Infinite Senies

The early developers of the calculus, including Newton and Leibniz, were well aware of the
importance of infinite series. The values of many functions such as sine and cosine were geometrically
obtainable only in special cases. Infinite series provided a way of developing extensive tables of values
for them.

This chapter begins with a statement of what is meant by infinite series, then the question of when
these sums can be assigned values is addressed. Much information can be obtained by exploring infinite
sums of constant terms; however, the eventual objective in analysis is to introduce series that depend on
variables. This presents the possibility of representing functions by series. Afterward, the question of
how continuity, differentiability, and integrability play a role can be examined.

The question of dividing a line segment into infinitesimal parts has stimulated the imaginations of
philosophers for a very long time. In a corruption of a paradox introduce by Zeno of Elea (in the fifth
century B.C.) a dimensionless frog sits on the end of a one-dimensional log of unit length. The frog
jumps halfway, and then halfway and halfway ad infinitum. The question is whether the frog ever
reaches the other end. Mathematically, an unending sum,

LT
2" 4 2"

is suggested. ““Common sense” tells us that the sum must approach one even though that value is never

attained. We can form sequences of partial sums
1 11 11 1
= S2:—+—...,Sn:§+1+--~+—2n+---

and then examine the limit. This returns us to Chapter 2 and the modern manner of thinking about the
infinitesimal.
In this chapter consideration of such sums launches us on the road to the theory of infinite series.

DEFINITIONS OF INFINITE SERIES AND THEIR CONVERGENCE AND DIVERGENCE

Definition: The sum

&)
S:Zn:“1+u2+"‘+“n+"' @)

n=1
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is an infinite series. Its value, if one exists, is the limit of the sequence of partial sums {S,}

S = lim S, 2
n—oo
If there is a unique value, the series is said to converge to that sum, S. If there is not a unique sum
the series is said to diverge.

Sometimes the character of a series is obvious. For example, the series Z— generated by the
o

frog on the log surely converges, while Zn is divergent. On the other hand, the variable series

n=1
l—x+x - +x =+

raises questions.
This series may be obtained by carrying out the division ]

If -1 < x < 1, the sums S, yields an

approximations to I and (2) is the exact value. The indecision arises for x = —1. Some very great
—X

mathematicians, including Leonard Euler, thought that S should be equal to %, as is obtained by

substituting —1 into The problem with this conclusion arises with examination of

l1—141—14 1—1+--- and observation that appropriate associations can produce values of 1 or
0. Imposition of the condition of uniqueness for convergence put this series in the category of divergent
and eliminated such possibility of ambiguity in other cases.

FUNDAMENTAL FACTS CONCERNING INFINITE SERIES

1. If Xu, converges, then lim u, = 0 (see Problem 2.26, Chap. 2). The converse, however, is not
n—oo

necessarily true, i.e., if lim u, = 0, Xu, may or may not converge. It follows that if the nth

n—00

term of a series does not approach zero the series is divergent.

2. Multiplication of each term of a series by a constant different from zero does not affect the
convergence or divergence.

3. Removal (or addition) of a finite number of terms from (or to) a series does not affect the
convergence or divergence.

SPECIAL SERIES

o0

1. Geometric series Z:ar”*1 =a+ar+a’ +---, where a and r are constants, converges to
n=1 n
. . . . 1 -
S= I a if |r| <1 and diverges if |r|] = 1. The sum of the first n terms is S, =M
— 7 .,
(see Problem 2.25, Chap. 2).
s 1 1 1 ) .
2. The p series E — == —|— ETREET) ¥ + ---, where p is a constant, converges for p > 1 and diverges
n
n=1

for p £ 1. The series with p =1 is called the harmonic series.

TESTS FOR CONVERGENCE AND DIVERGENCE OF SERIES OF CONSTANTS

More often than not, exact values of infinite series cannot be obtained. Thus, the search turns
toward information about the series. In particular, its convergence or divergence comes in question.
The following tests aid in discovering this information.
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1.

Comparison test for series of non-negative terms.

(a) Convergence. Let v, = 0 for all » > N and suppose that Xwv, converges. Then if
0<u, £v, for all n > N, Zu, also converges. Note that n > N means from some
term onward. Often, N = 1.

EXAMPLE. Since

1 1 1 1
1 < > and Z > converges, Z 1 also converges.

(b) Divergence. Letwv, = 0for all n > N and suppose that v, diverges. Then if u,, = v, for
all » > N, Xu, also diverges.

1 1 1 N
EXAMPLE. Since v and ; . diverges, ; o also diverges.

The Limit-Comparison or Quotient Test for series of non-negative terms.

(@) Ifu, = 0and v, = 0 and if lim U _ 4 # 0 or oo, then Xu, and Xv, either both converge
or both diverge. o0 Un

(b) If A =0in (a) and Xv, converges, then Xu, converges.
(¢) If A =00 in (a) and Xv, diverges, then Xu, diverges.

This test is related to the comparison test and is often a very useful alternative to it. In
particlar, taking v, = 1/n”, we have from known facts about the p series the

Theorem 1. Let lim n’u, = A. Then

n—o0

(i) Xu, converges if p > 1 and A is finite.
(il) Xu, diverges if p < 1 and 4 # 0 (4 may be infinite).

3.

n . . 2 n 1
converges since lim n* ———=-.

EXAMPLES. 1. 274113_2 Jlim 7t =

Inn . . . Inn
2. Z diverges since lim n'/?

e = Q.
vn+1 n—>00 (n+1D'?

Integral test for series of non-negative terms.
If f(x) is positive, continuous, and monotonic decreasing for x = N and is such that

fm)y)=u,,n=N,N+1,N+2,..., then Xu, converges or diverges according as

o0 M
J f(x)dx = A}im J f(x)dx converges or diverges. In particular we may have N =1, as
N 0 Jn

is often true in practice.

This theorem borrows from the next chapter since the integral has an unbounded upper
limit. (Itis an improper integral. The convergence or divergence of these integrals is defined in
much the same way as for infinite series.)

=, 1 . o (Mdx 1\ .
EXAMPLE: ; s converges since A/}I_I)noo Jl ek A}gnm(l — M) exists.
Alternating series test. An alternating series is one whose successive terms are alternately
positive and negative.
An alternating series converges if the following two conditions are satisfied (see Problem

11.15).

(@) |upprl = luyl for n = N (Since a fixed number of terms does not affect the conver-
gence or divergence of a series, N may be any positive integer. Frequently it is chosen to
be 1.)

() lim u, =0 (or Tim [u,| = 0)

n—oo
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) o0 (_l)l’lfl (_1)1171 1
EXAMPLE. For the series 1— % +%—%+%— s = Z , we have u,= , uyl =—,
- n n
1 n=1
[tq | = P Then for n = 1, |u,| < |u,|. Also lim |u,| =0. Hence, the series converges.
n n—00

Theorem 2. The numerical error made in stopping at any particular term of a convergent alternating
series which satisfies conditions (a) and (b) is less than the absolute value of the next term.

EXAMPLE. If we stop at the 4th term of the series 1 —}+1—4+1—-.., the error made is less than
1-0.2.
5

5. Absolute and conditional convergence. The series Xu, is called absolutely convergent if Z|u,|
converges. If Xu, converges but X|u,| diverges, then Xu, is called conditionally convergent.

Theorem 3. 1f X|u,| converges, then Xu, converges. In words, an absolutely convergent series is
convergent (see Problem 11.17).

EXAMPLE 1. 11—2+ ————— += — .-+ is absolutely convergent and thus convergent, since the

I 1
series of absolute values Tz + 7 + 3 + z + - -+ converges.

1 1 1 1 1 1 . 1 1 1
EXAMPLE 2. 1—§+§—Z+---converges,but1+§+§+Z+-~-dlverges. Thus,1—§+§—2+-~-

is conditionally convergent.

Any of the tests used for series with non-negative terms can be used to test for absolute
convergence. Also, tests that compare successive terms are common. Tests 6, 8, and 9 are of
this type.

Uni1
un
(a) converges (absolutely) if L < 1
(b) divergesif L > 1.
If L =1 the test fails.
7. The nth root test. Let nlingo M = L. Then the series Xu,

6. Ratio test. Let lim

n—o0

= L. Then the series Xu,

(a) converges (absolutely) if L < 1
(b) diverges if L > 1.
If L =1 the test fails.

8. Raabe’s test. Let limy, (1 —

n—00

u, +1
u}’l
(a) converges (absolutely) if L > 1

D = L. Then the series Xu,

(b) diverges or converges conditionally if L < 1.

If L =1 the test fails.
This test is often used when the ratio tests fails.
Uyt L Cy .
——| =1 ——+-3, where |¢,| < P for all n > N, then the series Xu,
U, n o n
(a) converges (absolutely) if L > 1

9. Gauss’ test. If

(b) diverges or converges conditionally if L < 1.
This test is often used when Raabe’s test fails.
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THEOREMS ON ABSOLUTELY CONVERGENT SERIES

Theorem 4. (Rearrangement of Terms) The terms of an absolutely convergent series can be rearranged
in any order, and all such rearranged series will converge to the same sum. However, if the terms of a
conditionally convergent series are suitably rearranged, the resulting series may diverge or converge to
any desired sum (see Problem 11.80).

Theorem 5. (Sums, Differences, and Products) The sum, difference, and product of two absolutely
convergent series is absolutely convergent. The operations can be performed as for finite series.

INFINITE SEQUENCES AND SERIES OF FUNCTIONS, UNIFORM CONVERGENCE

We opened this chapter with the thought that functions could be expressed in series form. Such
representation is illustrated by

3 5 2n—1
sinx:x—%+%_+...+(_1)n—lh+...
where
x3 n x2k—l
sine = fim Sy with $i =208, =xogp 8= ) GV g

k=1

Observe that until this section the sequences and series depended on one element, n. Now there is
variation with respect to x as well. This complexity requires the introduction of a new concept called
uniform convergence, which, in turn, is fundamental in exploring the continuity, differentiation, and
integrability of series.

Let {u,(x)},n=1,2,3,... be a sequence of functions defined in [a, b]. The sequence is said to
converge to F(x), or to have the limit F(x) in [a, b], if for each € > 0 and each x in [a, b)] we can find
N > 0 such that |u,(x) — F(x)| < eforalln > N. In such case we write 171Lr£10 u,(x) = F(x). The number

N may depend on x as well as €. If it depends on/y on € and not on Xx, the sequence is said to converge to
F(x) uniformly in [a, b] or to be uniformly convergent in [a, b].
The infinite series of functions

i Uy (X) = 1 (X) + (%) + uz(x) + - -- )

n=1

is said to be convergent in [a, b] if the sequence of partial sums {S,(x)}, n=1,2,3,..., where
S,(x) = uy(x) + up(x) + - - - + u,(x), is convergent in [a, b]. In such case we write lim S,(x) = S(x)
and call S(x) the sum of the series. e

It follows that Xu,(x) converges to S(x) in [a, b] if for each € > 0 and each x in [a, b] we can find
N > 0 such that |S,(x) — S(x)| < eforalln > N. If N depends only on € and not on x, the series is called
uniformly convergent in |[a, b].

Since S(x) — S,(x) = R,(x), the remainder after n terms, we can equivalently say that 3u,(x) is
uniformly convergent in [a, b] if for each € > 0 we can find N depending on € but not on x such that
|R,(x)| < € for all n > N and all x in [q, b].

These definitions can be modified to include other intervals besides ¢ < x < b, such as a < x < b,
and so on.

The domain of convergence (absolute or uniform) of a series is the set of values of x for which the
series of functions converges (absolutely or uniformly).

EXAMPLE 1. Suppose u, = x"'/n and —% < x £ 1. Now think of the constant function F(x) = 0 on this interval.
For any € > 0 and any x in the interval, there is N such that for all n > N|u, — F(x)| < €, i.e., |X"/n| < e. Since the
limit does not depend on x, the sequence is uniformly convergent.
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EXAMPLE 2. Ifu, =x" and 0 £ x < 1, the sequence is not uniformly convergent because (think of the function
Fx)=0,0x<1, F(1)=1)

|x" — 0] < e when x" <,
thus

nlnx < Ine.

Sx)
On the interval 0 £ x < 1, and for 0 < € < 1, both members

. . . Ine .
of the inequality are negative, therefore, n > nx Since
nx

ln_e: Inl—Ine = In(/€) , it follows that we must choose N
Inx Inl—nnx In(l/x)

such that

. . 1
From this expression we see that € — 0 then In— — oo and
€

1
also as x — 1 from the left ln; — 0 from the right; thus, in either

case, N must increase without bound. This dependency on both
€ and x demonstrations that the sequence is not uniformly
convergent. For a pictorial view of this example, see Fig. 11-1.

SPECIAL TESTS FOR UNIFORM CONVERGENCE OF SERIES

1. Weierstrass M test. If sequence of positive constants M, M5, M3, ... can be found such that
in some interval

(@ |u,() =M, n=1273,...
(b) =M, converges
then Xu,(x) is uniformly and absolutely convergent in the interval.

cosnx

osnx
n2 2

. . . . 1 1
is uniformly and absolutely convergent in [0, 277] since cosnx < —and Z—z
n n

EXAMPLE. i

n=1
converges.

This test supplies a sufficient but not a necessary condition for uniform convergence, i.e., a
series may be uniformly convergent even when the test cannot be made to apply.

One may be led because of this test to believe that uniformly convergent series must be
absolutely convergent, and conversely. However, the two properties are independent, i.e., a
series can be uniformly convergent without being absolutely convergent, and conversely. See
Problems 11.30, 11.127.

2. Dirichlet’s test. Suppose that

(a) the sequence {a,} is a monotonic decreasing sequence of positive constants having limit
zero,

(b) there exists a constant P such that fora < x < b
[t (X) + up(x) + - - + uy(x)] < P forall m > N.

Then the series
o0
alul(x) + Clzuz(x) +-e= Z anun(x)
n=1

is uniformly convergent in ¢ < x < b.
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THEOREMS ON UNIFORMLY CONVERGENT SERIES

If an infinite series of functions is uniformly convergent, it has many of the properties possessed by
sums of finite series of functions, as indicated in the following theorems.
Theorem 6. 1If {u,(x)},n=1,2,3,... are continuous in [, b] and if Zu,(x) converges uniformly to the
sum S(x) in [a, b], then S(x) is continuous in [a, b].

Briefly, this states that a uniformly convergent series of continuous functions is a continuous
function. This result is often used to demonstrate that a given series is not uniformly convergent by
showing that the sum function S(x) is discontinuous at some point (see Problem 11.30).

In particular if x; is in [a, b], then the theorem states that

(0.¢] o0 o0
im Y u, () =Y lim u,(x) =D u,(xo)
| n=1"_""° n=1
where we use right- or left-hand limits in case x, is an endpoint of [a, b].

Theorem 7. 1f {u,(x)},n=1,2,3,..., are continuous in [«, b] and if Zu,(x) converges uniformly to the
sum S(x) in [a, b], then

b o0 b
J S(x)dx = ZJ 1,(x) dx 4)
a n=1 a
or
b | o o0 b
J {Z un(x)} dx = ZJ 1, (x) dx (5)
a | n=1 n=1 v4a
Briefly, a uniformly convergent series of continuous functions can be integrated term by term.
Theorem 8. 1f {u,(x)},n=1,2,3,..., are continuous and have continuous derivatives in [«, 5] and if

Yu,(x) converges to S(x) while Zu,(x) is uniformly convergent in [a, b], then in [a, b]

S'(x) =" u(x) (6)
n=1
or
d | & >\ d
- {;un(x)} - ; = () )
This shows conditions under which a series can be differentiated term by term.
Theorems similar to the above can be formulated for sequences.  For example, if {u,(x)},
n=1,2,3,...1s uniformly convergent in [a, b], then
b b
lim J u,(x)dx = J lim u,,(x) dx 8)

which is the analog of Theorem 7.
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POWER SERIES

A series having the form

o
dy+ a1 x 4+ arx> + - = E a,x" 9
n=0
where «, a;, a,, ... are constants, is called a power series in x. It is often convenient to abbreviate the

series (9) as Xa,x".

In general a power series converges for |x| < R and diverges for |x| > R, where the constant R is
called the radius of convergence of the series. For |x| = R, the series may or may not converge.

The interval |x| < R or —R < x < R, with possible inclusion of endpoints, is called the interval of
convergence of the series. Although the ratio test is often successful in obtaining this interval, it may fail
and in such cases, other tests may be used (see Problem 11.22).

The two special cases R =0 and R = oo can arise. In the first case the series converges only for
x = 0; in the second case it converges for all x, sometimes written —oo < x < oo (see Problem 11.25).
When we speak of a convergent power series, we shall assume, unless otherwise indicated, that R > 0.

Similar remarks hold for a power series of the form (9), where x is replaced by (x — a).

THEOREMS ON POWER SERIES

Theorem 9. A power series converges uniformly and absolutely in any interval which lies entirely within
its interval of convergence.

Theorem 10. A power series can be differentiated or integrated term by term over any interval lying
entirely within the interval of convergence. Also, the sum of a convergent power series is continuous in
any interval lying entirely within its interval of convergence.

This follows at once from Theorem 9 and the theorems on uniformly convergent series on Pages 270
and 271. The results can be extended to include end points of the interval of convergence by the
following theorems.

Theorem 11. Abel’s theorem. When a power series converges up to and including an endpoint of its
interval of convergence, the interval of uniform convergence also extends so far as to include this
endpoint. See Problem 11.42.

o0
Theorem 12.  Abel’s limit theorem. If Z a,x" converges at x = x;, which may be an interior point or an
. . =0
endpoint of the interval of convergenge, then
o0 o o
im Y ax"p=>" { lim anx"} = a,x; (10)
X—>Xg X—>Xg
n=0 n=0 n=0

If x4 is an end point, we must use x — xy+ or x — xy— in (/0) according as Xx, is a left- or right-hand
end point.

This follows at once from Theorem 11 and Theorem 6 on the continuity of sums of uniformly
convergent series.

OPERATIONS WITH POWER SERIES

In the following theorems we assume that all power series are convergent in some interval.

Theorem 13. Two power series can be added or subtracted term by term for each value of x common to
their intervals of convergence.
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o0 o o
Theorem 14. Two power series, for example, Z a,x" and Z b,x", can be multiplied to obtain Z X"
n=0 n=0 n=0

where
Cp = aObn + albn—l + a2b11—2 +---+ anbO (]])

the result being valid for each x within the common interval of convergence.

o

Theorem 15. If the power series Z a,x" is divided by the power series Xb,x" where b, # 0, the quotient
n=0

can be written as a power series which converges for sufficiently small values of x.

oo o0
Theorem 16. 1If y = Zanx”, then by substituting x = any", we can obtain the coefficients b, in
n=0 n=0

terms of @,. This process is often called reversion of series.

EXPANSION OF FUNCTIONS IN POWER SERIES

This section gets at the heart of the use of infinite series in analysis. Functions are represented
through them. Certain forms bear the names of mathematicians of the eighteenth and early nineteenth
century who did so much to develop these ideas.

A simple way (and one often used to gain information in mathematics) to explore series representa-
tion of functions is to assume such a representation exists and then discover the details. Of course,
whatever is found must be confirmed in a rigorous manner. Therefore, assume

S() = Ay + Ay(x = O+ Ap(x = ¢ oot Ay =)'
Notice that the coefficients 4, can be identified with derivatives of /. In particular
. , 1, 1,
Ay =[(0) A1 =11(0). Ay =5, [1(O). . Ay = — [(0). ..

This suggests that a series representation of f is

FO) =@+ = ) g £ = -4 [ = o

A first step in formalizing series representation of a function, f, for which the first n derivatives exist,
is accomplished by introducing Taylor polynomials of the function.

P =10 PO =1+ 0 o)
Pa) = 110+ (@) = 31 () —

Pyx) =[O +f (O =)+ + %f(”)(C)(x — o' (12)

TAYLOR’S THEOREM

Let f and its derivatives /', /", ..., /™ exist and be continuous in a closed interval ¢ < x < b and
suppose that f”"*D exists in the open interval < x < b. Then for ¢ in [a, b],

f(X) = Pn(x) + Rn(x)7

where the remainder R,(x) may be represented in any of the three following ways.
For each n there exists & such that
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1

Rn(x) = (l’l n 1)'

7D (E) (x — o) (Lagrange form) (13)
(& is between ¢ and x.)
(The theorem with this remainder is a mean value theorem. Also, it is called Taylor’s formula.)
For each n there exists & such that

R, (x) = % SUEK—8"(x—¢)  (Cauchy form) (14)
R,(x) = %J(x — 0" /" D()dt  (Integral form) (15)

If all the derivatives of f exist, then
fo = iﬂ @ o (16)

This infinite series is called a Taylor series, although when ¢ =0, it can also be referred to as a
MacLaurin series or expansion.

One might be tempted to believe that if all derivatives of f(x) exist at x = ¢, the expansion (/6) would
be valid. This, however, is not necessarily the case, for although one can then formally obtain the series
on the right of (16), the resulting series may not converge to f(x). For an example of this see Problem
11.108.

Precise conditions under which the series converges to f(x) are best obtained by means of the theory
of functions of a complex variable. See Chapter 16.

The determination of values of functions at desired arguments is conveniently approached through
Taylor polynomials.

EXAMPLE. The value of sinx may be determined geometrically for 0,%, and an infinite number of other

arguments. To obtain values for other real number arguments, a Taylor series may be expanded about any of
these points. For example, let ¢ = 0 and evaluate several derivatives there, i.e., f(0) =sin0 =0, f'(0) = cos0 = 1,
770y = —sin0 =0, /(0) = —cos0 = —1, f1(0) =sin0 =0, /"(0) = cos0 = 1.

Thus, the MacLaurin expansion to five terms is
: 1 3 1 s
51nx=0+x—0—§x —I—O—ﬁx + -
Since the fourth term is 0 the Taylor polynomials P; and P, are equal, i.e.,

x3

P3(x)=P4(x)=x—§

and the Lagrange remainder is
1 5
Ry(x) = 3 coséx
Suppose an approximation of the value of sin.3 is required. Then
1
Py(3)=.3— 6(.3)3 ~ 2945,
The accuracy of this approximation can be determined from examination of the remainder. In

particular, (remember |cosé| < 1)

< 1L 243 < .000021

Ril =
Ryl 120 10

1
5 cos £(.3)°
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Thus, the approximation P,(.3) for sin.3 is correct to four decimal P, (x)
places.

Additional insight to the process of approximation of functional
values results by constructing a graph of P,(x) and comparing it to N
y=sinx. (See Fig. 11-2.)

x3

Pix)=x 3
The roots of the equation are 0, +4/6. Examination of the first and Fig. 11-2
second derivatives reveals a relative maximum at x = +/2 and a relative
minimum at x = —+/2. The graph is a local approximation of the sin
curve. The reader can show that Pg(x) produces an even better approximation.
(For an example of series approximation of an integral see the example below.)

SOME IMPORTANT POWER SERIES

The following series, convergent to the given function in the indicated intervals, are frequently
employed in practice:

| ) B x3 xS x7 - x2n—1
. sinx —x—?—l—?——%— (=1 = 1)' =00 < X <00
2 4 6 2n—2
_ X X X el X
2. cosx _1—5—%?—5—# - (=1) m+-'-—oo<x<oo
3. ¢ 1+ +x2+x3+ + . + 00 00
.e = X et — <X <
3! (n— 1)
2 3 4 n
4. Injl4+x =x-4X Tyt l<x<1
273 4 n
14+ x XX 2l
5. 11 =x++"—++- -1 1
2“‘1—x Yhytgtgtooty, ot ==
3 5 7 2n—1
—1 X X x et X
) =X — T (=1 2 4. 1 <x<1
6. tan  x X 3+5 7+ (=D 2n—1+ <x<
—1 —1)...(p—n+1
7 1+ :1+px+p(p2‘ S V) n'(p ) g

This is the binomial series.

(a) If pis a positive integer or zero, the series terminates.

(b) If p > 0 but is not an integer, the series converges (absolutely) for —1 < x < 1.
(¢) If —1 < p < 0, the series converges for —1 < x < 1.

(d) If p £ —1, the series converges for —1 < x < 1.

For all p the series certainly converges if —1 < x < 1.

1
EXAMPLE. Taylor’s Theorem applied to the series for ¢* enables us to estimate the value of the integral J ¢ db.
0

. RN I
Substituting x* for x, we obtain [} ¢* dx = [} (1 +x4a T+ x' +5+ 2 ) dx

TR TR TR TR
where
1 1 1
P4(x)—l—|—x+—x +§x +—‘c
and
¢ 10
Ryx)=—=x", 0<é&<x

5!
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Then
JIP(x)dx—l—l-l—F ! + ! + ! ~ 1.4618
0 4 N 352 73N 94 T
1 et 1,10
LR4(x)dx §L‘5!x dxfeJ ?dx—m< .0021

Thus, the maximum error is less than .0021 and the value of the integral is accurate to two decimal places.

SPECIAL TOPICS

1. Functions defined by series are often useful in applications and frequently arise as solutions of
differential equations. For example, the function defined by

xP X2 x4
= T xm iy T Aot

Z (—1)"(x/2) "

nl(n + p)! (16)

is a solution of Bessel’s differential equation x*y" + xy' + (x> — p?)y =0 and is thus called a
Bessel function of order p. See Problems 11.46, 11.110 through 11.113.
Similarly, the hypergeometric function

a-B ala+ 1)b(b+1) ,
F(a,b;c;x)=1 17
(@biex) =14+ ox+ T (17)
is a solution of Gauss’ differential equation x(1 — x)y" + {¢c — (a+ b + 1)x}y" — aby = 0.
These functions have many important properties.

oo

2. Infinite series of complex terms, in particular power series of the form Z a,z", where z = x + iy
n=0

and g, may be complex, can be handled in a manner similar to real series.

Such power series converge for |z| < R, i.e., interior to a circle of convergence x* + y* = R?,
where R is the radius of convergence (if the series converges only for z = 0, we say that the radius
of convergence R is zero; if it converges for all z, we say that the radius of convergence is
infinite). On the boundary of this circle, i.e., |z] = R, the series may or may not converge,
depending on the particular z.

Note that for y = 0 the circle of convergence reduces to the interval of convergence for real
power series. Greater insight into the behavior of power series is obtained by use of the theory

of functions of a complex variable (see Chapter 16).

3. Infinite series of functions of two (or more) variables, such as Zun(x, y) can be treated in a

n=1
manner analogous to series in one variable. In particular, we can discuss power series in x and y

having the form

ago + (@10X + agy) + (anx” + aj xy + apy®) + - - (18)

using double subscripts for the constants. As for one variable, we can expand suitable functions
of x and y in such power series. In particular, the Taylor theroem may be extended as follows.

TAYLOR’S THEOREM (FOR TWO VARIABLES)

Let f be a function of two variables x and y. If all partial derivatives of order » are continuous in a
closed region and if all the (n + 1) partial derivatives exist in the open region, then
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where

2

o+ e o 4+ K) = (0. v0) + (h—+k )f(xo o)+ o (h—+k >f(xO Yo+
(18)

1 0
b (b ) a0+ R,

1 9 9 n+1
R,=——|h—+k— ' Oh, 0k), 0<6b<1

and where the meaning of the operator notation is as follows:

(h—+k )f W, + K,

2 P ;
(h5 + k@) = I'fy + 2hkf, + kS,

0 2\"
and we formally expand (ha + k@) by the binomial theorem.

Note: In alternate notation 1 = Ax = x — xg, k = Ay = y — y,.
If R, — 0 as n — oo then an unending continuation of terms produces the Taylor series for f(x, y).
Multivariable Taylor series have a similar pattern.

4.

Double Series. Consider the array of numbers (or functions)

Uy Upp U3
Upy Uy Ups
Uz Uzp U3z

m n

Let S, = Z Z u,, be the sum of the numbers in the first m rows and first n columns of this
p=1 ¢=1

array.  If there exists a number S such that lim S,, = S, we say that the doubles series

(0.¢] o0 n—>00
Z Z”Pq converges to the sum S; otherwise, it diverges.
p=1 ¢=1
Definitions and theorems for double series are very similar to those for series already
considered.

n

Infinite Products. Let P, = (1 + u)(1 + ur)(1 + u3)...(1 + u,) denoted by l_[(l + u;), where

k=1
we suppose that u, # —1,k=1,2,3,.... If there exists a number P # 0 such that lim P, = P,
n— oo
we say that the the infinite product ((1 4+ u)(1 4+ uy)(1 + u3).. l_[(l 4+ uy), or briefly
I1(1 + ), converges to P; otherwise, it diverges. k=1

If TI(1 + |u,|) converges, we call the infinite product I1(1 + u;) absolutely convergent. 1t can
be shown that an absolutely convergent infinite product converges and that factors can in such
cases be rearranged without affecting the result.

Theorems about infinite products can (by taking logarithms) often be made to depend on
theorems for infinite series. Thus, for example, we have the following theorem.

Theorem. A necessary and sufficient condition that IT(1 + u;) converge absolutely is that Zu; converge
absolutely.
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6. Summability. Let S;,S,, S, ... be the partial sums of a divergent series Xu,. If the sequence
g S1,8 Si+S5+S;
P 3 ’
S, S,,S3,...) converges to S, we say that the series Zu,, is summable in the Césaro sense, or
C-1 summable to S (see Problem 11.51).
If Zu, converges to S, the Césaro method also yields the result S. For this reason the
Césaro method is said to be a regular method of summability.
In case the Césaro limit does not exist, we can apply the same technique to the sequence
S1+S8 S1+5+S;
3 3 e
that Zu;, converges to S in the C-2 sense. The process can be continued indefinitely.

. (formed by taking arithmetic means of the first n terms of

S, If the C-1 limit for this sequence exists and equals S, we say

Solved Problems

CONVERGENCE AND DIVERGENCE OF SERIES OF CONSTANTS

1 1
11.1. (a) Prove that 3 + 3.5 + Z an = 1)(2n D converges and (b) find its sum.

n=1

= ! —1 ! ! Then
u”_(2n—1)(2n+1)_2 2n—1 2n+1)°

RS /2 U A W I A W VA 1
n =T =3\173)"2\37 5 2\2—1 " 2m+1

RV R U S LN _1f,_ 1
“2\0 373 575 -1 2n+1) 2\ 2n+1

1 1 1 . . .
Since lim S, = lim = (1 — ) =—, the series converges and its sum is %

n—o00 n—002 2n+l 27

The series is sometimes called a telescoping series, since the terms of S, other than the first and last,
cancel out in pairs.

oo
11.2. (a) Prove that 3+ (%) + G ) + - Z(%)” converges and (b) find its sum.
n=1
l_ 7
This is a geometric series; therefore, the partial sums are of the form S, = %. Since |r| < 1

we obtain S = 2.

. a
S=1lmS, = ] and in particular with r = 3§ Z2and a = 3,
—r

o0

. n .
11.3. Prove that the series  +3+3+3+ .- = Z i) diverges.
n=1
lim u, = lim = 1. Hence by Problem 2.26, Chapter 2, the series is divergent.
n—00 n—oopn 4+ 1

11.4. Show that the series whose nth term is u, = /n + 1 — \/n diverges although hm u, = 0.
n—
The fact that lim u, = 0 follows from Problem 2.14(c), Chapter 2.

Now S, =uj+uy+ -+ +u, =2 =vVD+(3-V2)+- -+ (Vn+1-yn)=Vn+1-V1.

Then S, increases without bound and the series diverges.

This problem shows that lim = 0 is a necessary but not sufficient condition for the convergence of Zu,,.
See also Problem 11.6. e
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COMPARISON TEST AND QUOTIENT TEST

115, If0 2w, £v,,n=1,2,3,...and if Xv, converges, prove that Xu, also converges (i.e., establish
the comparlson test for convergence).

LetS,=uyy+u+---4+u, T,=vi+v,+--+ 0,
Since Xv, converges, lim 7T, exists and equals 7, say. Also, sincev, = 0,7, < T.
n— 00

ThenS”:u1+u2+-~~+un§v1+v2+~~~+vn§T or 0§S,,:T
Thus S, is a bounded monotonic increasing sequence and must have a limit (see Chapter 2), i.e., Zu,

converges.
=1
11.6. Using the comparison test prove that 1 + % + % + .= ZZ diverges.
We have 1>1
1 1 1 1 __ 1
ty2 ata=;
1 1 1 1 1 1 1 1 __1
itstetiZ gtststs=s
1 1 1 1 1 1 1 1
§+§+m+"'+ﬁ§ 6ttt —6(8terms)_—

etc. Thus, to any desired number of terms,

L @)+ b b oo 2 bede e

Since the right-hand side can be made larger than any positive number by choosing enough terms, the given
series diverges. 1
By methods analogous to that used here, we can show that Z , Where p is a constant, diverges if

p < 1 and converges if p > 1. This can also be shown in other ways [see Problem 11.13(a)].

(0.¢]
Inn
11.7. Test for convergence or divergence E o T
1 1 1 1
Since Inn < n and ~— < —, we have 3nn < %:—2.
2n° — 1 n 2n° — 1 n’ o on

o0
. . . 1
Then the given series converges, since E — converges.
n

n=I

11.8. Let u, and v, be positive. If lim U _ constant 4 # 0, prove that Xu, converges or diverges

n—00 v,

according as v, converges or diverges.

By hypothesis, given € > 0 we can choose an integer N such that Un _ 4| <eforalln>N. Then for
n=N+1,N+2,... Un
o< g or (A4 —ew, <u, <(4+ew, (1)
Ul’l

Summing from N + 1 to oo (more precisely from N + 1 to M and then letting M — 00),

(A_E)ivné iuné(fl_"e)ivn (2)

N+1 N+1 N+1

There is no loss in generality in assuming A — € > 0. Then from the right-hand inequality of (2), Zu,
converges when Xv, does. From the left-hand inequality of (2), Zu,, diverges when Xv, does. For the cases
A =0or A= 00, see Problem 11.66.
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4 3 o |
11.9. Test for convergence; (a) Z % (b) Z n+«/;, () Z nzn_:3

n=1

4 —n+3 4’ 4 4’ —n+3 4
For 1 , ———— 1 imately — =-. Taki ,=————— and v, =—, h
(a) For uarge n R is approximately i aking u P and v, p we have
lim 2 =1.
n—00 Uy,

Since Xv, = 4X1/n diverges, u, also diverges by Problem 11.8.
Note that the purpose of considering the behavior of u, for large n is to obtain an appropriate
comparison series v,. In the above we could just as well have taken v, = 1/n.

: 4’ —n+3 :
Another method: lim n<n37n+) =4. Then by Theorem 1, Page 267, the series converges.
n—>00 n +2n
n+.n . . n 1
() For large n, u, = 1 is approximately v, = PR
Since nll)rglo v— =1 and E U =5 E s converges (p series with p = 2), the given series converges.
1
Another method:  lim 7 (; —g_ \/;) =5 Then by Theorem 1, Page 267, the series converges.
n—00 n’ —
| 1 |
(¢) lim n*? znin < lim »n? nizn = lim nn_ 0 (by L’Hospital’s rule or otherwise). Then by
n— 00 n“+3 n—00 n n—00 \/—

Theorem 1 with p = 3/2, the series converges.

In 1
Note that the method of Problem 11.6(«a) ylelds nr 22 = but nothing can be deduced since
n

¥1/n diverges. 243

o 5 o 1
11.10. Examine f : (b in’(~).
xamine for convergence: (a) Ze , (D) nzz;sm (n)

n=1
(a) lim ne™ =0 (by L’Hospital’s rule or otherwise). Then by Theorem 1 with p = 2, the series con-
verges.

(b) For large n, sin(1/n) is approximately 1/n. This leads to consideration of

. 3
fim 2 sin (L) = fim [SRA/M1_
n—0o0 n n— 00 1 /n

from which we deduce, by Theorem 1 with p = 3, that the given series converges.

INTEGRAL TEST

11.11. Establish the integral test (see Page 267).

We perform the proof taking N = 1. Modifications are easily made if N > 1.
From the monotonicity of f(x), we have

Uy =f(n+1) = fx) = fm)=u, n=123, ..
Integrating from x = n to x = n+ 1, using Property 7, Page 92,
n+1
Uy = J f(x)dx £ u, n=1,2,3...
n

Summing fromn=1to M — 1,
M
“2+“3+"'+MM§J SX)dx = up+uy+ - +upyy (1)
1

If f(x) is strictly decreasing, the equality signs in (/) can be omitted.
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If Mlim J f(x)dx exists and is equal to S, we see from the left-hand inequality in (/) that
— 00 1

Uy + uz + - - - + uy, s monotonic increasing and bounded above by S, so that Xu, converges.

M
If A}im J f(x)dx is unbounded, we see from the
—>00 1

Thus the proof is complete.

Illustrate geometrically the proof in Problem
11.11.

Geometrically, u, 4+ u3 + - - - + u,, is the total area
of the rectangles shown shaded in Fig. 11-3, while
uy +uy + - -+ uy_q is the total area of the rectangles
which are shaded and nonshaded.

The area under the curve y = f(x) from x =1 to
x = M is intermediate in value between the two areas
given above, thus illustrating the result (/) of Problem
11.11.

o0
1
Test for convergence: (a) E —5, p = constant;
n

o0 n o0 1 o0 _nz
(b) ;n2+1; (©) ;nlnn; (d) Xl:ne .

M_Ml—p_l

right-hand inequality in (/) that ou, diverges.

) Md M 1-p
(a) Consider J = J xPdx =2
1 X 1 l—p

l—p _

1_ l—p

where p # 1.

If p<1, im ——— = o0, so that the integral and thus the series diverges.

M—o0 l—p

1—p_1

1
lim = , so that the
M—>oco 1—p p—1

If p>1,

M M
pr:l,J d_x:J dx

. xP X M—o0
diverges. ! !

integral and thus the series converges.

—=InM and lim InM = oo, so that the integral and thus the series

Thus, the series converges if p > 1 and diverges if p < 1.

lim
M—o0 M—o0

M
. d . . .
(b) lim J >2c_x = A}l_r)noo%ln(xz + DM = {%ln(M2 +1)—1In2} = oo and the series diverges.

1 x 41

() i de—l' In(ln x)[¥ = lim {In(In M)
¢ Mggz xnx_MgéllHXZ _Mgglln

M
. 7‘2 . — 2 . —
(d) lim xe ¥ dx= lim —le ™| = lim {%e !
M—o0 )4 M—o0 M—o0

Note that when the series converges, the value

—In(In2)} = co and the series diverges.

2 — .
—LeM } =1le™" and the series converges.

of the corresponding integral is not (in general) the

same as the sum of the series. However, the approximate sum of a series can often be obtained quite

accurately by using integrals. See Problem 11.74.

1 1+
—<_
41 2

o0
Prove that i < Z Z
4 — 4
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From Problem 11.11 it follows that

M
lim E 2 < ——— < lim E -
M—oc0 Maoc 1 x M— o0 — n-+1

[ee]

1 T
;n2+1<_

o0
1
< Zm, from which as required.

T

-J>|:l

<1 <1 1
Since ;m < %, we obtain, on adding % to each side, ;m < 3 +%.

The required result is therefore proved.

ALTERNATING SERIES

11.15. Given the alternating series a; — a, + a3 —ay + --- where 0 < g,,; < a, and where lim a, = 0.
n—o0o

11.16. (a) Prove that the series Z =

Prove that (a) the series converges, (b) the error made in stopping at any term is not greater
than the absolute value of the next term.

(a) The sum of the series to 2M terms is
Soy = (a1 — @) + (a3 —ag) + -+ + (@ay—1 — o)
=ay—(ay —a3) = (ag — as) — -+ — (a2 — tay 1) — oy
Since the quantities in parentheses are non-negative, we have
Som 2 0, $HE8=85%=85%= =S =aq

Therefore, {S,,,} is a bounded monotonic increasing sequence and thus has limit S.
Also, S>pri1 = Soy +axprey- Since Mlim Soyy =S and A}im aryr41 =0 (for, by hypothesis,
—00 —>00

lim a, = 0), it follows that lim S,y = lim Sy, + lim ay  =S+0=S.
n—00 M— o0 M— o0 M— o0
Thus, the partial sums of the series approach the limit S and the series converges.
(b) The error made in stopping after 2M terms is
(aanry1 — @amy2) + (@apys — dapga) + - = oy — (Qapr2 — danry3) — -+

and is thus non-negative and less than or equal to a4, the first term which is omitted.
Similarly, the error made in stopping after 2M + 1 terms is

—p4r T (@oprgs — Gopgya) + - = —(@onrgr — Gopys) — (Aoprya — opggs) — -+

which is non-positive and greater than —ay; 5.

)H+1

—1

imating the sum by the ﬁrst 8 terms and the first 9 terms of the series. (¢) How many terms of the
series are needed in order to obtain an error which does not exceed .001 in absolute value?

converges. (b) Find the maximum error made in approx-

o (-1 1 1
(a) Theserleswl—%—i—l%—%—i— v Ifu, = _l,thenanzlunl=2n—_la an+1=|u”+1|=m'
Since i < > 0 and since lim 3 1= 0, it follows by Problem 11.5(a) that the series
n n— n—oo 2n —

converges.

(b) Use the results of Problem 11.15(b). Then the first 8 terms give I —1+1—14+§— &+ — % and the
error is positive and does not exceed - 5
Similarly, the first 9 terms are 1 —3 + T—= + 5— 1 + = — 1< + 17 and the error is negative and

greater than or equal to —, i.e., the error does not exceed 15 in absolute value.

19’
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(¢) The absolute value of the error made in stopping after M terms is less than 1/(2M + 1). To obtain the
desired accuracy, we must have 1/(2M + 1) < .001, from which M = 499.5. Thus, at least 500 terms
are needed.

ABSOLUTE AND CONDITIONAL CONVERGENCE

11.17. Prove that an absolutely convergent series is convergent.

Given that X|u,| converges, we must show that Xu, converges.
Let Syy =uy+uy +---+uy and Ty, = |uy| + |lun| + - - - + |luys]. Then

Sy + Ty = (uy + |ug]) + (up + lua]) + -+ - + (upg + lupgl)
= 2uy| 4 2upl + - - -+ 2uyy

Since ¥|u,| converges and since u,, + |u,| = 0,forn=1,2,3,..., it follows that S, + T, is a bounded
monotonic increasing sequence, and so A}im (Syr + Tyy) exists.
— 00

Also, since A}im T, exists (since the series is absolutely convergent by hypothesis),
—00

S = Jim (Su -+ T = To) = Jim (Su-+ Tu) = fim, Ty

must also exist and the result is proved.

sina/1  sina/2  sin+/3

13/2 - 23/2 + 33/2

11.18. Investigate the convergence of the series

Since each term is in absolute value less than or equal to the corresponding term of the series
1 1 1

W—FW—FW—’_“" which converges, it follows that the given series is absolutely convergent and

hence convergent by Problem 11.17.

11.19. Examine for convergence and absolute convergence:
n—1

( l)n 1 ( 1) 00 (_l)nflzl’l
9 9 C .
DI U D e
(a) The series of absolute values is E oY Wthh is divergent by Problem 11.13(5). Hence, the given

series is not absolutely convergent

. n n—+1
However, if a,, = |u,| = e and a,, = |u,, | =——=—— thena,;; < a,foralln = 1, and

+1 (n+1y°+1

also lim g, = lim — =0. Hence, by Problem 11.15 the series converges.

n— 00 n—oon- +

Since the series converges but is not absolutely convergent, it is conditionally convergent.

1
(b) The series of absolute values is Z

~nln’n "
By the integral test, this series converges or diverges according as lim J 5— exists or does not
exist. ) xIn®x
d> d 1 1
Ifu:lnx,J—z J 124 4 =——1c.
xIn”x u u Inx
M dx . 1 1 1 .
Hence, Ilim J ———= lim (— ———) =-— and the integral exists. = Thus, the series
M—o0 |y xIn“ x M—-oo\In2 In M 1 2
converges.

00 n—1
Then Z (n ln)2 " converges absolutely and thus converges.
n=2
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Another method:
1
and lim

<
(n+DIn*(n+1) = nln’n n—oc pln®n
given alternating series converges. To examine its absolute convergence, we must proceed as above.

(_1)]1—12]1
I’l

=0, it follows by Problem 11.15(a), that the

(¢) Since lim u, #0 where u, = , the given series cannot be convergent. To show that

2"
lim u, ;ﬁ 0 it suffices to show that hm lu,| = hm — # 0. This can be accomplished by L'Hospital’s
n— 00

rule or other methods [see Problem 11.21(b)].

RATIO TEST

11.20. Establish the ratio test for convergence.

Consider first the series u; + u, + u3 + - - - where each term is non-negative. ~We must prove that if

lim 24— < 1, then necessarily Xu, converges.
n—00 U,

By hypothesis, we can choose an integer N so large that for allm = N, (u,,/u,) < r where L <r < 1.
Then

Uy <TUy
Uyyr <TUniy < r Uy
Unps < Fliygs <Py
etc. By addition,
s iy o <uy(r bt )

and so the given series converges by the comparison test, since 0 < r < 1.

In case the series has terms with mixed signs, we consider |u;| + |uy| + |u3] +---. Then by the above
proof and Problem 11.17, it follows that if lim can | S 1, then Xu, converges (absolutely).
n—o00 | U,
Similarly, we can prove that if lim Untll _ [ > 1 the series Yu, diverges, while if lim Unl) _p
n—o00 | U, n—oo | U,

the ratio test fails [see Problem 11.21(c)].

. (— 1)" 1" (—=1)""'n
11.21. Investigate th f e (b , .
nvestigate the convergence of (a) ;n (b) Z () Z 21

n=1
(a) Here u, =n*e¢™ . Then
e’
lim (n+1)e

n+ 1)4 e—(l12+2n+1)
m
4 771

Upt1 _
n—00 n4 e*nz

Uy

n—0o0 n—o0o

1 n*
lim (”+ ) e lim <”+ ) lim e =1.0=0
n— 00 n n—00 n n—00

Since 0 < 1, the series converges.

n—1~n
(b) Here u, (1)722 Then
n
_1\? n+l 2 2
n—00| U, n—00 (I’l—|— 1) (_1)’7_ on n— 00 (I’l+ 1)

Since s > 1, the series diverges. Compare Problem 11.19(c).

(_l)n—ln

pEa Then

(¢) Here u, =
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=D)'(+1) w4l i (n+1)(n2+1)_l
(m+17+1 (=1)"'n| n>co(n® +2n+2)n

Unt1
ull

lim = lim
n—o0

n—oo

and the ratio test fails. By using other tests [see Problem 11.19(a)], the series is seen to be convergent.

MISCELLANEOUS TESTS
11.22. Test for convergence 1+ 2r + P 4+2° + 4 +2° +... where (@) r=2/3, (b) r=-2/3,

(¢) r=4/3.

Upt1

Here the ratio test is inapplicable, since = 2|r| or % |r| depending on whether 7 is odd or even.

n

However, using the nth root test, we have

S 217 = 21| if nis odd
Vuy,| = .
S = ] if n is even

Then lim v/ = |r| (since lim 2'/" =1).

n—o0 |un| |’| ( n—00 )
Thus, if |r] < 1 the series converges, and if |r| > 1 the series diverges.
Hence, the series converges for cases (a) and (b), and diverges in case (¢).

1\’ [(1-4\* [1-4.7\° 1-4-7...3n—=2)\"
11.23. Test for convergence (§> +<3.6) +(3-6-9> +..._|_( 3-6.9,_(_1(13,1) )) +

3n+1\°
The ratio test fails since lim Untl] _ lim nt =1. However, by Raabe’s test,
n—o0| U, n—oo\3n+3
. Upst . I+ 1\?| 4
lim n(1— ) = lim n{l — =—>1
n— 00 U, n—00 3n+3 3

and so the series converges.

1\? [(1-3\* [1-3.5\° 1-3-5...2n=1)\*
11.24. Test for convergence <§> +<2.4) +( 2 )+---+< 2-4-6..(.](12;1) )> 4+
2
= 1. Also, Raabe’s test fails since

2 1
The ratio test fails since lim Yntl) _ lim nt
n—oo| U, n—oo\2n + 2
2n+ 1\?
limn(l— ”"*‘): limn{1—<n+ ) }:1
n—00 u, n—00 2n+2

However, using long division,

2
Upi 2n+1 1 5—4/n 1 ¢,
= = _— 7:1—7 — h ; P
", <2n+2 n+4n2+8n+4 n+n2 where |c¢,| <

so that the series diverges by Gauss’ test.



286 INFINITE SERIES [CHAP. 11

SERIES OF FUNCTIONS

11.25. For what values of x do the following series converge?

( l)l’l 1 2n 1 00 n(x
(a) Z =i ) Z o © D nlx—a)', (d) 22"(3
n=1 n=1
xnfl

(@) u,= pT Assuming x # 0 (if x = 0 the series converges), we have
lim |“ot1] — X" n-3" lim n | = |x]
n—oo| U, T oS00 (n + 1) . 3”+1 _x”_l T s 3(}’1 —+ 1) - 3

Then the series converges if % < 1, and diverges 1fu 1. If% =1, i.e., x = £3, the test fails.

=N B =N |
If x = 3 the series becomes 23— = 527, which diverges.
— 3n n

n—1

If x = —3 the series becomes Z( )

n=1

Then the interval of convergence is —3 < x < 3.

1 n—1
= an:l:( n) , which converges.

The series diverges outisde this interval.

Note that the series converges absolutely for —3 < x < 3. At x = —3 the series converges con-
ditionally.
) ) (_1)n71x2nfl
(b) Proceed as in part (@) with 4, =——————— Then
2n—1)!
fog [t | _ o (GO Qe | Qe )
n—oo| u, n—ool (2n+ 1)! (—1)”_1)(2"*1 n~>oo 2n+ 1)'

(n—1)! N x?

= T D =D AR e D

Then the series converges (absolutely) for all x, i.e., the interval of (absolute) convergence is
—00 < X < 00.

(n+ Dl(x —a)y""!
nl(x —a)"

n+l
Uy

(¢) u,=n!(x—a)", lim

n—oo

= lim

n—oo

= lim (n+ 1)|x —al.
n—00

This limit is infinite if x # a¢. Then the series converges only for x = a.

@ = n(x — 1) ~(n+ Dx— 1!

_ _ Th
"G 1) T T (301 2) en

n+1
un

n+1DBn—-D(x-=1)
2n(3n +2)

lim

n—oo

= lim

n—00

=1 x =1
12 2

Thus, the series converges for |[x — 1| < 2 and diverges for |x — 1| > 2.
The test fails for [x — 1| =2,1ie, x— 1 =+2or x =3 and x = —1.
o0

For x = 3 the series becomes Z T which diverges since the nth term does not approach zero.
n—= n -

For x = —1 the series becomes Z( DAL
approach zero.

Then the series converges only for |[x — 1] < 2, i.e

T which also diverges since the nth term does not

s=2<x—-1<2o0or—-1<x<3.
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o n o0
1 x+2 1
11.26. For what values of x does (a , b converge?
();Zn—l(x—l) ®) ;(x+n)(x+n—1) g
1 x+2\" . u . 2n—1|x+2 x+2] .
_ *T2) 0 Then fim |“*l| = | - f 1, -2.
@ty 2n—1<x—1> N u, et =1 |x—1| " x7# 1
Then the series converges if x_—{—ﬂ < 1, diverges if iZ > 1, and the test fails if iz‘ =1,1e.,
x=-1L - x = x =
If x =1 the series diverges.
If x = —2 the series converges.
1 L= .
If x — 5 the series is ;2’1 1 which converges.
Thus, the series converges for il l,x=—%and x=-2,ie, forx < —1
. o . . 1 .
(b) The ratio test fails since lim Un1] _ 1, where u, = . However, noting that
n—o0| 1, (x+n)(x+n-—1)
1 o 1
(x+nx+n—-1 x4+n—-1 x+n
we see that if x #0,—1,-2,..., —n,
1 1 1 1 1 1
Sn=u1+u2+...+u”= —_— + — +.+ —
x x+4+1 x+1 x+2 x+n—1 x+4mn
BN
X XxX—+n
and lim S, = 1/x, provided x #0, —1, -2, -3, ....
Then the series converges for all x except x =0, —1, -2, -3, ..., and its sum is 1/x.
UNIFORM CONVERGENCE
11.27. Find the domain of convergence of (1 — x) 4+ x(I — x) + x*(1 = x) + - - -.
Method 1:
Sum of first n terms = S,(x) = (1 — x) + x(1 — x) + x> (1 = x) + -+ x""'(1 = x)
=l —x4x—X4+ x4 K
=1-X"
If |x| <1, lim S,(x) = lim (1 —x") = 1.
If |x| > 1, lim S,(x) does not exist.
Ifx=1,S,(x) =0and lim S,(x) =0.
If x=-1,5,(x) =1—(=1)" and lim S,(x) does not exist.
n—0o0
Thus, the series converges for [x| < 1 and x =1, i.e., for —1 < x < 1.
Method 2, using the ratio test. "
The series converges if x = 1. If x # 1 and u, = x"~'(1 — x), then lim || = lim |x|.
n—o00| U, n—00

Thus, the series converges if |x| < 1, diverges if |x| > 1. The test fails if |[x| = 1. If x = I, the series
converges; if x = —1, the series diverges. Then the series converges for —1 < x < 1.

11.28. Investigate the uniform convergence of the series of Problem 11.27 in the interval
(a —%<x<%, (h) —%§x§%, () —9<x<£.9, d —-1<x<l,
(e) 0 = x<?2.
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11.29.

11.30.
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(@) ByProblem 11.27, S,(x) =1 —x", S(x) = nli)rglo S,(x) = 1if —1 < x < L thus, the series converges in this
interval. We have

Remainder after n terms = R,(x) = S(x) — S,(x) =1 — (1 — x") = x"

The series is uniformly convergent in the interval if given any € > 0 we can find N dependent on ¢,
but not on x, such that |R,(x)| < € for all n > N. Now

Ine
IR,(x)| = |x"|=|x|" <e when nln|x| <lne or n>

In |x|

since division by In |x| (which is negative since |x| < %) reverses the sense of the inequality.

| 1
ne . n—le = N. Thus, since N is independent of x, the
In | x| In(3)

series is uniformly convergent in the interval.

But if |x| <4,In|x| <In(), and n >

; Ine Ine

(b) In this case |x| < ,In|x| £ In(), and n > — = ——

conver in—1 <y<l In|x| = In(})
gentin —5 =S X = 5.

= N, so that the series is also uniformly

(¢) Reasoning similar to the above, with % replaced by .99, shows that the series is uniformly convergent in
—-99 < x £ .99.

. . . Ine
(d) The arguments used above break down in this case, since

] can be made larger than any positive

number by choosing |x| sufficiently close to 1. Thus, no N exists and it follows that the series is not
uniformly convergent in —1 < x < 1.

(e) Since the series does not even converge at all points in this interval, it cannot converge uniformly in the
interval.

Discuss the continuity of the sum function S(x) = lim S, (x) of Problem 11.27 for the interval
0<x<l. e

If0 £ x<1,8x)= lim S,(x) = lim (1 —x") = 1.
n—o0Q0 n—>oo

Ifx=1,S,(x) =0 and S(x) =0.

Thus, S(x) =
0x<l.

In Problem 11.34 it is shown that if a series is uniformly convergent in an interval, the sum function S(x)
must be continuous in the interval. It follows that if the sum function is not continuous in an interval, the
series cannot be uniformly convergent. This fact is often used to demonstrate the nonuniform convergence
of a series (or sequence).

and S(x) is discontinuous at x = 1 but continuous at all other points in

1 f0x<1
0 ifx=1

: + - + +x—2+
1+x2 (1+x2)2 (1+X2)n .

Suppose x # 0. Then the series is a geometric series with ratio 1/(1 4+ x*) whose sum is (see Problem
2.25, Chap. 2).

Investigate the uniform convergence of x> +

X2 2

S(x):mzl‘f_x

If x = 0 the sum of the first n terms is S,,(0) = 0; hence S(0) = lim S,(0) = 0.
n—oQo

Since lin}) S(x) =1 # S(0), S(x) is discontinuous at x = 0. Then by Problem 11.34, the series cannot be

uniformly convergent in any interval which includes x = 0, although it is (absolutely) convergent in any
interval. However, it is uniformly convergent in any interval which excludes x = 0.
This can also be shown directly (see Problem 11.93).
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WEIERSTRASS M TEST

11.31.

11.32.

11.33.

Prove the Weierstrass M test, ie., if |u,(x)] = M,,n=1,2,3,..., where M, are positive
constants such that ¥ M, converges, then Xu,(x) is uniformly (and absolutely) convergent.

The remainder of the series Xu,(x) after n terms is R,(x) = u,;1(x) + t,;2(x) +---. Now
|R,1(X)| = |M"+1(X) + un+2(x) + - | é |un+1(x)| + |un+2(x)| + - é MrH—l + Mn+2 + -

But M, + M, » + - - - can be made less than € by choosing n > N, since £ M,, converges. Since N is clearly
independent of x, we have |R,(x)| < € for n > N, and the series is uniformly convergent. The absolute
convergence follows at once from the comparison test.

Test for uniform convergence:

e8]

COS nx > x" . sin nx > 1
(@) Z,ﬂ’“ﬁgﬁTﬁgz n,@D;;;;

n=1

1

COS X . . . . .
—| = i M,,. Then since M, converges ( p series with p = 4 > 1), the series is uniformly (and

4

(a)

n
absolutely) convergent for all x by the M test.

(b) By the ratio test, the series converges in the interval —1 < x < 1, i.e., |x] £ 1.

. X" x|" .
For all x in this interval, | = L}% s S Choosing M, = s we see that XM, converges.
Thus, the given series converges uniformly for —1 < x < 1 by the M test.
sin nx 1 1 ) )
() < —. However, M, where M, = —, does not converge. The M test cannot be used in this
n n n

case and we cannot conclude anything about the uniform convergence by this test (see, however,

Problem 11.125).

1 1 1 . . .
pe g < o and T s converges. Then by the M test the given series converges uniformly for all x.

(d)

If a power series Xa,x" converges for x = x,, prove that it converges (a) absolutely in the
interval |x| < |xy|, (b) uniformly in the interval |x| < |x;|, where |x;] < |xp].

(a) Since Ta,x; converges, lim a,x5 = 0 and so we can make |a,xj| < 1 by choosing n large enough, i.e.,
n—0oo

1
la,| < —| forn > N. Then

|xol"
o0 [o¢] (o] |)C|”
Zmﬂ=2mwkzmw ()
N+1 N+1 N+1170

Since the last series in (/) converges for |x| < |x], it follows by the comparison test that the first
series converges, 1.e., the given series is absolutely convergent.

n
) Let M, =50
[Xo!

that by the Weierstrass M test, Xa,x" is uniformly convergent.

Then M, converges since |x;| < |xo|. As in part (a), |a,x"| < M, for |x| £ |x;], so

It follows that a power series is uniformly convergent in any interval within its interval of con-
vergence.

THEOREMS ON UNIFORM CONVERGENCE

11.34.

Prove Theorem 6, Page 271.

We must show that S(x) is continuous in [a, b].
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Now S(x) = S,(x) + R,(x), so that S(x+ &) = S,(x+ h) + R,(x + h) and thus
S(x+h) = S(x) = Sy(x + h) = S,(x) + Ry (x + 1) — R,(x) ()

where we choose % so that both x and x + % lie in [a, b] (if x = b, for example, this will require /& < 0).
Since S, (x) is a sum of finite number of continuous functions, it must also be continuous. Then given
€ > 0, we can find § so that

IS, (x +h) — S,(x)| <€/3 whenever |h] < § ®)
Since the series, by hypothesis, is uniformly convergent, we can choose N so that
|IR,(x)| <€/3 and |R,(x+ h)| <€/3 forn > N 3
Then from (7), (2), and (3),
ISCGe+ ) = S| = [S,(x + 1) = S, () + [Ry(x + ) + R, (X)] < €

for |h] < 8, and so the continuity is established.

11.35. Prove Theorem 7, Page 271.

If a function is continuous in [a, b], its integral exists. Then since S(x), S,(x), and R,(x) are continuous,

b

Jj S(x) = Jb S, (x) dx + J R, (x)dx

a a

To prove the theorem we must show that

Jb R,(x) dx

a

Jb S(x)dx — Jb S, (x) dx

a a

can be made arbitrarily small by choosing n large enough. This, however, follows at once, since by the
uniform convergence of the series we can make |R,(x)| < €/(b — a) for n > N independent of x in [a, b], and

o)
b b b
J R,(x)dx| < J IR, (%) dx < J b_adx:e
This is equivalent to the statements
b b b b
J S(x)dx = lim J S,(x)dx  or  lim J S,,(x) dx :J {lim S,,(x)}dx
a n—0o0 a n—o0 a a n—0o0

11.36. Prove Theorem 8, Page 271.

o0
Let g(x) = Zu,;(x). Since, by hypothesis, this series converges uniformly in [a, b], we can integrate
n=1

term by term (by Problem 11.35) to obtain

[[stoar=3"[ wodr= > - u)

n=1 J4a n=1
o0

= Zun(x) - Zun(a) = S(x) — S(a)
n=1

n=1

because, by hypothesis, Zun(x) converges to S(x) in [a, b].
n=1
Differentiating both sides of J g(x)dx = S(x) — S(a) then shows that g(x) = S’(x), which proves the
theorem. a
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11.37. Let S,(x) =nxe ™ ,n=1,2,3,...,0 < x < L.

N

1

(a) Determine whether lim J S,(x)dx = J lim S,(x)dx.
n—oo 0 0 n—00

(b) Explain the result in (a).

1 1 . ,
(@) L sp(x)dx = Jo nxe™™ dx=—L1e™ g =11 —e™"). Then

1
lim J S,(x)dx = lim L(1 —e™") =1
n— 00

n—00 0

S(x) = lim S,(x) = lim nxe ™ = 0, whether x=00r0 <x < 1. Then,
n—o0 n— o0
1
J S(x)dx=0
0

1 1
It follows that lim J S, (x) dx # J lim S,(x)dx, i.e., the limit cannot be taken under the integral
n— 00 0 0 n—0o0

sign.
(b) The reason for the result in () is that although the sequence S,,(x) converges to 0, it does not converge

uniformly to 0. To show this, observe that the function nxe™™ has a maximum at x = 1 /~/2n (by the

usual rules of elementary calculus), the value of this maximum being ne ~1/2. Hence, as n — oo,

S,(x) cannot be made arbitrarily small for all x and so cannot converge uniformly to 0.

0 T = 1
11.38. Let f(x) = ZSH’;”X. Prove that Jo f(x)dx=2 Zm
n=1 -

n=1

sin nx

We have Then by the Weierstrass M test the series is uniformly convergent for all x, in

lIA

1
73.

n
particular 0 < x < m, and can be integrated term by term. Thus

T i sin nx >, (" sinnx
Lf<x>dx=L(2 )= S

n=l1 n=1

l—cosnn 1 1 1 >
Z o <14+34+ + ) 2:: n—l)

POWER SERIES

11.39. Prove that both the power series Z a,x" and the corresponding series of derivatives Z na,x""!
=0 n=0

have the same radius of convergence

Let R > 0 be the radius of convergence of Ta,x". Let0 < |xy| < R. Then, as in Problem 11.33, we can

1
choose N as that |a,| < — T forn > N.

|0
Thus, the terms of the sleries Slna,x""'| = nla,||x|""" can for n > N be made less than corresponding
Pl
terms of the series X n li | —, which converges, by the ratio test, for |x| < |x¢| < R.
X0

Hence, Zna,x""' converges absolutely for all points x, (no matter how close |xo| is to R).

If, however, |x| > R, lim @,x" # 0 and thus lim na,x"~' # 0, so that Sna,x"~" does not converge.
n—oo n—oo
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11.40. Illustrate Problem 11.39 by using the series sz—y
n=1 n--

11.41.

11.42.

INFINITE SERIES [CHAP. 11

Thus, R is the radius of convergence of Tna,x"".

Note that the series of derivatives may or may not converge for values of x such that |[x] = R

n

’C’H—l I’l2 . 3}1 2 | |

S im e =
(n+1)7?.3+1 x n—~003(n+ 1) 3

= lim

n—0o0o

. Upy
lim |——
n—oo| U,

so that the series converges for |x| <3. At x = %3 the series also converges, so that the interval of
convergence is —3 < x < 3.
The series of derivatives is

00 n—1

Z > 3"22%

n=l1

By Problem 11.25(a) this has the interval of convergence —3 < x < 3.

The two series have the same radius of convergence, i.e., R = 3, although they do not have the same
interval of convergence.

Note that the result of Problem 11.39 can also be proved by the ratio test if this test is applicable. The
proof given there, however, applies even when the test is not applicable, as in the series of Problem 11.22.

Prove that in any interval within its interval of convergence a power series
(a) represents a continuous function, say, f(x),

(b) can be integrated term by term to yield the integral of f(x),

(¢) can be differentiated term by term to yield the derivative of f(x).

We consider the power series Ya,x", although analogous results hold for Za,(x — a)".

(a) This follows from Problem 11.33 and 11.34, and the fact that each term a,x" of the series is continuous.

(b) This follows from Problems 11.33 and 11.35, and the fact that each term a,x" of the series is continuous
and thus integrable.

(¢) From Problem 11.39, the series of derivatives of a power series always converges within the interval of
convergence of the original power series and therefore is uniformly convergent within this interval.
Thus, the required result follows from Problems 11.33 and 11.36.

If a power series converges at one (or both) end points of the interval of convergence, it is possible to
establish (a) and () to include the end point (or end points). See Problem 11.42.

Prove Abel’s theroem that if a power series converges at an end point of its interval of conver-
gence, then the interval of uniform convergence includes this end point.
[o¢]

For simplicity in the proof, we assume the power series to be Z ax* with the end point of its interval

=0
of convergence at x = 1, so that the series surely converges for 0 < x < 1. Then we must show that the
series converges unlformly in this interval.

Let

_ n n+1 n+2 _
R"(X) = a,X + an+1x + an+2)C + - i Rn =da, + an+l + an+2 + -

To prove the required result we must show that given any € > 0, we can find N such that |R,(x)| < € for
all n > N, where N is independent of the particular x in 0 < x < 1.
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11.43.

11.44.

11.45.

Now
Ry(x) = (R, — Ry X" + Ryt — Ryp)X™™ 4 (Ryyn — Ry + -+
=R X"+ Ry (X" — X"+ R, (2" — X 4
= X"(R, — (1 = )Ry + RypoX + Ryisx* + )
Hence, for 0 < x < 1,
IR, £ [Ry + (1= X)(|Ry1| + [Rypa X + [ Ryl + ) ()
Since ¥a; converges by hypothesis, it follows that given € > 0 we can choose N such that |R;| < €/2 for

all k = n. Then for n > N we have from (/),

RIS S+ =(5+5x+52+) =
since (1 = x)(1+x+x>+x>+--)=1(Gf0 < x <1).
Also, for x =1, |R,(x)| = |R,| < € for n > N.
Thus, |R,(x)| <€ for all n > N, where N is independent of the value of x in 0 < x £ 1, and the
required result follows.
Extensions to other power series are easily made.

€
5 =€ (2)

Prove Abel’s limit theorem (see Page 272).

o0
As in Problem 11.42, assume the power series to be Za,\,xk, convergent for 0 < x < 1.
k=1

[o¢] [o¢]
Then we must show that lim Zakxk = Zak.
x—1—
k=0 k=0
This follows at once from Problem 11.42, which shows that Eakxk is uniformly convergent for
0 < x £ 1, and from Problem 11.34, which shows that Eakxk is continuous at x = 1.
Extensions to other power series are easily made.

3 5 7
(a) Prove that tan™'x =x— % + % — x7 + --- where the series is uniformly convergent in
-1 x 1.

T 1 1 1
b) Provethat —=1—-+—-—=-+4---.
) 4 3 + 5 7 +
(a¢) By Problem 2.25 of Chapter 2, with r = —x* and a = 1, we have

1

6

=1—x+xt x5+ —l<x<l (1)

14+ x2

Integrating from 0 to x, where —1 < x < 1, yields

Y odx 1 P
—tan~ y = x — _x 2
Jol-i-xz anx=x 3+5 7+ @)

using Problems 11.33 and 11.35.

Since the series on the right of (2) converges for x = %1, it follows by Problem 11.42 that the series
is uniformly convergent in —1 < x < 1 and represents tan~' x in this interval.

(b) By Problem 11.43 and part (a), we have

. 1 . XX X T I 1 1
Jm tanTa = lm (xog g o g e or o g=logds g

1 —x?

Evaluate J :
0 X

dx to 3 decimal place accuracy.
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2 3 u4 uS

Wehavee_1+u+;'+3l+4|+5'+ —00 < U < Q.
4 6 8 10
Thenifu:—xz,ef"" =1-x +§_%+%_x§_l+ —00 < X < 00.
1—e™ R A S
Thus x2 :1—5—{—?—?4—?—

Since the series converges for all x and so, in particular, converges uniformly for 0 < x

integrate term by term to obtain

X2 =Yy tsa T Ao,

1 n 1 1 n 1
3-20°5.31 7.4 9.5
=1-0.16666 4+ 0.03333 — 0.00595 + 0.00092 — - -

_— 1
1] 3 5 Ny K
dx = x
0

=1-

=0.862

[CHAP. 11

< 1, we can

Note that the error made in adding the first four terms of the alternating series is less than the fifth term,

i.e., less than 0.001 (see Problem 11.15).

MISCELLANEOUS PROBLEMS

11.46. Prove that y = J,(x) defined by (/6), Page 276, satisfies Bessel’s differential equation

x2y// +Xy/ + (x2 _pZ)y =0

The series for J,(x) converges for all x [see Problem 11.110(a)]. Since a power series can be differ-

entiated term by term within its interval of convergence, we have for all x,

B i ( 1) xp+2n

Y= ~ p+2nn[(n+p)[

. i (=1)"(p + 2"
= — 2Pl(n + p)!

. i (=1)"(p+2n)(p+2n— D2
= 2l + p)

Then,
( l)n p+2n+2 (_])np2xp+2n

o = p)y = Zm Zm

n=!

A= (p A+ 2m)a
xy Z 2p+2nn|(n+p)|

v D' (2 +2m)(p + 20—
N Z 20251 (n + p)!

)xP+2n




CHAP. 11] INFINITE SERIES 295
Adding,
00 n_p+2n+2
2. ’ 2 2 (_1) X
Xy Xy (T —p)y = YT Y E——
HX:(; 202\ (n + p)!
N i (=)'[=p* + (p+20) + (p + 20)(p + 2n — D"
po 201211 (n + p)!
_ [eS] (_l)nxp+2n+2 e (_1)71[4n(n+p)]xp+2n
=t l(n+p) = 20Tal(n + p)!
B 00 (_])n—lxp+2n N i (_1)n4xp+2n
w2 — Din—1+p) 22— Din+p— 1)
00 (_ 1)114Xp+2n 00 (_ 1)n4xp+2n
- o 202 — Dl(n+p — 1)! ;2”*2”(;1 —Din+p—1)!
=0
00 n—1
11.47. Test for convergence the complex power series ZW
n=1
n 3 n—1 3
. . , . -3 . .
Since lim Unt) _ lim z 3 2 —| = lim ———z| = H, the series converges for — < 1,
n—oo| U, n—ool(n 4 1)° - 3" Z"= n—003(n 4 1) 3 3
i.e., |z| < 3, and diverges for |z| > 3.
00 |Z|n—l 00 1
F =3, th i f absolut 1 i —_— = - that th ies is absolutel
or |z| e series of absolute values is ;#-3”‘1 ;nB so that the series is absolutely

convergent and thus convergent for |z| = 3.
Thus, the series converges within and on the circle |z| = 3.

11.48. Assuming the power series for ¢ holds for complex numbers, show that

e =cosx+isinx

. . 2 7
Lettmgz:zxme‘:1+z+5+§+~--,Wehave
N 4ix Py Py _(q XXt . XX
e = +l/\+2—!+T+"'— —2—!+4—!—"' +1 x—ﬁ“ra—“'

=cosx+isinx

Similarly, e ™ = cosx —isinx. The results are called Euler’s identities.

1 1 1 1
11.49. Prove that lim (1 +-4+-4+-4+.--4+——In n) exists.
n

n—00 2 3 4
Letting f(x) = 1/x in (/), Problem 11.11, we find
L ¥ 2 T LIL LU
2737 M= =0Ty M—1
from which we have on replacing M by n,
S N L
n= T2737% no =

1 1 1 1 .
Thus, the sequence S, = 1 +§+§+Z+~--+E—lnnls bounded by 0 and 1.
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11.50.

11.51.

11.52.

INFINITE SERIES [CHAP. 11

. 1 1 1 I
Consider S, — S, = pa In (n + ) By integrating the mequahty —— < — £ — with respect
n n

1
n +1 = x
to x from n to n+ 1, we have

1 1 1 1 1 1 1
<In nt — or ——- = —In nt
n+1 n n n+1 n n+1 n
re., S,y — S, =< 0, so that S, is monotonic decreasing.

Since S, is bounded and monotonic decreasing, it has a limit. This limit, denoted by y, is equal to
0.577215... and is called Euler’s constant. It is not yet known whether y is rational or not.

[IA
[IA
o

o0
Prove that the infinite product l_[(l + uy), where u, > 0, converges if Z u, converges.
k=1 k=1
According to the Taylor series for ¢* (Page 275), 1 +x £ ¢* for x > 0, so that

n
Po=TT0 ) = (1 a1+ ) (1) S €l = (s

Since u; + u, + - - - converges, it follows that P, is a bounded monotonic increasing sequence and so has
a limit, thus proving the required result.

Prove that the series 1 —14+1—1+4+1—1+4---1is C — 1 summable to 1/2.

The sequence of partial sums is 1,0, 1,0, 1,0, ....

Si+S 140 1 S +85+8; 1+0+1 2
Th = 1 = = — — = —. .
en$=1-"7 2 T2 3 3 3’
Continuing in this manner, we obtain the sequence 1,1,2,1.3 1 the nth term being
12 if n is even . 1 .
T, = { n/Qn—1) if nis odd - Thus, nanJO T, =5 and the required result follows.

(a) If f"D(x) is contmuous in [a, b] prove that for ¢ in [a, b], f(x) =f(c)+f (c)(x —¢)+
() — e 4o L= o) j (x =o' f" @y dr.

(b) Obtain the Lagrange and Cauchy forms of the remainder in Taylor’s Formula. (See Page

274.)

The proof of («) is made using mathematical induction. (See Chapter 1.) The result holds for n =0
since

Jx)=f()+ J; fi(0ydt=f(0)+f(x) = f(c)

We make the induction assumption that it holds for n = k and then use integration by parts with

=" . 0" i and u )
Then
v= —% and  du=f"1)dr
Thus,
:ka(((;c)(i 1_)!6)1(+1 * (k41— D! L(‘C SR AL

Having demonstrated that the result holds for k£ + 1, we conclude that it holds for all positive integers.
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11.53.

11.54.

To obtain the Lagrange form of the remainder R,, consider the form

S = O+ @ = 3y £ = 0 4 (o)

K
This is the Taylor polynomial P,_;(x) plus ;(x —¢)". Also, it could be looked upon as P, except that

in the last term, /"(c) is replaced by a number K such that for fixed ¢ and x the representation of f(x) is
exact. Now define a new function

-0/ K(x—1)"
(x. ) N (x—1)
! n!

n—1
(1) =f() - f()+Y_ V)
J=1

The function @ satisfies the hypothesis of Rolle’s Theorem in that ®(¢) = ®(x) = 0, the function is
continuous on the interval bound by ¢ and x, and ®’ exists at each point of the interval. Therefore, there
exists £ in the interval such that ®'(§) = 0. We proceed to compute &' and set it equal to zero.

j n—1
G+ Dy &= Kx—0"
®'(1) f(r)+2f e Zf (z) T =)
This reduces to
’ f(n)(t) n—1 n—1
[0} = = — _
R e e e )
According to hypothesis: for each n there is &, such that
@) =0
Thus
K =7"G,)
and the Lagrange remainder is
(n)
Ry =178
or equivalently
(n+1) 1l
Rn (I’l ¥ 1)' f (én—t—l)(x C)

The Cauchy form of the remainder follows immediately by applying the mean value theorem for
integrals. (See Page 274.)

Extend Taylor’s theorem to functions of two variables x and y.

Define F() = f(xq + ht, yg + kt), then applying Taylor’s theorem for one variable (about ¢ = 0)

F(1) = F(0) + F'(0) +5 F”(O)t +od ! F(”)(O) +( n 1),F<”+1>(9)z"+1, 0<6<t
Now let r =1
/ 1 " 1 n n
F() =/ (o +h.yo + k) = FO + F'O) + 5 F'O) -+ G FO0) + s FUV6)

When the derivatives F'(?), ..., F (”)(t), F ('”1)(9) are computed and substituted into the previous expres-
sion, the two variable version of Taylor’s formula results. (See Page 277, where this form and notational
details can be found.)

Expand x*> 43y —2 in powers of x— 1 and y+2. Use Taylor’s formula with # = x — Xos
k =y —yy, where xo =1 and y, = —2.
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X3y —2=—10—4(x—D+4(y+2)—2(x — 1> +2(x = D(y+2)+ (x = D*(y +2)
(Check this algebraically.)

x+y  x+y—2
2 246(x+y-2)’
with the linear term as the remainder.

11.55. Prove that In

0<f8<1,x>0,y>0. Hint: Use the Taylor formula

11.56. Expand f(x, y) = sinxy in powers of x — 1 and y — 5 to second-degree terms.

T v T) - (-0

Supplementary Problems

CONVERGENCE AND DIVERGENCE OF SERIES OF CONSTANTS

1 1
11.57. (a) Prove that the series —— + +-—

37 STRETISE Zm converges and (b) find its sum.
Ans. (b) 1/12

11.58. Prove that the convergence or divergence of a series is not affected by (a) multiplying each term by the
same non-zero constant, (b) removing (or adding) a finite number of terms.

11.59. If Xu, and Xwv, converge to A and B, respectively, prove that X(u, + v,) converges to 4 + B.
11.60.  Prove that the series 3+ ()’ + @)’ +--- = ()" diverges.

11.61. Find the fallacy: Let S=1—-1+1—-141—-1+4+---. Then S=1-(1-1)—-(1—-1)—---=1 and
S=0-1H)+{10-1)+1-=1)+---=0. Hence, 1 =0.

COMPARISON TEST AND QUOTIENT TEST

11.62. Test for convergence:

o0

1 n = n+2 o 1
(a) ;m’ (b) ;4”2_37 (C) Z(ﬂ+1)m, (d) Z .5n° an_:?,’

n=1 n=1

) Z (3n + 2)114/3

Ans. (a) conv., (b) div., (c¢) div., (d) conv., (e) div., (f) conv.

4 2 > —1
11.63. Investigate the convergence of (a) E %5?)3/2 () E ,/%. Ans. (a) conv., (b) div.
—\n n

11.64. Establish the comparison test for divergence (see Page 267).
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11.65. Use the comparison test to prove that

) o ¢ 71 oo 2
(a) Z —p converges if p > 1 and diverges if p < 1, (b) Z an diverges, (c) Z% converges.
n=1

n=1 n=l1

11.66. Establish the results (b) and (c¢) of the quotient test, Page 267.

11.67. Test for convergence:

=\ (Inn)* 3 n o
(a) };(Z?) () Z,/ntan—l(l/n (c) Sm_’,f) d) ;nsmz(l/n).

Ans. (a) conv., (b) div., (c¢) div., (d) div.

11.68. If Xu, converges, where u, = 0 for n > N, and if lim nu, exists, prove that lim nu, = 0.

n—o0 n—oo

1
11.69. (a) Test for convergence Z pRER YR (b) Does your answer to (a) contradict the statement about the p

series made on Page 266 that 21/n” converges for p > 1?
Ans.  (a) div.

INTEGRAL TEST

oo 2 oo oo oo Jn oo
n 1 n e Inn
11.70. Test for convergence: (a — (b —, (c —, (d e —_
g (@) ,?:1 P () E nin ) (©) ,?:1 o (d) ,?:1 N (e) E p

n=2 n=2

00 2ln(ln n)

/) n:Z]o nlnn -’

Ans. (a) div., (b) conv., (c¢) conv., (d) conv., (e) div., (f) div.

= 1
11.71. Prove that E m, where p is a constant, (a) converges if p > 1 and (b) divergesif p < 1.
“—~n(lnn

11.72. Prove that

| \©
-lklm

=1
< ;?
. oo tan"'n
11.73. Investigate the convergence of ;m

Ans. conv.

11.74.  (a) Prove that 2’7 +1 < VT+V2+ 3+ +yn < 207 407 -2,
(b) Use (a) to estimate the value of v/14 2 ++/3+ -4 +/100, giving the maximum error.
(c) Show how the accuracy in (b) can be improved by estimating, for example, v/10 + /11 + - - - + /100
and adding on the value of v/1 ++/2 + - -+ + +/9 computed to some desired degree of accuracy.
Ans. (b)) 671.5+4.5

ALTERNATING SERIES

o0 n+1 0 n n+1
11.75. Test for convergence: (a) Z(_1)+ , (D) Zi (¢) Z( 1)+ ,

— —nt+2n+2’
o0 L 1 [o¢] (_1)”ﬁ
1
(d) nEZI(—l)”sm pe (e) ,,Ezz—ln” .

Ans. (a) conv., (b) conv., (c¢) div., (d) conv., (e) div.
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n
11.76. (a) What is the largest absolute error made in approximating the sum of the series Z 2,1(_ ) ] by the sum
of the first 5 terms? (n+1)
Ans. 1/192
(b) What is the least number of terms which must be taken in order that 3 decimal place accuracy will
result?
Ans. 8 terms
1 1 1 411
1177, (@ Prove that S =5+ 55+ 55+ = (13 5+ )
(b)) How many terms of the series on the right are needed in order to calculate S to six decimal place

accuracy?
Ans. (b) at least 100 terms

ABSOLUTE AND CONDITIONAL CONVERGENCE

11.78. Test for absolute or conditional convergence:

( 1)"1 . x (—1)" 00 (_1),,_1 o

(a) nX::n +1 (o) ;nlnn (e) ;M—lsmﬁ
ln l 1 o0 -1 n—1_3
® Z(n o (@) Zl - )1)4/3 ) 2(2)4_1”

Ans. (a) abs. conv., (b) cond. conv., (¢) cond. conv., (d) div., (e) abs. conv., (f) abs. conv.
snma
11.79. Prove that Zﬁ converges absolutely for all real x and a.
n=1 X +n

11.80. If 1— % =7 —1— - converges to S, prove that the rearranged series 1 + 3 —3 + + =—z + + === —1—
=3s. Explaln
[Hint: Take 1/2 of the first series and write it as 0 + % +0— % +0+ % + - - -; then add term by term to the first
series. Note that S =In2, as shown in Problem 11.100.]

11.81. Prove that the terms of an absolutely convergent series can always be rearranged without altering the sum.

RATIO TEST

11.82. Test for convergence:

o0

=) (_l)nn 00 102}1 ( 1) 2371 (
@ Larve @ La—or ()Zn, (@) Z o © Z n+1

=1 n=1

Ans. (a) conv. (abs.), (b) conv., (c¢) div., (d) conv. (abs.), (e) div.

11.83. Show that the ratio test cannot be used to establish the conditional convergence of a series.

!

>, ! n
11.84. P that — d (b) lim —=0.
rove that (a) ;n" converges and (b) dm -

MISCELLANEOUS TESTS
11.85. Establish the validity of the nth root test on Page 268.

11.86. Apply the nth root test to work Problems 11.82(a), (¢), (d), and (e).

11.87. Prove that L+ &’ + ()’ + B* + )’ + 3° + - converges.
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1 1-4 1-4.7 2 2.5 2.5-8
Test for convergence: (a) §+—+ (b)§ 9.124—9.]2.154—

3.6 3-6-9'
Ans. (a) div., (b) conv.

If a, b, and d are positive numbers and b > a, prove that

ala+d)  ala+ d)(a+ 2d)
b(b+d)  bb+ d)b+2d)

converges if b —a > d, and diverges if b —a < d.

SERIES OF FUNCTIONS

11.90.

11.91.

Find the domain of convergence of the series:
(=D)"(x — 1
(a)zz, ()22,,(3 : ()Z(1 - <)Z (

Ans. (@) —1=<x=1, (b)) —1<x=3, (¢)allx#0, (d x>0, (¢) x=0

o0 el’lx
) CID Dre s}

n=1

-5---(2n—1
Provethatz 2 16 (’Z )) x" converges for —1 < x < 1.

UNIFORM CONVERGENCE

11.92.

11.93.

11.94.

11.95.

11.96.

11.97.

11.98.

11.99.

By use of the definition, investigate the uniform convergence of the series

Z +(n—1)x [1 + nx]

n=I

14 nx
Ans.  Not uniformly convergent in any interval which includes x = 0; uniformly convergent in any other
interval.

1
[Hint: Resolve the nth term into partial fractions and show that the nth partial sum is S,(x) = 1 — ]

Work Problem 11.30 directly by first obtaining S,,(x).

Investigate by any method the convergence and uniform convergence of the series:

o [ X\ sin” nx > X
(a) HZ:;(g) (b) Z 1 (c) ;m,xgo

Ans. (a) conv. for |x| < 3; unif. conv. for |[x| < r < 3. (b) unif. conv. for all x. (¢) conv. for x = 0; not
unif. conv. for x = 0, but unif. conv. for x = r > 0.

-
If F(x) = Z sn:ﬁnxa prove that:

n=1 0
(a) F(x) is continuous for all x, (b) 1i1‘1’(1) F(x)=0, (¢) F'(x)= Zcosznx is continous everywhere.
X—> n

n=1

T/cos2x cosdx cosbx
P that o )ldx=0
rove aJ0<1'3+3'5+5.7+ )x

o
Prove that F(x) = Z Sy has derivatives of all orders for any real x.

= sinh nw
. 1 .
Examine the sequence u,(x) = 1+—2” ,n=1,2,3,..., for uniform convergence.
X
L dx 1
Prove that lim J —=1—e.
w0 o (T4 x/m)
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11.100.

11.101.

11.102.

11.103.

11.104.

11.105.

11.106.

11.107.

11.108.

11.109.

INFINITE SERIES [CHAP. 11
2 3 4
(a) Prove that In(1 + x) :x_%+%_xz+...,

(b) Prove that In2=1-14+1-14..

1 .
|:H1nt: Use the fact that ] =l—x+x>—x"4---and 1ntegrate.]
x

1 1-3x°
Prove that sin™ 1x_x+—x—+

g 1<x<
>3 2 1 <x=Z 1.

) = =

x’
7

x_135
5 246

2 . 'l —cosx . S

Evaluate (a) J e dx, (d) J — dx to 3 decimal places, justifying all steps.
0 0

Ans. (a) 0.461, (b) 0.486

Evaluate (@) sin40°, (b) cos65°, (c¢) tan12° correct to 3 decimal places.
Ans. (a) 0.643, (b) 0.423, (c) 0.213

Verify the expansions 4, 5, and 6 on Page 275.

By multiplying the series for sin x and cos x, verify that 2 sin x cos x = sin 2x.

2
. cosx X axt 3lx
Show that e _e<l—§+ TR 4], —00 < x < 00.
Obtain the expansions
3 5 7
(a) tanh™'x :x+%+?—|—7+~~ —l<x<l1
1y 135 1.3.54
1 V¥4+l)=x—"4+-—"" """ 1+... —1<x<1
() In(x++vx-+1) x23+2.45 2-4-67+ =x=

—1/x
Let f(x) = { S x# 8 Prove that the formal Taylor series about x = 0 corresponding to f(x) exists

but that it does not converge to the given function for any x # 0.

Prove that
In(1+x) n , 11\ ;
(a) H—ix —X—<1+§)X +<1+E+§)x — e fOI' —1<X<1
) n(+x)2 =2 — (141 C S UL UL 2 N
- 2] 3 2 3/ 4 =

MISCELLANEOUS PROBLEMS

11.110.

11.111.

11.112.

11.113.

Prove that the series for J,(x) converges (a) for all x, (b) absolutely and uniformly in any finite interval.

d d 2p
Prove that (@) - (o0} = /1), (B) S (00} = Xy 1 (), (©) Syt () = L Jp(0) = I (),

Assuming that the result of Problem 11.111(c) holds for p =0, —1, =2, ..., prove that
(@) J_1(x) = =Ji(x), (b)) Jo(x) =r(x), () J_o(x) =(=1)'"J,(x), n=1,2,3,....

o0
Prove that e!/>(=1/0 = Z Jy(x) 7.

p=—00
[Hint: Write the left side as ¢*/?¢~/* expand and use Problem 11.112.]
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11.114.

11.115.

11.116.

11.117.

11.118.

11.119.

11.120.

11.121.

11.122.

11.123.

11.124.

11.125.

11.126.
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(n+ 17"

Prove that Z 2 is absolutely and uniformly convergent at all points within and on the circle |z| = 1.

n=1 n(n +

o0 [o¢]
(a) If Z a,x" = Z b,x" for all x in the common interval of convergence |x| < R where R > 0, prove that
n=1

a, = b for n=0,1,2,.... (b) Use (a) to show that the Taylor expansion of a function exists, the
expansion is unique.

Suppose that lim/u,] = L. Prove that Tu, converges or diverges accordingas L < lor L > 1. If L =1
the test fails.

Prove that the radius of convergence of the series Xa,x" can be determined by the following limits, when

1 1
. (D) lim ——, (¢) Tim ——.
n—o00 {/|a,| n—o0 /||

Use Problem 11.117 to find the radius of convergence of the series in Problem 11.22.

they exist, and give examples: (@) 11m

Apt1

(a) Prove that a necessary and sufficient condition that the series Xu, converge is that, given any € > 0, we
can find N >0 depending on € such that |S,—S,| <e whenever p> N and ¢> N, where
S:u1—|—u2—|—---+uk.

(b) Use (a) to prove that the series 2(4_7 converges.

13"

1

(¢) How could you use (@) to prove that the series Z— diverges?
— 1

[Hint: Use the Cauchy convergence criterion, Page 25.]

Prove that the hypergeometric series (Page 276) (a) 1is absolutely convergent for |x| < 1, (b) is divergent
for |x| > 1, (c) is absolutely divergent for |[x| =1ifa+b—c <0, (d) satisfies the differential equation
x(1=x)y"+{c—=(a+ b+ x}y —aby =0.

If F(a,b;c;x) is the hypergeometric function defined by the series on Page 276 prove that
(@ F(—p. i Li—x) = 1+, (0) xF(L 1: 2 =) =In(1 +), () FG.1:3:2%) = Gin~ /.

3 5

Find the sum of the series S(x) —)»-I-%-i-l x3 5+
[Hint: Show that S’(x) — 1 + xS(x) and solve.]
Ans. &2 [ e dx
Jo
Prove that
1 1 1 1 1 1 1
1 +— R 1 —— — — ...
+1~3+1~3-5+1~3-5-7+ \/E( 2-3+22~2!-5 23~3!-7+24-4!-9 )

Establish the Dirichlet test on Page 270.

o -
Prove that Z smnx is uniformly convergent in any interval which does not include 0, £, +27, . ...
n
n=1
[Hint: use the Dirichlet test, Page 270, and Problem 1.94, Chapter 1.]

Establish the results on Page 275 concerning the binomial series.
[Hint: Examine the Lagrange and Cauchy forms of the remainder in Taylor’s theorem.]
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11.127.

11.128.

11.129.

11.130.

11.131.

11.132.

11.133.

11.134.

11.135.

11.136.

11.137.

11.138.

INFINITE SERIES [CHAP. 11
[e°] (—1)”71 .
Prove that Z 5~ converges uniformly for all x, but not absolutely.
n=1 n+x
I 1 1 T 1
P that l ——-+-——+...=——+4-1n2
rove tha 4+7 10+ 3\/g—l—3n
( l)l’l 1. n—1
If x = ye’, prove that y = 27 x" for —1/e < x < 1/e.
n=1
Prove that the equation ¢ * = A — 1 has only one real root and show that it is given by
n—1 n' 1 P
A=1+ Z( D
B2x2 B3X3 .
Let 1 =14 Bjx o 3 (a) Show that the numbers B, called the Bernoulli numbers,
satlsfy the recursion formula (B+ 1)" — B' =0 where B* is formally replaced by B, after expanding.
(b) Using (a) or otherwise, determine By, ..., Bs.
Ans. (b) By=-1.B,=1,B;=0,By=—3,Bs=0,B, = 3.
x x x .
(a) Prove that 1% (cothz — 1). (b) Use Problem 11.127 and part (a) to show that By, =0 if
o —
k=1,2,3,....
Derive the series expansions:
1 x x By, (2x)*"
thx =—4+- -4 ...p 7
(@ cothx="+43-75+ n)lx
1 x x B,,(2x)*"
b tx=————-"_ | L A T
(b) cotx=1—3-+ U=t
X3 ZY ( 1)/1 1 2(22’7 B 1)32/1(2x)2n71
3 15 (2n)!
1 7 207 - DBy !
d _ _ ce(—1 n—1 n
(@ esex=1F gtz o (D) n)!

[Hint: For (a) use Problem 11.132; for (b) replace x by ix in (a); for (¢) use tan x = cot x — 2 cot 2x; for (d) use
cscx = cotx + tan x/2.]

! 1
Prove that H(l + —3> converges.
n

n=1

. o 1 .
Use the definition to prove that H(l + ) diverges.
n
n=1

[o¢]
Prove that 1_[(1 — u,), where 0 < u, < 1, converges if and only if Xu, converges.

n=1

1

(a) Prove that H( — n_) converges to 3. (b) Evaluate the infinite product in (a) to 2 decimal places and
n=2

compare with the true value.

Prove that the series 1 +0—14+14+0—-14+14+0—1+4---1is the C — 1 summable to zero.



CHAP. 11] INFINITE SERIES 305

11.139. Prove that the Césaro method of summability is regular. [Hint: See Page 278.]

1

11.140. Prove that the series 1 4+ 2x 4+ 3x% +4x> +--- + nx""! 4+ ... converges to 1/(1 — x)* for |x| < 1.

11.141. A series Zan is called Abel summable to S if S = lim Zanx” exists. Prove that

x—1—

n=0 n=0

o0
(a) Z(—l)"(n + 1) is Abel summable to 1/4 and
n=0

is Abel summable to 1/8.

®) i (=D)'(n +21)(n +2)
n=0

1

o0 o0
11.142. Prove that the double series E E m,
m* +n

. m=1 n=1
p > 1orp < 1, respectively.

where p is a constant, converges or diverges according as

o0 g 1 1 2t 3! (—1)""(n— ! N
11.143. (a) Prove that JY ” du:;—;-p?_x_“_’_...f_,_(_]) n!L i du.
o0 ¥ TH 1 1 2t 3!
(b) Use (a) to prove that L ¢ ” du ~ TTete A



