x).

For a system of functions y;(x), y2(x), ..., yn(x) to be linearly dependent it is necessary and
sufficient that its Gramian should be zero.
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Homogeneous linear equations with constant coefficients.

Definition
The differential equation of the form

aoy™ + a1y D 4. 4 ay =0, (1)

where ag, a1, - .., a, are real constants and ap # 0 is called homogeneous linear equations with
constant coefficients.
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Algorithm of finding general solution

© Set up for equation (1) the characteristic equation
N+ N 4+ 4+a,=0 (2)

© Find the roots A1, Ao, ..., A\, of the characteristic equation

© Write out linearly independent particular solutions of the differential equation (1) taking
into account that
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a) corresponding to each real single root X of the characteristic equation is a particular
solution y = e

b) corresponding to each single pair of complex conjugate roots \y = a + i3, A\, = a — i3 of
the characteristic equation are two particular solutions y = e** cos 8x, y = e**sin5x
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c) corresponding to each real root A\ of multiplicity s of the characteristic equation are s
linearly independent particular solutions

y = e)\X’ y = Xe)\X’ y = X2€)\X y = Xs—le)\x

g ey

d) corresponding to each pair of complex conjugate roots A\; = o+ if5, \p = a — i of
multiplicity s of the characteristic equation are 2s particular solutions

y = e cosBx, y=xe*cosfx,..., y=x""te™ cosfx

y =e™sinfx, y=xesinfx,..., y=x""1esinfx
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The number of particular solutions of the differential equations (1) thus constructed is equal to
the order of the equation.

All the solutions constructed are linearly independent in the aggregate an make up the
fundamental system of the differential equation (1)
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eI

y/l/ _ 2yl/ _ 3y/ — 0
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y/l/ _ 2yl/ _ 3y/ — 0

Result
y=C + Ge ™+ Ge*
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y(5) - 2y(4) + 2y/// . 4}/” + y/ . 2y -0
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y(5) - 2y(4) + 2y/// . 4}/” + y/ . 2y -0

Result
y = C1e® + (G + Gsx) cos x 4 (C4 4+ Csx)sinx

M.W. (CNMiKnO PG Gdafsk) Linear equations of higher order 2013-2018 16 / 35



Exercises

Q 3y -2y —-8y=0
Q3" -3y"+y —y=0, y(0)=1, y'(0)=2, y"(0)=3
e y//_2y/_2y:0

ay//l_syzo
e y//l _ 2y//+2yl — O
Q@ y®—_y=0

M.W. (CNMiKnO PG Gdafsk) Linear equations of higher order 2013-2018 17 / 35



Nonhomogeneous linear equations with constant coefficients

Let
ay™ + ary("V 4t ay = f(x), (3)

where ag, a1, ..., a, are real constants and ap # 0.

The general solution of the nonhomogeneous equation (3) is equal to the sum of the general
solution of the corresponding homogeneous equation and some particular solution of the
nonhomogeneous equation.

In the general case equation (3) can be integrated using the method of variation of arbitrary
parameters.
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The trial and error method

For the right-hand side of special form the particular solution is easer to find by so-called trial
and error method. We use that method when

f(x) = e*[Pi(x) cos Bx + Qmsin Bx],

where Pj(x) and Qm(x) being polynomials of degree / and m respectively. The particular
solution is of the form

Yps = X [Py(x) cos Bx + Qi(x) sin Bx],

where k = max(m, /), Px(x), Qk(x) are polynomials of the kth degree, s is multiplicity of th
root A = a + Bi of the characteristic equation. If A is not the root of characteristic equation
then s = 0.
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eI

y’”—y"—i—y'—y:x2+x
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y’”—y"—i—y'—y:x2+x

Result
y=Ce + Geosx+ Cysinx — x> —3x — 1
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eI

y" 4+ 3y’ +2y = xsinx
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y" 4+ 3y’ +2y = xsinx

Result 3 17 ) 3
y=CGe "+ Ge ¥+ (_EX + %)cosx + (1_OX + g)sinx
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The superposition principle

Theorem

If yi(x) is a solution of the equation

a0(x)y" + a1 (x)y(" ™ + L+ ap(x)y = fulx), (4)

k=1,2,..., m, then the function

y() = ()
k=1

is a solution of the equation

a0(x)y " + a1 (x)y "D 4+ ap(x)y =) fi(x) (5)
k=1
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Exercises

Q )y +3y=3

e y//_7y/:(X_1)2

©Q y’ + 25y = cosbx

Q y'+y=sinx—cosx
Q Yy —y —2y=4x—2e¥
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Depression of order

If one knows the particular solution y;(x) of the equations
Y 4+ 1 (x)y " L pa(x) =0 (6)

then one can depress its order by one (without the loss of linearity of the equation) by

substitution .
u= Z
P!

If one knows k particular linearly independent solutions of equation (6), one can depress the
order of the equations of k units.
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Yy 4 o1 (x)y" Y 44 pa(x) = F(X) (7)

The general solution of the nonhomogeneous equation (7) is equal to the sum of the general
solution of the corresponding homogeneous equation and some particular solution of the

nonhomogeneous equation.

If the fundamental system of corresponding homogeneous equation (6) is known, then it is
possible to find the general solution of the nonhomogeneous equation (7) by the method of

variation of parameters (the Lagrange method)
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The general solution of equation (6) is of the form
y=Gn+ Gy+...+ Cyn

where (1, Gy, ..., C, being arbitrary constants.
We shall seek the solution of equation (7) in the form

y =G+ GX)y2 + ...+ C(X)yn

where Ci(x), Go(x),. .., Cy(x) some yet unknown functions of x.
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nG+y2G+...ynC, =0,
nG+yG+...yC =0,

yl("_l)C{ &= yén_l)Cﬁ 4.y = F(x).

Resolving the above system for Ci(x), i =1,2,...,n we get

whence

where C; are arbitrary constants.
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Second order equations

In particular, for the second order equations

Y'+pu(x)y + pa(x)y = f(x). (10)
the system (8) takes form
G+ G =f(x).
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Solving (11) for €] and C} we get

Cl=— y2f(x) cl — nf(x)

Wiy, ye] 2 Wi,y

where Wly1, yo] = y1y5 — yay;. Finally

_ yaf(x) - C
G(x) = 7W[y1,y2] dx + Gy, (12)
_ [ nfx) &
G(x) = Wiyl dx + C. (13)
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Remark
For the equation

ao(x)y" + a1(x)y’ + a(x)y = f(x),
where ag(x) # 1, ap(x) # 0 system (11) will look thus

{nQ+mQ=&
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Example 1

Example

Find the general solution of the equation

xy" +2y +xy=0

sin x

Y1

is its particular solution.
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Example 1

Example

Find the general solution of the equation

xy" +2y +xy=0

sin x

Y1

is its particular solution.

. _ COs X sin x
Result: y = CIT + CzT
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Example 2

Find the general solution of the equation
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Example 2

Find the general solution of the equation

Result: y = Cﬁ%—l—@%-kl

X

M.W. (CNMiKnO PG Gdafsk) Linear equations of higher order 2013-2018 32 /35



Example 3

Find the general solution of the equation

!
Ly =
4 4 COoS X
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Find the general solution of the equation

7 1
y ' ty=
cos X

Result: y = Gy sinx 4+ G, cos x + cos x In | cos x| + x sin x
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Example 4

Given the fundamental system of solutions

yi=Inx, y=x,
of the corresponding homogeneous equation find the particular solution of the equation

1 —Inx)?
X2(1—|nx)y”+xy/—y:ﬂ, x#0
X

satisfying the condition

iy =0
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Example 4

Given the fundamental system of solutions

yi=Inx, y=x,
of the corresponding homogeneous equation find the particular solution of the equation

1 —Inx)?
X2(1—|nx)y”+xy/—y:ﬂ, x#0
X

satisfying the condition

iy =0

Result: g.s. y—C1|nx+C2x+1 2Inx , ps. y—l 21n x
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Exercises

QO (2x+1)y"+(4x—2)y’ =8y =0, y =e™,
Q (Bx+2x3)y” + (1 +x)y’ +6y =6, y1 is a polynomial,
Q y// +y/ 4 e—2xy — e—3X’ y1 = cos e—x'

0 y//+y:sirl1x
" / _ X
Q y' -2 +y—X2§m,

7 1 I — 2,33
Q xy —my—4xex.
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