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Infinite Series

The early developers of the calculus, including Newton and Leibniz, were well aware of the

importance of infinite series. The values of many functions such as sine and cosine were geometrically

obtainable only in special cases. Infinite series provided a way of developing extensive tables of values

for them.

This chapter begins with a statement of what is meant by infinite series, then the question of when

these sums can be assigned values is addressed. Much information can be obtained by exploring infinite

sums of constant terms; however, the eventual objective in analysis is to introduce series that depend on

variables. This presents the possibility of representing functions by series. Afterward, the question of

how continuity, differentiability, and integrability play a role can be examined.

The question of dividing a line segment into infinitesimal parts has stimulated the imaginations of

philosophers for a very long time. In a corruption of a paradox introduce by Zeno of Elea (in the fifth

century B.C.) a dimensionless frog sits on the end of a one-dimensional log of unit length. The frog

jumps halfway, and then halfway and halfway ad infinitum. The question is whether the frog ever

reaches the other end. Mathematically, an unending sum,

1

2
þ 1

4
þ � � �þ 1

2n
þ � � �

is suggested. ‘‘Common sense’’ tells us that the sum must approach one even though that value is never

attained. We can form sequences of partial sums

S1 ¼
1

2
;S2 ¼

1

2
þ 1

4
; . . . ;Sn ¼

1

2
þ 1

4
þ � � �þ 1

2n
þ � � �

and then examine the limit. This returns us to Chapter 2 and the modern manner of thinking about the

infinitesimal.

In this chapter consideration of such sums launches us on the road to the theory of infinite series.

DEFINITIONS OF INFINITE SERIES AND THEIR CONVERGENCE AND DIVERGENCE

Definition: The sum

S ¼
X

1

n¼1

un ¼ u1 þ u2 þ � � �þ un þ � � � ð1Þ
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is an infinite series. Its value, if one exists, is the limit of the sequence of partial sums fSng
S ¼ lim

n!1
Sn ð2Þ

If there is a unique value, the series is said to converge to that sum, S. If there is not a unique sum
the series is said to diverge.

Sometimes the character of a series is obvious. For example, the series
X

1

n¼1

1

2n
generated by the

frog on the log surely converges, while
X

1

n¼1

n is divergent. On the other hand, the variable series

1� xþ x2 � x3 þ x4 � x5 þ � � �
raises questions.

This series may be obtained by carrying out the division
1

1� x
. If �1 < x < 1, the sums Sn yields an

approximations to
1

1� x
and (2) is the exact value. The indecision arises for x ¼ �1. Some very great

mathematicians, including Leonard Euler, thought that S should be equal to 1
2, as is obtained by

substituting �1 into
1

1� x
. The problem with this conclusion arises with examination of

1� 1þ 1� 1þ 1� 1þ � � � and observation that appropriate associations can produce values of 1 or
0. Imposition of the condition of uniqueness for convergence put this series in the category of divergent
and eliminated such possibility of ambiguity in other cases.

FUNDAMENTAL FACTS CONCERNING INFINITE SERIES

1. If �un converges, then lim
n!1

un ¼ 0 (see Problem 2.26, Chap. 2). The converse, however, is not

necessarily true, i.e., if lim
n!1

un ¼ 0, �un may or may not converge. It follows that if the nth

term of a series does not approach zero the series is divergent.

2. Multiplication of each term of a series by a constant different from zero does not affect the
convergence or divergence.

3. Removal (or addition) of a finite number of terms from (or to) a series does not affect the
convergence or divergence.

SPECIAL SERIES

1. Geometric series
X

1

n¼1

arn�1 ¼ aþ arþ ar2 þ � � � , where a and r are constants, converges to

S ¼ a

1� r
if jrj < 1 and diverges if jrj A 1. The sum of the first n terms is Sn ¼

að1� rnÞ
1� r

(see Problem 2.25, Chap. 2).

2. The p series
X

1

n¼1

1

n p ¼
1

1p
þ 1

2p
þ 1

3p
þ � � � ; where p is a constant, converges for p > 1 and diverges

for p @ 1. The series with p ¼ 1 is called the harmonic series.

TESTS FOR CONVERGENCE AND DIVERGENCE OF SERIES OF CONSTANTS

More often than not, exact values of infinite series cannot be obtained. Thus, the search turns
toward information about the series. In particular, its convergence or divergence comes in question.
The following tests aid in discovering this information.
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1. Comparison test for series of non-negative terms.

(a) Convergence. Let vn A 0 for all n > N and suppose that �vn converges. Then if
0 @ un @ vn for all n > N, �un also converges. Note that n > N means from some
term onward. Often, N ¼ 1.

EXAMPLE: Since
1

2n þ 1
@

1

2n
and

X 1

2n
converges,

X 1

2n þ 1
also converges.

(b) Divergence. Let vn A 0 for all n > N and suppose that �vn diverges. Then if un A vn for
all n > N, �un also diverges.

EXAMPLE: Since
1

ln n
>

1

n
and

X

1

n¼2

1

n
diverges,

X

1

n¼2

1

ln n
also diverges.

2. The Limit-Comparison or Quotient Test for series of non-negative terms.

(a) If un A 0 and vn A 0 and if lim
n!1

un
vn

¼ A 6¼ 0 or 1, then �un and �vn either both converge
or both diverge.

(b) If A ¼ 0 in (a) and �vn converges, then �un converges.

(c) If A ¼ 1 in (a) and �vn diverges, then �un diverges.

This test is related to the comparison test and is often a very useful alternative to it. In
particlar, taking vn ¼ 1=np, we have from known facts about the p series the

Theorem 1. Let lim
n!1

np un ¼ A. Then

(i) �un converges if p > 1 and A is finite.

(ii) �un diverges if p @ 1 and A 6¼ 0 (A may be infinite).

EXAMPLES: 1:
X n

4n3 � 2
converges since lim

n!1
n2 � n

4n3 � 2
¼ 1

4
:

2:
X ln n

ffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p diverges since lim

n!1
n1=2 � ln n

ðnþ 1Þ1=2
¼ 1:

3. Integral test for series of non-negative terms.
If f ðxÞ is positive, continuous, and monotonic decreasing for x A N and is such that

f ðnÞ ¼ un; n ¼ N;N þ 1;N þ 2; . . . , then �un converges or diverges according as
ð1

N

f ðxÞ dx ¼ lim
M!1

ðM

n

f ðxÞ dx converges or diverges. In particular we may have N ¼ 1, as

is often true in practice.
This theorem borrows from the next chapter since the integral has an unbounded upper

limit. (It is an improper integral. The convergence or divergence of these integrals is defined in
much the same way as for infinite series.)

EXAMPLE:
X

1

n¼1

1

n2
converges since lim

M!1

ðM

1

dx

x2
¼ lim

M!1
1� 1

M

� �

exists.

4. Alternating series test. An alternating series is one whose successive terms are alternately
positive and negative.

An alternating series converges if the following two conditions are satisfied (see Problem
11.15).

(a) junþ1j @ junj for n A N (Since a fixed number of terms does not affect the conver-
gence or divergence of a series, N may be any positive integer. Frequently it is chosen to
be 1.)

(b) lim
n!1

un ¼ 0 or lim
n!1

junj ¼ 0
� �
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EXAMPLE. For the series 1� 1
2 þ 1

3 � 1
4 þ 1

5 � � � � ¼
X

1

n¼1

ð�1Þn�1

n
, we have un ¼

ð�1Þn�1

n
, junj ¼

1

n
,

junþ1j ¼
1

nþ 1
. Then for n A 1, junþ1j @ junj. Also lim

n!1
junj ¼ 0. Hence, the series converges.

Theorem 2. The numerical error made in stopping at any particular term of a convergent alternating
series which satisfies conditions (a) and (b) is less than the absolute value of the next term.

EXAMPLE. If we stop at the 4th term of the series 1� 1
2 þ 1

3 � 1
4 þ 1

5 � � � � , the error made is less than
1
5 ¼ 0:2.

5. Absolute and conditional convergence. The series �un is called absolutely convergent if �junj
converges. If �un converges but �junj diverges, then �un is called conditionally convergent.

Theorem 3. If �junj converges, then �un converges. In words, an absolutely convergent series is
convergent (see Problem 11.17).

EXAMPLE 1.
1

12
þ 1

22
� 1

32
� 1

42
þ 1

52
þ 1

62
� � � � is absolutely convergent and thus convergent, since the

series of absolute values
1

12
þ 1

22
þ 1

32
þ 1

42
þ � � � converges.

EXAMPLE 2. 1� 1

2
þ 1

3
� 1

4
þ � � � converges, but 1þ 1

2
þ 1

3
þ 1

4
þ � � � diverges. Thus, 1� 1

2
þ 1

3
� 1

4
þ � � �

is conditionally convergent.

Any of the tests used for series with non-negative terms can be used to test for absolute
convergence. Also, tests that compare successive terms are common. Tests 6, 8, and 9 are of
this type.

6. Ratio test. Let lim
n!1

unþ1

un

























¼ L. Then the series �un

(a) converges (absolutely) if L < 1

(b) diverges if L > 1.

If L ¼ 1 the test fails.

7. The nth root test. Let lim
n!1

ffiffiffiffiffiffiffiffi

junjn
p

¼ L. Then the series �un

(a) converges (absolutely) if L < 1

(b) diverges if L > 1:

If L ¼ 1 the test fails.

8. Raabe’s test. Let lim
n!1n

1� un þ 1

un

























� �

¼ L. Then the series �un

(a) converges (absolutely) if L > 1

(b) diverges or converges conditionally if L < 1.

If L ¼ 1 the test fails.
This test is often used when the ratio tests fails.

9. Gauss’ test. If
unþ1

un

























¼ 1� L

n
þ cn
n2
, where jcnj < P for all n > N, then the series �un

(a) converges (absolutely) if L > 1

(b) diverges or converges conditionally if L @ 1.

This test is often used when Raabe’s test fails.
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THEOREMS ON ABSOLUTELY CONVERGENT SERIES

Theorem 4. (Rearrangement of Terms) The terms of an absolutely convergent series can be rearranged
in any order, and all such rearranged series will converge to the same sum. However, if the terms of a
conditionally convergent series are suitably rearranged, the resulting series may diverge or converge to
any desired sum (see Problem 11.80).

Theorem 5. (Sums, Differences, and Products) The sum, difference, and product of two absolutely
convergent series is absolutely convergent. The operations can be performed as for finite series.

INFINITE SEQUENCES AND SERIES OF FUNCTIONS, UNIFORM CONVERGENCE

We opened this chapter with the thought that functions could be expressed in series form. Such
representation is illustrated by

sin x ¼ x� x3

3!
þ x5

5!
�þ � � �þ ð�1Þn�1 x2n�1

ð2n� 1Þ!þ � � �

where

sin x ¼ lim
n!1

Sn; with S1 ¼ x;S2 ¼ x� x3

3!
; . . .Sn ¼

X

n

k¼1

ð�1Þk�1 x2k�1

ð2k� 1Þ! :

Observe that until this section the sequences and series depended on one element, n. Now there is
variation with respect to x as well. This complexity requires the introduction of a new concept called
uniform convergence, which, in turn, is fundamental in exploring the continuity, differentiation, and
integrability of series.

Let funðxÞg; n ¼ 1; 2; 3; . . . be a sequence of functions defined in ½a; b�. The sequence is said to
converge to FðxÞ, or to have the limit FðxÞ in ½a; b�, if for each � > 0 and each x in ½a; b� we can find
N > 0 such that junðxÞ� FðxÞj < � for all n > N. In such case we write lim

n!1
unðxÞ ¼ FðxÞ. The number

N may depend on x as well as �. If it depends only on � and not on x, the sequence is said to converge to
FðxÞ uniformly in ½a; b� or to be uniformly convergent in ½a; b�.

The infinite series of functions

X

1

n¼1

unðxÞ ¼ u1ðxÞ þ u2ðxÞ þ u3ðxÞ þ � � � ð3Þ

is said to be convergent in ½a; b� if the sequence of partial sums fSnðxÞg, n ¼ 1; 2; 3; . . . ; where
SnðxÞ ¼ u1ðxÞ þ u2ðxÞ þ � � �þ unðxÞ, is convergent in ½a; b�. In such case we write lim

n!1
SnðxÞ ¼ SðxÞ

and call SðxÞ the sum of the series.
It follows that �unðxÞ converges to SðxÞ in ½a; b� if for each � > 0 and each x in ½a; b� we can find

N > 0 such that jSnðxÞ� SðxÞj < � for all n > N. If N depends only on � and not on x, the series is called
uniformly convergent in ½a; b�.

Since SðxÞ� SnðxÞ ¼ RnðxÞ, the remainder after n terms, we can equivalently say that �unðxÞ is
uniformly convergent in ½a; b� if for each � > 0 we can find N depending on � but not on x such that
jRnðxÞj < � for all n > N and all x in ½a; b�.

These definitions can be modified to include other intervals besides a @ x @ b, such as a < x < b,
and so on.

The domain of convergence (absolute or uniform) of a series is the set of values of x for which the
series of functions converges (absolutely or uniformly).

EXAMPLE 1. Suppose un ¼ xn=n and� 1
2 @ x @ 1. Now think of the constant function FðxÞ ¼ 0 on this interval.

For any � > 0 and any x in the interval, there is N such that for all n > Njun � FðxÞj < �, i.e., jxn=nj < �. Since the
limit does not depend on x, the sequence is uniformly convergent.
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EXAMPLE 2. If un ¼ xn and 0 @ x @ 1, the sequence is not uniformly convergent because (think of the function

FðxÞ ¼ 0, 0 @ x < 1, Fð1Þ ¼ 1Þ
jxn � 0j < � when xn < �;

thus

n ln x < ln �:

On the interval 0 @ x < 1, and for 0 < � < 1, both members

of the inequality are negative, therefore, n >
ln �

ln x
: Since

ln �

ln x
¼ ln 1� ln �

ln 1� nn x
¼ lnð=�Þ

lnð1=xÞ, it follows that we must choose N

such that

n > N >
ln 1=�

ln 1=x

From this expression we see that � ! 0 then ln
1

�
! 1 and

also as x ! 1 from the left ln
1

x
! 0 from the right; thus, in either

case, N must increase without bound. This dependency on both
� and x demonstrations that the sequence is not uniformly
convergent. For a pictorial view of this example, see Fig. 11-1.

SPECIAL TESTS FOR UNIFORM CONVERGENCE OF SERIES

1. Weierstrass M test. If sequence of positive constants M1;M2;M3; . . . can be found such that
in some interval

(a) junðxÞj @ Mn n ¼ 1; 2; 3; . . .

(b) �Mn converges

then �unðxÞ is uniformly and absolutely convergent in the interval.

EXAMPLE.
X

1

n¼1

cos nx

n2
is uniformly and absolutely convergent in ½0; 2�� since cos nx

n2

























@
1

n2
and

X 1

n2

converges.

This test supplies a sufficient but not a necessary condition for uniform convergence, i.e., a
series may be uniformly convergent even when the test cannot be made to apply.

One may be led because of this test to believe that uniformly convergent series must be
absolutely convergent, and conversely. However, the two properties are independent, i.e., a
series can be uniformly convergent without being absolutely convergent, and conversely. See
Problems 11.30, 11.127.

2. Dirichlet’s test. Suppose that

(a) the sequence fang is a monotonic decreasing sequence of positive constants having limit
zero,

(b) there exists a constant P such that for a @ x @ b

ju1ðxÞ þ u2ðxÞ þ � � �þ unðxÞj < P for all n > N:

Then the series

a1u1ðxÞ þ a2u2ðxÞ þ � � � ¼
X

1

n¼1

anunðxÞ

is uniformly convergent in a @ x @ b.
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THEOREMS ON UNIFORMLY CONVERGENT SERIES

If an infinite series of functions is uniformly convergent, it has many of the properties possessed by
sums of finite series of functions, as indicated in the following theorems.

Theorem 6. If funðxÞg; n ¼ 1; 2; 3; . . . are continuous in ½a; b� and if �unðxÞ converges uniformly to the
sum SðxÞ in ½a; b�, then SðxÞ is continuous in ½a; b�.

Briefly, this states that a uniformly convergent series of continuous functions is a continuous
function. This result is often used to demonstrate that a given series is not uniformly convergent by
showing that the sum function SðxÞ is discontinuous at some point (see Problem 11.30).

In particular if x0 is in ½a; b�, then the theorem states that

lim
x!x0

X

1

n¼1

unðxÞ ¼
X

1

n¼1

lim
x!x0

unðxÞ ¼
X

1

n¼1

unðx0Þ

where we use right- or left-hand limits in case x0 is an endpoint of ½a; b�.

Theorem 7. If funðxÞg; n ¼ 1; 2; 3; . . . ; are continuous in ½a; b� and if �unðxÞ converges uniformly to the
sum SðxÞ in ½a; b�, then

ðb

a

SðxÞ dx ¼
X

1

n¼1

ðb

a

unðxÞ dx ð4Þ

or

ðb

a

X

1

n¼1

unðxÞ
( )

dx ¼
X

1

n¼1

ðb

a

unðxÞ dx ð5Þ

Briefly, a uniformly convergent series of continuous functions can be integrated term by term.

Theorem 8. If funðxÞg; n ¼ 1; 2; 3; . . . ; are continuous and have continuous derivatives in ½a; b� and if
�unðxÞ converges to SðxÞ while �u 0

nðxÞ is uniformly convergent in ½a; b�, then in ½a; b�

S 0ðxÞ ¼
X

1

n¼1

u 0
nðxÞ ð6Þ

or

d

dx

X

1

n¼1

unðxÞ
( )

¼
X

1

n¼1

d

dx
unðxÞ ð7Þ

This shows conditions under which a series can be differentiated term by term.

Theorems similar to the above can be formulated for sequences. For example, if funðxÞg,
n ¼ 1; 2; 3; . . . is uniformly convergent in ½a; b�, then

lim
n!1

ðb

a

unðxÞ dx ¼
ðb

a

lim
n!1

unðxÞ dx ð8Þ

which is the analog of Theorem 7.
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POWER SERIES

A series having the form

a0 þ a1xþ a2x
2 þ � � � ¼

X

1

n¼0

anx
n ð9Þ

where a0; a1; a2; . . . are constants, is called a power series in x. It is often convenient to abbreviate the
series (9) as �anx

n.
In general a power series converges for jxj < R and diverges for jxj > R, where the constant R is

called the radius of convergence of the series. For jxj ¼ R, the series may or may not converge.
The interval jxj < R or �R < x < R, with possible inclusion of endpoints, is called the interval of

convergence of the series. Although the ratio test is often successful in obtaining this interval, it may fail
and in such cases, other tests may be used (see Problem 11.22).

The two special cases R ¼ 0 and R ¼ 1 can arise. In the first case the series converges only for
x ¼ 0; in the second case it converges for all x, sometimes written �1 < x < 1 (see Problem 11.25).
When we speak of a convergent power series, we shall assume, unless otherwise indicated, that R > 0.

Similar remarks hold for a power series of the form (9), where x is replaced by ðx� aÞ.

THEOREMS ON POWER SERIES

Theorem 9. A power series converges uniformly and absolutely in any interval which lies entirely within
its interval of convergence.

Theorem 10. A power series can be differentiated or integrated term by term over any interval lying
entirely within the interval of convergence. Also, the sum of a convergent power series is continuous in
any interval lying entirely within its interval of convergence.

This follows at once from Theorem 9 and the theorems on uniformly convergent series on Pages 270
and 271. The results can be extended to include end points of the interval of convergence by the
following theorems.

Theorem 11. Abel’s theorem. When a power series converges up to and including an endpoint of its
interval of convergence, the interval of uniform convergence also extends so far as to include this
endpoint. See Problem 11.42.

Theorem 12. Abel’s limit theorem. If
X

1

n¼0

anx
n converges at x ¼ x0, which may be an interior point or an

endpoint of the interval of convergence, then

lim
x!x0

X

1

n¼0

anx
n

( )

¼
X

1

n¼0

lim
x!x0

anx
n

� �

¼
X

1

n¼0

anx
n
0 ð10Þ

If x0 is an end point, we must use x ! x0þ or x ! x0� in (10) according as x0 is a left- or right-hand
end point.

This follows at once from Theorem 11 and Theorem 6 on the continuity of sums of uniformly
convergent series.

OPERATIONS WITH POWER SERIES

In the following theorems we assume that all power series are convergent in some interval.

Theorem 13. Two power series can be added or subtracted term by term for each value of x common to
their intervals of convergence.

272 INFINITE SERIES [CHAP. 11



Theorem 14. Two power series, for example,
X

1

n¼0

anx
n and

X

1

n¼0

bnx
n, can be multiplied to obtain

X

1

n¼0

cnx
n

where

cn ¼ a0bn þ a1bn�1 þ a2bn�2 þ � � �þ anb0 ð11Þ
the result being valid for each x within the common interval of convergence.

Theorem 15. If the power series
X

1

n¼0

anx
n is divided by the power series �bnx

n where b0 6¼ 0, the quotient

can be written as a power series which converges for sufficiently small values of x.

Theorem 16. If y ¼
X

1

n¼0

anx
n, then by substituting x ¼

X

1

n¼0

bny
n, we can obtain the coefficients bn in

terms of an. This process is often called reversion of series.

EXPANSION OF FUNCTIONS IN POWER SERIES

This section gets at the heart of the use of infinite series in analysis. Functions are represented
through them. Certain forms bear the names of mathematicians of the eighteenth and early nineteenth
century who did so much to develop these ideas.

A simple way (and one often used to gain information in mathematics) to explore series representa-
tion of functions is to assume such a representation exists and then discover the details. Of course,
whatever is found must be confirmed in a rigorous manner. Therefore, assume

f ðxÞ ¼ A0 þ A1ðx� cÞ þ A2ðx� cÞ2 þ � � �þ Anðx� cÞn þ � � �
Notice that the coefficients An can be identified with derivatives of f . In particular

A0 ¼ f ðcÞ;A1 ¼ f 0ðcÞ;A2 ¼
1

2!
f 00ðcÞ; . . . ;An ¼

1

n!
f ðnÞðcÞ; . . .

This suggests that a series representation of f is

f ðxÞ ¼ f ðcÞ þ f 0ðcÞðx� cÞ þ 1

2!
f 00ðcÞðx� cÞ2 þ � � �þ 1

n!
f ðnÞðcÞðx� cÞn þ � � �

A first step in formalizing series representation of a function, f , for which the first n derivatives exist,
is accomplished by introducing Taylor polynomials of the function.

P0ðxÞ ¼ f ðcÞ P1ðxÞ ¼ f ðcÞ þ f 0ðcÞðx� cÞ;

P2ðxÞ ¼ f ðcÞ þ f 0ðcÞðx� cÞ þ 1

2!
f 00ðcÞðx� cÞ2;

PnðxÞ ¼ f ðcÞ þ f 0ðcÞðx� cÞ þ � � �þ 1

n!
f ðnÞðcÞðx� cÞn ð12Þ

TAYLOR’S THEOREM

Let f and its derivatives f 0; f 00; . . . ; f ðnÞ exist and be continuous in a closed interval a � x � b and
suppose that f ðnþ1Þ exists in the open interval a < x < b. Then for c in ½a; b�,

f ðxÞ ¼ PnðxÞ þ RnðxÞ;
where the remainder RnðxÞ may be represented in any of the three following ways.

For each n there exists � such that
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RnðxÞ ¼
1

ðnþ 1Þ! f
ðnþ1Þð�Þðx� cÞnþ1 (Lagrange form) ð13Þ

(� is between c and x.)
(The theorem with this remainder is a mean value theorem. Also, it is called Taylor’s formula.)
For each n there exists � such that

RnðxÞ ¼
1

n!
f ðnþ1Þð�Þðx� �Þnðx� cÞ (Cauchy form) ð14Þ

RnðxÞ ¼
1

n!

ðx

c

ðx� tÞn f ðnþ1ÞðtÞ dt (Integral form) ð15Þ

If all the derivatives of f exist, then

f ðxÞ ¼
X

1

n¼0

1

n!
f ðnÞðcÞðx� cÞn ð16Þ

This infinite series is called a Taylor series, although when c ¼ 0, it can also be referred to as a
MacLaurin series or expansion.

One might be tempted to believe that if all derivatives of f ðxÞ exist at x ¼ c, the expansion (16) would
be valid. This, however, is not necessarily the case, for although one can then formally obtain the series
on the right of (16), the resulting series may not converge to f ðxÞ. For an example of this see Problem
11.108.

Precise conditions under which the series converges to f ðxÞ are best obtained by means of the theory
of functions of a complex variable. See Chapter 16.

The determination of values of functions at desired arguments is conveniently approached through
Taylor polynomials.

EXAMPLE. The value of sin x may be determined geometrically for 0;
�

6
, and an infinite number of other

arguments. To obtain values for other real number arguments, a Taylor series may be expanded about any of
these points. For example, let c ¼ 0 and evaluate several derivatives there, i.e., f ð0Þ ¼ sin 0 ¼ 0; f 0ð0Þ ¼ cos 0 ¼ 1,

f 00ð0Þ ¼ � sin 0 ¼ 0; f 000ð0Þ ¼ � cos 0 ¼ �1; f 1vð0Þ ¼ sin 0 ¼ 0; f vð0Þ ¼ cos 0 ¼ 1.

Thus, the MacLaurin expansion to five terms is

sin x ¼ 0þ x� 0� 1

3!
x3 þ 0� 1

51
x5 þ � � �

Since the fourth term is 0 the Taylor polynomials P3 and P4 are equal, i.e.,

P3ðxÞ ¼ P4ðxÞ ¼ x� x3

3!

and the Lagrange remainder is

R4ðxÞ ¼
1

5!
cos � x5

Suppose an approximation of the value of sin :3 is required. Then

P4ð:3Þ ¼ :3� 1

6
ð:3Þ3 � :2945:

The accuracy of this approximation can be determined from examination of the remainder. In
particular, (remember j cos �j � 1)

jR4j ¼
1

5!
cos �ð:3Þ5

























� 1

120

243

105
< :000021

274 INFINITE SERIES [CHAP. 11



Thus, the approximation P4ð:3Þ for sin :3 is correct to four decimal
places.

Additional insight to the process of approximation of functional
values results by constructing a graph of P4ðxÞ and comparing it to
y ¼ sin x. (See Fig. 11-2.)

P4ðxÞ ¼ x� x3

6

The roots of the equation are 0;�
ffiffiffi

6
p

. Examination of the first and
second derivatives reveals a relative maximum at x ¼

ffiffiffi

2
p

and a relative
minimum at x ¼ �

ffiffiffi

2
p

. The graph is a local approximation of the sin
curve. The reader can show that P6ðxÞ produces an even better approximation.

(For an example of series approximation of an integral see the example below.)

SOME IMPORTANT POWER SERIES

The following series, convergent to the given function in the indicated intervals, are frequently
employed in practice:

1. sin x ¼ x� x3

3!
þ x5

5!
� x7

7!
þ � � � ð�1Þn�1 x2n�1

ð2n� 1Þ!þ � � � �1 < x < 1

2. cos x ¼ 1� x2

2!
þ x4

4!
� x6

6!
þ � � � ð�1Þn�1 x2n�2

ð2n� 2Þ!þ � � � �1 < x < 1

3. ex ¼ 1þ xþ x2

2!
þ x3

3!
þ � � �þ xn�1

ðn� 1Þ!þ � � � �1 < x < 1

4. ln j1þ xj ¼ x� x2

2
þ x3

3
� x4

4
þ � � � ð�1Þn�1 x

n

n
þ � � � � 1 < x @ 1

5. 1
2 ln

1þ x

1� x

























¼ xþ x3

3
þ x5

5
þ x7

7
þ � � �þ x2n�1

2n� 1
þ � � � � 1 < x < 1

6. tan�1 x ¼ x� x3

3
þ x5

5
� x7

7
þ � � � ð�1Þn�1 x2n�1

2n� 1
þ � � � � 1 @ x @ 1

7. ð1þ xÞp ¼ 1þ pxþ pð p� 1Þ
2!

x2 þ � � �þ pð p� 1Þ . . . ð p� nþ 1Þ
n!

xn þ � � �

This is the binomial series.

(a) If p is a positive integer or zero, the series terminates.

(b) If p > 0 but is not an integer, the series converges (absolutely) for �1 @ x @ 1:

ðcÞ If �1 < p < 0, the series converges for �1 < x @ 1:

(d) If p @ � 1, the series converges for �1 < x < 1.

For all p the series certainly converges if �1 < x < 1.

EXAMPLE. Taylor’s Theorem applied to the series for ex enables us to estimate the value of the integral

ð1

0

ex
2

dx.

Substituting x2 for x, we obtain
Ð 1

0 ex
2

dx ¼
Ð 1

0 1þ xþ x4

2!
þ x6

3!
þ x8

4!
þ e�

5!
x10

 !

dx

where

P4ðxÞ ¼ 1þ xþ 1

2!
x4 þ 1

3!
x6 þ 1

4!
x8

and

R4ðxÞ ¼
e�

5!
x10; 0 < � < x
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Then

ð1

0

P4ðxÞ dx ¼ 1þ 1

3
þ 1

5ð2!Þ þ
1

7ð3!Þ þ
1

9ð4!Þ � 1:4618

ð1

0

R4ðxÞ dx
























�
ð1

0

e�

5!
x10































dx � e

ð1

0

x10

5!
dx ¼ e

11:5
< :0021

Thus, the maximum error is less than .0021 and the value of the integral is accurate to two decimal places.

SPECIAL TOPICS

1. Functions defined by series are often useful in applications and frequently arise as solutions of
differential equations. For example, the function defined by

JpðxÞ ¼
xp

2pp!
1� x2

2ð2pþ 2Þ þ
x4

2 � 4ð2pþ 2Þð2pþ 4Þ� � � �
( )

¼
X

1

n¼0

ð�1Þnðx=2Þpþ2n

n!ðnþ pÞ! ð16Þ

is a solution of Bessel’s differential equation x2y 00 þ xy 0 þ ðx2 � p2Þy ¼ 0 and is thus called a
Bessel function of order p. See Problems 11.46, 11.110 through 11.113.

Similarly, the hypergeometric function

Fða; b; c; xÞ ¼ 1þ a � B
1 � c xþ aðaþ 1Þbðbþ 1Þ

1 � 2 � cðcþ 1Þ x2 þ � � � ð17Þ

is a solution of Gauss’ differential equation xð1� xÞy 00 þ fc� ðaþ bþ 1Þxgy 0 � aby ¼ 0.
These functions have many important properties.

2. Infinite series of complex terms, in particular power series of the form
X

1

n¼0

anz
n, where z ¼ xþ iy

and an may be complex, can be handled in a manner similar to real series.
Such power series converge for jzj < R, i.e., interior to a circle of convergence x2 þ y2 ¼ R2,

where R is the radius of convergence (if the series converges only for z ¼ 0, we say that the radius
of convergence R is zero; if it converges for all z, we say that the radius of convergence is
infinite). On the boundary of this circle, i.e., jzj ¼ R, the series may or may not converge,
depending on the particular z.

Note that for y ¼ 0 the circle of convergence reduces to the interval of convergence for real
power series. Greater insight into the behavior of power series is obtained by use of the theory
of functions of a complex variable (see Chapter 16).

3. Infinite series of functions of two (or more) variables, such as
X

1

n¼1

unðx; yÞ can be treated in a

manner analogous to series in one variable. In particular, we can discuss power series in x and y
having the form

a00 þ ða10xþ a01yÞ þ ða20x2 þ a11xyþ a02y
2Þ þ � � � ð18Þ

using double subscripts for the constants. As for one variable, we can expand suitable functions
of x and y in such power series. In particular, the Taylor theroem may be extended as follows.

TAYLOR’S THEOREM (FOR TWO VARIABLES)

Let f be a function of two variables x and y. If all partial derivatives of order n are continuous in a
closed region and if all the ðnþ 1Þ partial derivatives exist in the open region, then
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f ðx0 þ h; y0 þ kÞ ¼ f ðx0; y0Þ þ h
@

@x
þ k

@

@y

� �

f ðx0; y0Þ þ
1

2!
h
@

@x
þ k

@

@y

� �2

f ðx0; y0Þ þ � � �

þ 1

n!
h
@

@x
þ k

@

@y

� �n

f ðx0; y0Þ þ Rn

ð18Þ

where

Rn ¼
1

ðnþ 1Þ! h
@

@x
þ k

@

@y

� �nþ1

f ðx0 þ �h; y0 þ �kÞ; 0 < � < 1

and where the meaning of the operator notation is as follows:

h
@

@x
þ k

@

@y

� �

f ¼ hfx þ kfy;

h
@

@x
þ k

@

@y

� �2

¼ h2fxx þ 2hkfxy þ k2fyy

and we formally expand h
@

@x
þ k

@

@y

� �n

by the binomial theorem.

Note: In alternate notation h ¼ �x ¼ x� x0, k ¼ �y ¼ y� y0.

If Rn ! 0 as n ! 1 then an unending continuation of terms produces the Taylor series for f ðx; yÞ.
Multivariable Taylor series have a similar pattern.

4. Double Series. Consider the array of numbers (or functions)

u11 u12 u13 . . .
u21 u22 u23 . . .
u31 u32 u33 . . .

..

. ..
. ..

.

0

B

B

B

@

1

C

C

C

A

Let Smn ¼
X

m

p¼1

X

n

q¼1

upq be the sum of the numbers in the first m rows and first n columns of this

array. If there exists a number S such that lim
m!1
n!1

Smn ¼ S, we say that the doubles series

X

1

p¼1

X

1

q¼1

upq converges to the sum S; otherwise, it diverges.

Definitions and theorems for double series are very similar to those for series already
considered.

5. Infinite Products. Let Pn ¼ ð1þ u1Þð1þ u2Þð1þ u3Þ . . . ð1þ unÞ denoted by
Y

n

k¼1

ð1þ ukÞ, where

we suppose that uk 6¼ �1; k ¼ 1; 2; 3; . . . . If there exists a number P 6¼ 0 such that lim
n!1

Pn ¼ P,

we say that the the infinite product ðð1þ u1Þð1þ u2Þð1þ u3Þ . . . ¼
Y

1

k¼1

ð1þ ukÞ, or briefly
�ð1þ ukÞ, converges to P; otherwise, it diverges.

If�ð1þ jukjÞ converges, we call the infinite product�ð1þ ukÞ absolutely convergent. It can
be shown that an absolutely convergent infinite product converges and that factors can in such
cases be rearranged without affecting the result.

Theorems about infinite products can (by taking logarithms) often be made to depend on
theorems for infinite series. Thus, for example, we have the following theorem.

Theorem. A necessary and sufficient condition that �ð1þ ukÞ converge absolutely is that �uk converge
absolutely.

CHAP. 11] INFINITE SERIES 277



6. Summability. Let S1;S2;S3; . . . be the partial sums of a divergent series �un. If the sequence

S1;
S1;S2

2
;
S1 þ S2 þ S3

3
; . . . (formed by taking arithmetic means of the first n terms of

S1;S2;S3; . . .) converges to S, we say that the series �un is summable in the Césaro sense, or
C-1 summable to S (see Problem 11.51).

If �un converges to S, the Césaro method also yields the result S. For this reason the
Césaro method is said to be a regular method of summability.

In case the Césaro limit does not exist, we can apply the same technique to the sequence

S1;
S1 þ S2

3
;
S1 þ S2 þ S3

3
; . . . : If the C-1 limit for this sequence exists and equals S, we say

that �uk converges to S in the C-2 sense. The process can be continued indefinitely.

Solved Problems

CONVERGENCE AND DIVERGENCE OF SERIES OF CONSTANTS

11.1. (a) Prove that
1

1 � 3þ
1

3 � 5þ
1

5 � 7þ � � � ¼
X

1

n¼1

1

ð2n� 1Þð2nþ 1Þ converges and (b) find its sum.

un ¼
1

ð2n� 1Þð2nþ 1Þ ¼
1

2

1

2n� 1
� 1

2nþ 1

� �

: Then

Sn ¼ u1 þ u2 þ � � �þ un ¼
1

2

1

1
� 1

3

� �

þ 1

2

1

3
� 1

5

� �

þ � � �þ 1

2

1

2n� 1
� 1

2nþ 1

� �

¼ 1

2

1

1
� 1

3
þ 1

3
� 1

5
þ 1

5
� � � �þ 1

2n� 1
� 1

2nþ 1

� �

¼ 1

2
1� 1

2nþ 1

� �

Since lim
n!1

Sn ¼ lim
n!1

1

2
1� 1

2nþ 1

� �

¼ 1

2
; the series converges and its sum is 1

2 :

The series is sometimes called a telescoping series, since the terms of Sn, other than the first and last,
cancel out in pairs.

11.2. (a) Prove that 2
3 þ ð23Þ

2 þ ð23Þ
3 þ � � � ¼

X

1

n¼1

ð23Þ
n converges and (b) find its sum.

This is a geometric series; therefore, the partial sums are of the form Sn ¼
að1� rnÞ
1� r

. Since jrj < 1

S ¼ lim
n!1

Sn ¼
a

1� r
and in particular with r ¼ 2

3 and a ¼ 2
3, we obtain S ¼ 2.

11.3. Prove that the series 1
2 þ 2

3 þ 3
4 þ 4

5 þ � � � ¼
X

1

n¼1

n

nþ 1
diverges.

lim
n!1

un ¼ lim
n!1

n

nþ 1
¼ 1. Hence by Problem 2.26, Chapter 2, the series is divergent.

11.4. Show that the series whose nth term is un ¼
ffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p

� ffiffiffi

n
p

diverges although lim
n!1

un ¼ 0.

The fact that lim
n!1

un ¼ 0 follows from Problem 2.14(c), Chapter 2.

Now Sn ¼ u1 þ u2 þ � � �þ un ¼ ð
ffiffiffi

2
p

�
ffiffiffi

1
p

Þ þ ð
ffiffiffi

3
p

�
ffiffiffi

2
p

Þ þ � � �þ ð
ffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p

� ffiffiffi

n
p Þ ¼

ffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p

�
ffiffiffi

1
p

.

Then Sn increases without bound and the series diverges.
This problem shows that lim

n!1
¼ 0 is a necessary but not sufficient condition for the convergence of �un.

See also Problem 11.6.
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COMPARISON TEST AND QUOTIENT TEST

11.5. If 0 @ un @ vn; n ¼ 1; 2; 3; . . . and if �vn converges, prove that �un also converges (i.e., establish
the comparison test for convergence).

Let Sn ¼ u1 þ u2 þ � � �þ un;Tn ¼ v1 þ v2 þ � � �þ vn.

Since �vn converges, lim
n!1

Tn exists and equals T , say. Also, since vn A 0;Tn @ T .

Then Sn ¼ u1 þ u2 þ � � �þ un @ v1 þ v2 þ � � �þ vn @ T or 0 @ Sn @ T :
Thus Sn is a bounded monotonic increasing sequence and must have a limit (see Chapter 2), i.e., �un

converges.

11.6. Using the comparison test prove that 1þ 1
2 þ 1

3 þ � � � ¼
X

1

n¼1

1

n
diverges.

1 A 1
2We have

1
2 þ 1

3 A
1
4 þ 1

4 ¼ 1
2

1
4 þ 1

5 þ 1
6 þ 1

7 A
1
8 þ 1

8 þ 1
8 þ 1

8 ¼ 1
2

1
8 þ 1

9 þ 1
10 þ � � �þ 1

15 A
1
16 þ 1

16 þ 1
16 þ � � �þ 1

16 (8 terms) ¼ 1
2

etc. Thus, to any desired number of terms,

1þ 1
2 þ 1

3

� 	

þ 1
4 þ 1

5 þ 1
6 þ 1

7

� 	

þ � � � A 1
2 þ 1

2 þ 1
2 þ � � �

Since the right-hand side can be made larger than any positive number by choosing enough terms, the given
series diverges.

By methods analogous to that used here, we can show that
X

1

n¼1

1

np, where p is a constant, diverges if

p @ 1 and converges if p > 1. This can also be shown in other ways [see Problem 11.13(a)].

11.7. Test for convergence or divergence
X

1

n¼1

ln n

2n3 � 1
.

Since ln n < n and
1

2n3 � 1
@

1

n3
; we have

ln n

2n3 � 1
@

n

n3
¼ 1

n2
:

Then the given series converges, since
X

1

n¼1

1

n2
converges.

11.8. Let un and vn be positive. If lim
n!1

un
vn

¼ constant A 6¼ 0, prove that �un converges or diverges

according as �vn converges or diverges.

By hypothesis, given � > 0 we can choose an integer N such that
un
vn

� A

























< � for all n > N. Then for
n ¼ N þ 1;N þ 2; . . .

�� <
un
vn

� A < � or ðA� �Þvn < un < ðAþ �Þvn ð1Þ

Summing from N þ 1 to 1 (more precisely from N þ 1 to M and then letting M ! 1),

ðA� �Þ
X

1

Nþ1

vn @
X

1

Nþ1

un @ ðAþ �Þ
X

1

Nþ1

vn ð2Þ

There is no loss in generality in assuming A� � > 0. Then from the right-hand inequality of (2), �un
converges when �vn does. From the left-hand inequality of (2), �un diverges when �vn does. For the cases
A ¼ 0 or A ¼ 1, see Problem 11.66.
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11.9. Test for convergence; (a)
X

1

n¼1

4n2 � nþ 3

n3 þ 2n
; ðbÞ

X

1

n¼1

nþ ffiffiffi

n
p

2n3 � 1
; ðcÞ

X

1

n¼1

ln n

n2 þ 3
.

(a) For large n,
4n2 � nþ 3

n3 þ 2n
is approximately

4n2

n3
¼ 4

n
. Taking un ¼

4n2 � nþ 3

n3 þ 2n
and vn ¼

4

n
, we have

lim
n!1

un
vn

¼ 1.

Since �vn ¼ 4�1=n diverges, �un also diverges by Problem 11.8.

Note that the purpose of considering the behavior of un for large n is to obtain an appropriate
comparison series vn. In the above we could just as well have taken vn ¼ 1=n.

Another method: lim
n!1

n
4n2 � nþ 3

n3 þ 2n

 !

¼ 4. Then by Theorem 1, Page 267, the series converges.

(b) For large n, un ¼
nþ ffiffiffi

n
p

2n3 � 1
is approximately vn ¼

n

2n3
¼ 1

2n2
.

Since lim
n!1

un
vn

¼ 1 and
X

vn ¼
1

2

X 1

n2
converges ( p series with p ¼ 2), the given series converges.

Another method: lim
n!1

n2
nþ ffiffiffi

n
p

2n3 � 1

� �

¼ 1

2
. Then by Theorem 1, Page 267, the series converges.

(c) lim
n!1

n3=2
ln n

n2 þ 3

� �

@ lim
n!1

n3=2
ln n

n2

� �

¼ lim
n!1

ln n
ffiffiffi

n
p ¼ 0 (by L’Hospital’s rule or otherwise). Then by

Theorem 1 with p ¼ 3=2, the series converges.

Note that the method of Problem 11.6(a) yields
ln n

n2 þ 3
<

n

n2
¼ 1

n
, but nothing can be deduced since

�1=n diverges.

11.10. Examine for convergence: (a)
X

1

n¼1

e�n2 ; ðbÞ
X

1

n¼1

sin3
1

n

� �

.

(a) lim
n!1

n2e�n2 ¼ 0 (by L’Hospital’s rule or otherwise). Then by Theorem 1 with p ¼ 2, the series con-

verges.

(b) For large n, sinð1=nÞ is approximately 1=n. This leads to consideration of

lim
n!1

n3 sin3
1

n

� �

¼ lim
n!1

sinð1=nÞ
1=n

� �3

¼ 1

from which we deduce, by Theorem 1 with p ¼ 3, that the given series converges.

INTEGRAL TEST

11.11. Establish the integral test (see Page 267).

We perform the proof taking N ¼ 1. Modifications are easily made if N > 1.

From the monotonicity of f ðxÞ, we have

unþ1 ¼ f ðnþ 1Þ @ f ðxÞ @ f ðnÞ ¼ un n ¼ 1; 2; 3; . . .

Integrating from x ¼ n to x ¼ nþ 1, using Property 7, Page 92,

unþ1 @
ðnþ1

n

f ðxÞ dx @ un n ¼ 1; 2; 3 . . .

Summing from n ¼ 1 to M � 1,

u2 þ u3 þ � � �þ uM @
ðM

1

f ðxÞ dx @ u1 þ u2 þ � � �þ uM�1 ð1Þ

If f ðxÞ is strictly decreasing, the equality signs in (1) can be omitted.
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If lim
M!1

ðM

1

f ðxÞ dx exists and is equal to S, we see from the left-hand inequality in (1) that

u2 þ u3 þ � � �þ uM is monotonic increasing and bounded above by S, so that �un converges.

If lim
M!1

ðM

1

f ðxÞ dx is unbounded, we see from the right-hand inequality in (1) that �un diverges.

Thus the proof is complete.

11.12. Illustrate geometrically the proof in Problem
11.11.

Geometrically, u2 þ u3 þ � � �þ uM is the total area
of the rectangles shown shaded in Fig. 11-3, while
u1 þ u2 þ � � �þ uM�1 is the total area of the rectangles

which are shaded and nonshaded.
The area under the curve y ¼ f ðxÞ from x ¼ 1 to

x ¼ M is intermediate in value between the two areas

given above, thus illustrating the result (1) of Problem
11.11.

11.13. Test for convergence: (a)
X

1

1

1

nP
; p ¼ constant;

ðbÞ
X

1

1

n

n2 þ 1
; ðcÞ

X

1

2

1

n ln n
; ðdÞ

X

1

1

ne�n2 .

ðaÞ Consider

ðM

1

dx

xp
¼
ðM

1

x�p dx ¼ x1�p

1� p













M

1

¼ M1�p � 1

1� p
where p 6¼ 1:

If p < 1; lim
M!1

M1�p � 1

1� p
¼ 1, so that the integral and thus the series diverges.

If p > 1; lim
M!1

M1�p � 1

1� p
¼ 1

p� 1
, so that the integral and thus the series converges.

If p ¼ 1,

ðM

1

dx

xp
¼
ðM

1

dx

x
¼ lnM and lim

M!1
lnM ¼ 1, so that the integral and thus the series

diverges.

Thus, the series converges if p > 1 and diverges if p @ 1.

ðbÞ lim
M!1

ðM

1

x dx

x2 þ 1
¼ lim

M!1
1
2 lnðx

2 þ 1ÞjM1 ¼ lim
M!1

1
2 lnðM

2 þ 1Þ� 1
2 ln 2

� �

¼ 1 and the series diverges.

ðcÞ lim
M!1

ðM

2

dx

x lnx
¼ lim

M!1
lnðln xÞjM2 ¼ lim

M!1
flnðlnMÞ� lnðln 2Þg ¼ 1 and the series diverges.

ðdÞ lim
M!1

ðM

1

xe�x2 dx ¼ lim
M!1

� 1
2 e

�x2 jM1 ¼ lim
M!1

1
2 e

�1 � 1
2 e

�M2
n o

¼ 1
2 e

�1 and the series converges.

Note that when the series converges, the value of the corresponding integral is not (in general) the

same as the sum of the series. However, the approximate sum of a series can often be obtained quite
accurately by using integrals. See Problem 11.74.

11.14. Prove that
�

4
<
X

1

n¼1

1

n2 þ 1
<

1

2
þ �

4
.
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From Problem 11.11 it follows that

lim
M!1

X

M

n¼2

1

n2 þ 1
< lim

M!1

ðM

1

dx

x2 þ 1
< lim

M!1

X

M�1

n¼1

1

n2 þ 1

i.e.,
X

1

n¼2

1

n2 þ 1
<

�

4
<
X

1

n¼1

1

n2 þ 1
, from which

�

4
<
X

1

n¼1

1

n2 þ 1
as required.

Since
X

1

n¼2

1

n2 þ 1
<

�

4
, we obtain, on adding 1

2 to each side,
X

1

n¼1

1

n2 þ 1
<

1

2
þ �

4
:

The required result is therefore proved.

ALTERNATING SERIES

11.15. Given the alternating series a1 � a2 þ a3 � a4 þ � � � where 0 @ anþ1 @ an and where lim
n!1

an ¼ 0.

Prove that (a) the series converges, (b) the error made in stopping at any term is not greater
than the absolute value of the next term.

(a) The sum of the series to 2M terms is

S2M ¼ ða1 � a2Þ þ ða3 � a4Þ þ � � �þ ða2M�1 � a2MÞ
¼ a1 � ða2 � a3Þ� ða4 � a5Þ� � � � � ða2M�2 � a2M�1Þ� a2M

Since the quantities in parentheses are non-negative, we have

S2M A 0; S2 @ S4 @ S6 @ S8 @ � � � @ S2M @ a1

Therefore, fS2Mg is a bounded monotonic increasing sequence and thus has limit S.
Also, S2Mþ1 ¼ S2M þ a2Mþ1. Since lim

M!1
S2M ¼ S and lim

M!1
a2Mþ1 ¼ 0 (for, by hypothesis,

lim
n!1

an ¼ 0), it follows that lim
M!1

S2Mþ1 ¼ lim
M!1

S2M þ lim
M!1

a2Mþ1 ¼ S þ 0 ¼ S.

Thus, the partial sums of the series approach the limit S and the series converges.

(b) The error made in stopping after 2M terms is

ða2Mþ1 � a2Mþ2Þ þ ða2Mþ3 � a2Mþ4Þ þ � � � ¼ a2Mþ1 � ða2Mþ2 � a2Mþ3Þ� � � �
and is thus non-negative and less than or equal to a2Mþ1, the first term which is omitted.

Similarly, the error made in stopping after 2M þ 1 terms is

�a2Mþ2 þ ða2Mþ3 � a2Mþ4Þ þ � � � ¼ �ða2Mþ2 � a2Mþ3Þ� ða2Mþ4 � a2Mþ5Þ� � � �
which is non-positive and greater than �a2Mþ2.

11.16. (a) Prove that the series
X

1

n¼1

ð�1Þnþ1

2n� 1
converges. (b) Find the maximum error made in approx-

imating the sum by the first 8 terms and the first 9 terms of the series. (c) How many terms of the
series are needed in order to obtain an error which does not exceed .001 in absolute value?

(a) The series is 1� 1
3 þ 1

5 � 1
7 þ 1

9 � � � � . If un ¼
ð�1Þnþ1

2n� 1
, then an ¼ junj ¼

1

2n� 1
, anþ1 ¼ junþ1j ¼

1

2nþ 1
.

Since
1

2nþ 1
@

1

2n� 1
and since lim

n!1
1

2n� 1
¼ 0, it follows by Problem 11.5(a) that the series

converges.

(b) Use the results of Problem 11.15(b). Then the first 8 terms give 1� 1
3 þ 1

5 � 1
7 þ 1

9 � 1
11 þ 1

13 � 1
15 and the

error is positive and does not exceed 1
17.

Similarly, the first 9 terms are 1� 1
3 þ 1

5 � 1
7 þ 1

9 � 1
11 þ 1

13 � 1
15 þ 1

17 and the error is negative and

greater than or equal to � 1
19, i.e., the error does not exceed 1

19 in absolute value.
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(c) The absolute value of the error made in stopping after M terms is less than 1=ð2M þ 1Þ. To obtain the

desired accuracy, we must have 1=ð2M þ 1Þ @ :001, from which M A 499:5. Thus, at least 500 terms
are needed.

ABSOLUTE AND CONDITIONAL CONVERGENCE

11.17. Prove that an absolutely convergent series is convergent.

Given that �junj converges, we must show that �un converges.
Let SM ¼ u1 þ u2 þ � � �þ uM and TM ¼ ju1j þ ju2j þ � � �þ juM j. Then

SM þ TM ¼ ðu1 þ ju1jÞ þ ðu2 þ ju2jÞ þ � � �þ ðuM þ juM jÞ
@ 2ju1j þ 2ju2j þ � � �þ 2juM j

Since �junj converges and since un þ junj A 0, for n ¼ 1; 2; 3; . . . ; it follows that SM þ TM is a bounded

monotonic increasing sequence, and so lim
M!1

ðSM þ TMÞ exists.
Also, since lim

M!1
TM exists (since the series is absolutely convergent by hypothesis),

lim
M!1

SM ¼ lim
M!1

ðSM þ TM � TMÞ ¼ lim
M!1

ðSM þ TMÞ� lim
M!1

TM

must also exist and the result is proved.

11.18. Investigate the convergence of the series
sin

ffiffiffi

1
p

13=2
� sin

ffiffiffi

2
p

23=2
þ sin

ffiffiffi

3
p

33=2
� � � � .

Since each term is in absolute value less than or equal to the corresponding term of the series
1

13=2
þ 1

23=2
þ 1

33=2
þ � � � , which converges, it follows that the given series is absolutely convergent and

hence convergent by Problem 11.17.

11.19. Examine for convergence and absolute convergence:

ðaÞ
X

1

n¼1

ð�1Þn�1n

n2 þ 1
; ðbÞ

X

1

n¼2

ð�1Þn�1

n ln2 n
; ðcÞ

X

1

n¼1

ð�1Þn�12n

n2
:

(a) The series of absolute values is
X

1

n¼1

n

n2 þ 1
which is divergent by Problem 11.13(b). Hence, the given

series is not absolutely convergent.

However, if an ¼ junj ¼
n

n2 þ 1
and anþ1 ¼ junþ1j ¼

nþ 1

ðnþ 1Þ2 þ 1
, then anþ1 @ an for all n A 1, and

also lim
n!1

an ¼ lim
n!1

n

n2 þ 1
¼ 0. Hence, by Problem 11.15 the series converges.

Since the series converges but is not absolutely convergent, it is conditionally convergent.

(b) The series of absolute values is
X

1

n¼2

1

n ln2 n
.

By the integral test, this series converges or diverges according as lim
M!1

ðM

2

dx

x ln2 x
exists or does not

exist.

If u ¼ ln x;

ð

dx

x ln2 x
¼
ð

du

u2
¼ � 1

u
þ c ¼ � 1

lnx
þ c:

Hence, lim
M!1

ðM

2

dx

x ln2 x
¼ lim

M!1
1

ln 2
� 1

lnM

� �

¼ 1

ln 2
and the integral exists. Thus, the series

converges.

Then
X

1

n¼2

ð�1Þn�1

n ln2 n
converges absolutely and thus converges.
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Another method:

Since
1

ðnþ 1Þ ln2ðnþ 1Þ
@

1

n ln2 n
and lim

n!1
1

n ln2 n
¼ 0, it follows by Problem 11.15(a), that the

given alternating series converges. To examine its absolute convergence, we must proceed as above.

(c) Since lim
n!1

un 6¼ 0 where un ¼
ð�1Þn�12n

n2
, the given series cannot be convergent. To show that

lim
n!1

un 6¼ 0, it suffices to show that lim
n!1

junj ¼ lim
n!1

2n

n2
6¼ 0. This can be accomplished by L’Hospital’s

rule or other methods [see Problem 11.21(b)].

RATIO TEST

11.20. Establish the ratio test for convergence.

Consider first the series u1 þ u2 þ u3 þ � � � where each term is non-negative. We must prove that if

lim
n!1

unþ1

un
¼ L < 1, then necessarily �un converges.

By hypothesis, we can choose an integer N so large that for all n A N, ðunþ1=unÞ < r where L < r < 1.

Then

uNþ1 < r uN

uNþ2 < r uNþ1 < r2 uN

uNþ3 < r uNþ2 < r3 uN

etc. By addition,

uNþ1 þ uNþ2 þ � � � < uNðrþ r2 þ r3 þ � � �Þ

and so the given series converges by the comparison test, since 0 < r < 1.

In case the series has terms with mixed signs, we consider ju1j þ ju2j þ ju3j þ � � � . Then by the above

proof and Problem 11.17, it follows that if lim
n!1

unþ1

un

























¼ L < 1, then �un converges (absolutely).

Similarly, we can prove that if lim
n!1

unþ1

un

























¼ L > 1 the series �un diverges, while if lim
n!1

unþ1

un

























¼ L ¼ 1

the ratio test fails [see Problem 11.21(c)].

11.21. Investigate the convergence of (a)
X

1

n¼1

n4e�n2 ; ðbÞ
X

1

n¼1

ð�1Þn�12n

n2
; ðcÞ

X

1

n¼1

ð�1Þn�1n

n2 þ 1
.

(a) Here un ¼ n4e�n2 . Then

lim
n!1

unþ1

un

























¼ lim
n!1

ðnþ 1Þ4e�ðnþ1Þ2

n4 e�n2































¼ lim
n!1

ðnþ 1Þ4 e�ðn2þ2nþ1Þ

n4 e�n2

¼ lim
n!1

nþ 1

n

� �4

e�2n�1 ¼ lim
n!1

nþ 1

n

� �4

lim
n!1

e�2n�1 ¼ 1 � 0 ¼ 0

Since 0 < 1, the series converges.

(b) Here un ¼
ð�1Þn�12n

n2
. Then

lim
n!1

unþ1

un

























¼ lim
n!1

ð�1Þn2nþ1

ðnþ 1Þ2
� n2

ð�1Þn�12n































¼ lim
n!1

2n2

ðnþ 1Þ2
¼ 2

Since s > 1, the series diverges. Compare Problem 11.19(c).

(c) Here un ¼
ð�1Þn�1n

n2 þ 1
. Then
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lim
n!1

unþ1

un

























¼ lim
n!1

ð�1Þnðnþ 1Þ
ðnþ 1Þ2 þ 1

� n2 þ 1

ð�1Þn�1n































¼ lim
n!1

ðnþ 1Þðn2 þ 1Þ
ðn2 þ 2nþ 2Þn ¼ 1

and the ratio test fails. By using other tests [see Problem 11.19(a)], the series is seen to be convergent.

MISCELLANEOUS TESTS

11.22. Test for convergence 1þ 2rþ r2 þ 2r3 þ r4 þ 2r5 þ � � � where (a) r ¼ 2=3, (b) r ¼ �2=3,
(c) r ¼ 4=3.

Here the ratio test is inapplicable, since
unþ1

un

























¼ 2jrj or 1
2 jrj depending on whether n is odd or even.

However, using the nth root test, we have

ffiffiffiffiffiffiffiffi

junjn
p

¼
ffiffiffiffiffiffiffiffiffi

2jrnjn
p ¼

ffiffiffi

2n
p

jrj if n is odd
ffiffiffiffiffiffiffijrnjn

p ¼ jrj if n is even

(

Then lim
n!1

ffiffiffiffiffiffiffiffi

junjn
p

¼ jrj (since lim
n!1

21=n ¼ 1).

Thus, if jrj < 1 the series converges, and if jrj > 1 the series diverges.

Hence, the series converges for cases (a) and (b), and diverges in case (c).

11.23. Test for convergence
1

3

� �2

þ 1 � 4
3 � 6

� �2

þ 1 � 4 � 7
3 � 6 � 9

� �2

þ � � �þ 1 � 4 � 7 . . . ð3n� 2Þ
3 � 6 � 9 . . . ð3nÞ

� �2

þ � � � .

The ratio test fails since lim
n!1

unþ1

un

























¼ lim
n!1

3nþ 1

3nþ 3

� �2

¼ 1. However, by Raabe’s test,

lim
n!1

n 1� unþ1

un

























� �

¼ lim
n!1

n 1� 3nþ 1

3nþ 3

� �2
( )

¼ 4

3
> 1

and so the series converges.

11.24. Test for convergence
1

2

� �2

þ 1 � 3
2 � 4

� �2

þ 1 � 3 � 5
24t

� �2

þ � � �þ 1 � 3 � 5 . . . ð2n� 1Þ
2 � 4 � 6 . . . ð2nÞ

� �2

þ � � � .

The ratio test fails since lim
n!1

unþ1

un

























¼ lim
n!1

2nþ 1

2nþ 2

� �2

¼ 1. Also, Raabe’s test fails since

lim
n!1

n 1� unþ1

un

























� �

¼ lim
n!1

n 1� 2nþ 1

2nþ 2

� �2
( )

¼ 1

However, using long division,

unþ1

un

























¼ 2nþ 1

2nþ 2

� �2

¼ 1� 1

n
þ 5� 4=n

4n2 þ 8nþ 4
¼ 1� 1

n
þ cn
n2

where jcnj < P

so that the series diverges by Gauss’ test.
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SERIES OF FUNCTIONS

11.25. For what values of x do the following series converge?

ðaÞ
X

1

n¼1

xn�1

n � 3n ; ðbÞ
X

1

n¼1

ð�1Þn�1x2n�1

ð2n� 1Þ! ; ðcÞ
X

1

n¼1

n!ðx� aÞn; ðdÞ
X

1

n¼1

nðx� 1Þn
2nð3n� 1Þ :

(a) un ¼
xn�1

n � 3n. Assuming x 6¼ 0 (if x ¼ 0 the series converges), we have

lim
n!1

unþ1

un

























¼ lim
n!1

xn

ðnþ 1Þ � 3nþ1
� n � 3

n

xn�1

























¼ lim
n!1

n

3ðnþ 1Þ jxj ¼
jxj
3

Then the series converges if
jxj
3

< 1, and diverges if
jxj
3

> 1. If
jxj
3

¼ 1, i.e., x ¼ �3, the test fails.

If x ¼ 3 the series becomes
X

1

n¼1

1

3n
¼ 1

3

X

1

n¼1

1

n
, which diverges.

If x ¼ �3 the series becomes
X

1

n¼1

ð�1Þn�1

3n
¼ 1

3

X

1

n¼1

ð�1Þn�1

n
, which converges.

Then the interval of convergence is �3 @ x < 3. The series diverges outisde this interval.

Note that the series converges absolutely for �3 < x < 3. At x ¼ �3 the series converges con-
ditionally.

(b) Proceed as in part (a) with un ¼
ð�1Þn�1x2n�1

ð2n� 1Þ! . Then

lim
n!1

unþ1

un

























¼ lim
n!1

ð�1Þnx2nþ1

ð2nþ 1Þ! � ð2n� 1Þ!
ð�1Þn�1x2n�1































¼ lim
n!1

ð2n� 1Þ!
ð2nþ 1Þ! x

2

¼ lim
n!1

ð2n� 1Þ!
ð2nþ 1Þð2nÞð2n� 1Þ! x

2 ¼ lim
n!1

x2

ð2nþ 1Þð2nÞ ¼ 0

Then the series converges (absolutely) for all x, i.e., the interval of (absolute) convergence is
�1 < x < 1.

ðcÞ un ¼ n!ðx� aÞn; lim
n!1

unþ1

un

























¼ lim
n!1

ðnþ 1Þ!ðx� aÞnþ1

n!ðx� aÞn































¼ lim
n!1

ðnþ 1Þjx� aj:

This limit is infinite if x 6¼ a. Then the series converges only for x ¼ a.

ðdÞ un ¼
nðx� 1Þn
2nð3n� 1Þ ; unþ1 ¼

ðnþ 1Þðx� 1Þnþ1

2nþ1ð3nþ 2Þ : Then

lim
n!1

unþ1

un

























¼ lim
n!1

ðnþ 1Þð3n� 1Þðx� 1Þ
2nð3nþ 2Þ

























¼ x� 1

2

























¼ jx� 1j
2

Thus, the series converges for jx� 1j < 2 and diverges for jx� 1j > 2.

The test fails for jx� 1j ¼ 2, i.e., x� 1 ¼ �2 or x ¼ 3 and x ¼ �1.

For x ¼ 3 the series becomes
X

1

n¼1

n

3n� 1
, which diverges since the nth term does not approach zero.

For x ¼ �1 the series becomes
X

1

n¼1

ð�1Þnn
3n� 1

, which also diverges since the nth term does not

approach zero.

Then the series converges only for jx� 1j < 2, i.e., �2 < x� 1 < 2 or �1 < x < 3.
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11.26. For what values of x does (a)
X

1

n¼1

1

2n� 1

xþ 2

x� 1

� �n

; ðbÞ
X

1

n¼1

1

ðxþ nÞðxþ n� 1Þ converge?

ðaÞ un ¼
1

2n� 1

xþ 2

x� 1

� �n

: Then lim
n!1

unþ1

un

























¼ lim
n!1

2n� 1

2nþ 1

xþ 2

x� 1

























¼ xþ 2

x� 1

























if x 6¼ 1;�2:

Then the series converges if
xþ 2

x� 1

























< 1, diverges if
xþ 2

x� 1

























> 1, and the test fails if
xþ 2

x� 1

























¼ 1, i.e.,

x ¼ � 1
2.

If x ¼ 1 the series diverges.

If x ¼ �2 the series converges.

If x� 1
2 the series is

X

1

n¼1

ð�1Þn
2n� 1

which converges.

Thus, the series converges for
xþ 2

x� 1

























< 1, x ¼ � 1
2 and x ¼ �2, i.e., for x @ � 1

2.

(b) The ratio test fails since lim
n!1

unþ1

un

























¼ 1, where un ¼
1

ðxþ nÞðxþ n� 1Þ : However, noting that

1

ðxþ nÞðxþ n� 1Þ ¼
1

xþ n� 1
� 1

xþ n

we see that if x 6¼ 0;�1;�2; . . . ;�n,

Sn ¼ u1 þ u2 þ � � �þ un ¼
1

x
� 1

xþ 1

� �

þ 1

xþ 1
� 1

xþ 2

� �

þ � � �þ 1

xþ n� 1
� 1

xþ n

� �

¼ 1

x
� 1

xþ n

and lim
n!1

Sn ¼ 1=x, provided x 6¼ 0;�1;�2;�3; . . . .

Then the series converges for all x except x ¼ 0;�1;�2;�3; . . . ; and its sum is 1=x.

UNIFORM CONVERGENCE

11.27. Find the domain of convergence of ð1� xÞ þ xð1� xÞ þ x2ð1� xÞ þ � � � .
Method 1:

Sum of first n terms ¼ SnðxÞ ¼ ð1� xÞ þ xð1� xÞ þ x2ð1� xÞ þ � � �þ xn�1ð1� xÞ
¼ 1� xþ x� x2 þ x2 þ � � �þ xn�1 � xn

¼ 1� xn

If jxj < 1, lim
n!1

SnðxÞ ¼ lim
n!1

ð1� xnÞ ¼ 1.

If jxj > 1, lim
n!1

SnðxÞ does not exist.
If x ¼ 1;SnðxÞ ¼ 0 and lim

n!1
SnðxÞ ¼ 0.

If x ¼ �1;SnðxÞ ¼ 1� ð�1Þn and lim
n!1

SnðxÞ does not exist.
Thus, the series converges for jxj < 1 and x ¼ 1, i.e., for �1 < x @ 1.

Method 2, using the ratio test.
The series converges if x ¼ 1. If x 6¼ 1 and un ¼ xn�1ð1� xÞ, then lim

n!1
unþ1

un

























¼ lim
n!1

jxj.

Thus, the series converges if jxj < 1, diverges if jxj > 1. The test fails if jxj ¼ 1. If x ¼ 1, the series
converges; if x ¼ �1, the series diverges. Then the series converges for �1 < x @ 1:

11.28. Investigate the uniform convergence of the series of Problem 11.27 in the interval
(a) � 1

2 < x < 1
2, (b) � 1

2 @ x @ 1
2, ðcÞ � :99 @ x @ :99; ðdÞ � 1 < x < 1,

ðeÞ 0 @ x < 2.
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(a) By Problem 11.27, SnðxÞ ¼ 1� xn;SðxÞ ¼ lim
n!1

SnðxÞ ¼ 1 if � 1
2 < x < 1

2; thus, the series converges in this

interval. We have

Remainder after n terms ¼ RnðxÞ ¼ SðxÞ� SnðxÞ ¼ 1� ð1� xnÞ ¼ xn

The series is uniformly convergent in the interval if given any � > 0 we can find N dependent on �,
but not on x, such that jRnðxÞj < � for all n > N. Now

jRnðxÞj ¼ jxnj ¼ jxjn < � when n ln jxj < ln � or n >
ln �

ln jxj

since division by ln jxj (which is negative since jxj < 1
2) reverses the sense of the inequality.

But if jxj < 1
2 ; ln jxj < ln ð12Þ, and n >

ln �

ln jxj >
ln �

lnð12Þ
¼ N. Thus, since N is independent of x, the

series is uniformly convergent in the interval.

(b) In this case jxj @ 1
2 ; ln jxj @ ln ð12Þ; and n >

ln �

ln jxj A
ln �

lnð12Þ
¼ N, so that the series is also uniformly

convergent in � 1
2 @ x @ 1

2 :

(c) Reasoning similar to the above, with 1
2 replaced by .99, shows that the series is uniformly convergent in

�:99 @ x @ :99.

(d) The arguments used above break down in this case, since
ln �

ln jxj can be made larger than any positive

number by choosing jxj sufficiently close to 1. Thus, no N exists and it follows that the series is not
uniformly convergent in �1 < x < 1.

(e) Since the series does not even converge at all points in this interval, it cannot converge uniformly in the

interval.

11.29. Discuss the continuity of the sum function SðxÞ ¼ lim
n!1

SnðxÞ of Problem 11.27 for the interval
0 @ x @ 1.

If 0 @ x < 1;SðxÞ ¼ lim
n!1

SnðxÞ ¼ lim
n!1

ð1� xnÞ ¼ 1.

If x ¼ 1;SnðxÞ ¼ 0 and SðxÞ ¼ 0.

Thus, SðxÞ ¼ 1 if 0 @ x < 1
0 if x ¼ 1

�

and SðxÞ is discontinuous at x ¼ 1 but continuous at all other points in
0 @ x < 1.

In Problem 11.34 it is shown that if a series is uniformly convergent in an interval, the sum function SðxÞ
must be continuous in the interval. It follows that if the sum function is not continuous in an interval, the

series cannot be uniformly convergent. This fact is often used to demonstrate the nonuniform convergence
of a series (or sequence).

11.30. Investigate the uniform convergence of x2 þ x2

1þ x2
þ x2

ð1þ x2Þ2
þ � � �þ x2

ð1þ x2Þn þ � � � .

Suppose x 6¼ 0. Then the series is a geometric series with ratio 1=ð1þ x2Þ whose sum is (see Problem

2.25, Chap. 2).

SðxÞ ¼ x2

1� 1=ð1þ x2Þ ¼ 1þ x2

If x ¼ 0 the sum of the first n terms is Snð0Þ ¼ 0; hence Sð0Þ ¼ lim
n!1

Snð0Þ ¼ 0.

Since lim
x!0

SðxÞ ¼ 1 6¼ Sð0Þ, SðxÞ is discontinuous at x ¼ 0. Then by Problem 11.34, the series cannot be

uniformly convergent in any interval which includes x ¼ 0, although it is (absolutely) convergent in any

interval. However, it is uniformly convergent in any interval which excludes x ¼ 0.

This can also be shown directly (see Problem 11.93).
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WEIERSTRASS M TEST

11.31. Prove the Weierstrass M test, i.e., if junðxÞj @ Mn; n ¼ 1; 2; 3; . . . ; where Mn are positive
constants such that �Mn converges, then �unðxÞ is uniformly (and absolutely) convergent.

The remainder of the series �unðxÞ after n terms is RnðxÞ ¼ unþ1ðxÞ þ unþ2ðxÞ þ � � � . Now

jRnðxÞj ¼ junþ1ðxÞ þ unþ2ðxÞ þ � � � j @ junþ1ðxÞj þ junþ2ðxÞj þ � � � @ Mnþ1 þMnþ2 þ � � �

But Mnþ1 þMnþ2 þ � � � can be made less than � by choosing n > N, since �Mn converges. Since N is clearly
independent of x, we have jRnðxÞj < � for n > N, and the series is uniformly convergent. The absolute
convergence follows at once from the comparison test.

11.32. Test for uniform convergence:

ðaÞ
X

1

n¼1

cos nx

n4
; ðbÞ

X

1

n¼1

xn

n3=2
; ðcÞ

X

1

n¼1

sin nx

n
; ðdÞ

X

1

n¼1

1

n2 þ x2
:

(a)
cos nx

n4

























@
1

n4
¼ Mn. Then since �Mn converges ð p series with p ¼ 4 > 1Þ, the series is uniformly (and

absolutely) convergent for all x by the M test.

(b) By the ratio test, the series converges in the interval �1 @ x @ 1, i.e., jxj @ 1.

For all x in this interval,
xn

n3=2

























¼ jxjn
n3=2

@
1

n3=2
. Choosing Mn ¼

1

n3=2
, we see that �Mn converges.

Thus, the given series converges uniformly for �1 @ x @ 1 by the M test.

(c)
sin nx

n

























@
1

n
. However, �Mn, where Mn ¼

1

n
, does not converge. The M test cannot be used in this

case and we cannot conclude anything about the uniform convergence by this test (see, however,

Problem 11.125).

(d)
1

n2 þ x2

























@
1

n2
, and �

1

n2
converges. Then by the M test the given series converges uniformly for all x.

11.33. If a power series �anx
n converges for x ¼ x0, prove that it converges (a) absolutely in the

interval jxj < jx0j, (b) uniformly in the interval jxj @ jx1j; where jx1j < jx0j.
(a) Since �anx

n
0 converges, lim

n!1
anx

n
0 ¼ 0 and so we can make janxn0j < 1 by choosing n large enough, i.e.,

janj <
1

jx0jn
for n > N. Then

X

1

Nþ1

janxnj ¼
X

1

Nþ1

janjjxjn <
X

1

Nþ1

jxjn
jx0jn

ð1Þ

Since the last series in (1) converges for jxj < jx0j, it follows by the comparison test that the first
series converges, i.e., the given series is absolutely convergent.

(b) Let Mn ¼
jx1jn
jx0jn

. Then �Mn converges since jx1j < jx0j. As in part (a), janxnj < Mn for jxj @ jx1j, so

that by the Weierstrass M test, �anx
n is uniformly convergent.

It follows that a power series is uniformly convergent in any interval within its interval of con-
vergence.

THEOREMS ON UNIFORM CONVERGENCE

11.34. Prove Theorem 6, Page 271.

We must show that SðxÞ is continuous in ½a; b�.
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Now SðxÞ ¼ SnðxÞ þ RnðxÞ, so that Sðxþ hÞ ¼ Snðxþ hÞ þ Rnðxþ hÞ and thus

Sðxþ hÞ� SðxÞ ¼ Snðxþ hÞ� SnðxÞ þ Rnðxþ hÞ� RnðxÞ ð1Þ

where we choose h so that both x and xþ h lie in ½a; b� (if x ¼ b, for example, this will require h < 0).

Since SnðxÞ is a sum of finite number of continuous functions, it must also be continuous. Then given
� > 0, we can find � so that

jSnðxþ hÞ� SnðxÞj < �=3 whenever jhj < � ð2Þ

Since the series, by hypothesis, is uniformly convergent, we can choose N so that

jRnðxÞj < �=3 and jRnðxþ hÞj < �=3 for n > N ð3Þ

Then from (1), (2), and (3),

jSðxþ hÞ� SðxÞj @ jSnðxþ hÞ� SnðxÞj þ jRnðxþ hÞj þ jRnðxÞj < �

for jhj < �, and so the continuity is established.

11.35. Prove Theorem 7, Page 271.

If a function is continuous in ½a; b�, its integral exists. Then since SðxÞ;SnðxÞ, and RnðxÞ are continuous,
ðb

a

SðxÞ ¼
ðb

a

SnðxÞ dxþ
ðb

a

RnðxÞ dx

To prove the theorem we must show that

ðb

a

SðxÞ dx�
ðb

a

SnðxÞ dx






























¼
ðb

a

RnðxÞ dx






























can be made arbitrarily small by choosing n large enough. This, however, follows at once, since by the

uniform convergence of the series we can make jRnðxÞj < �=ðb� aÞ for n > N independent of x in ½a; b�, and
so

ðb

a

RnðxÞ dx






























@
ðb

a

jRnðxÞj dx <

ðb

a

�

b� a
dx ¼ �

This is equivalent to the statements

ðb

a

SðxÞ dx ¼ lim
n!1

ðb

a

SnðxÞ dx or lim
n!1

ðb

a

SnðxÞ dx ¼
ðb

a

lim
n!1

SnðxÞ
n o

dx

11.36. Prove Theorem 8, Page 271.

Let gðxÞ ¼
X

1

n¼1

u 0
nðxÞ. Since, by hypothesis, this series converges uniformly in ½a; b�, we can integrate

term by term (by Problem 11.35) to obtain

ðx

a

gðxÞ dx ¼
X

1

n¼1

ðx

a

u 0
nðxÞ dx ¼

X

1

n¼1

funðxÞ� unðaÞg

¼
X

1

n¼1

unðxÞ�
X

1

n¼1

unðaÞ ¼ SðxÞ� SðaÞ

because, by hypothesis,
X

1

n¼1

unðxÞ converges to SðxÞ in ½a; b�.

Differentiating both sides of

ðx

a

gðxÞ dx ¼ SðxÞ� SðaÞ then shows that gðxÞ ¼ S 0ðxÞ, which proves the
theorem.
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11.37. Let SnðxÞ ¼ nxe�nx2 ; n ¼ 1; 2; 3; . . . ; 0 @ x @ 1.

ðaÞ Determine whether lim
n!1

ð1

0

SnðxÞ dx ¼
ð1

0

lim
n!1

SnðxÞ dx:

ðbÞ Explain the result in (aÞ:

ðaÞ
ð1

0

snðxÞ dx ¼
ð1

0

nxe�nx2 dx ¼ � 1
2 e

�nx2 j10 ¼ 1
2 ð1� e�nÞ: Then

lim
n!1

ð1

0

SnðxÞ dx ¼ lim
n!1

1
2 ð1� e�nÞ ¼ 1

2

SðxÞ ¼ lim
n!1

SnðxÞ ¼ lim
n!1

nxe�nx2 ¼ 0; whether x ¼ 0 or 0 < x @ 1: Then,

ð1

0

SðxÞ dx ¼ 0

It follows that lim
n!1

ð1

0

SnðxÞ dx 6¼
ð1

0

lim
n!1

SnðxÞ dx, i.e., the limit cannot be taken under the integral
sign.

(b) The reason for the result in (a) is that although the sequence SnðxÞ converges to 0, it does not converge

uniformly to 0. To show this, observe that the function nxe�nx2 has a maximum at x ¼ 1=
ffiffiffiffiffi

2n
p

(by the

usual rules of elementary calculus), the value of this maximum being
ffiffiffiffiffi

1
2 n

q

e�1=2. Hence, as n ! 1,

SnðxÞ cannot be made arbitrarily small for all x and so cannot converge uniformly to 0.

11.38. Let f ðxÞ ¼
X

1

n¼1

sin nx

n3
: Prove that

ð�

0

f ðxÞ dx ¼ 2
X

1

n¼1

1

ð2n� 1Þ4
.

We have
sin nx

n3

























@
1

n3
. Then by the Weierstrass M test the series is uniformly convergent for all x, in

particular 0 @ x @ �, and can be integrated term by term. Thus

ð�

0

f ðxÞ dx ¼
ð�

0

X

1

n¼1

sin nx

n3

 !

dx ¼
X

1

n¼1

ð�

0

sin nx

n3
dx

¼
X

1

n¼1

1� cos n�

n4
¼ 2

1

14
þ 1

34
þ 1

54
þ � � �

� �

¼ 2
X

1

n¼1

1

ð2n� 1Þ4

POWER SERIES

11.39. Prove that both the power series
X

1

n¼0

anx
n and the corresponding series of derivatives

X

1

n¼0

nanx
n�1

have the same radius of convergence.

Let R > 0 be the radius of convergence of �anx
n. Let 0 < jx0j < R. Then, as in Problem 11.33, we can

choose N as that janj <
1

jx0jn
for n > N.

Thus, the terms of the series �jnanxn�1j ¼ � njanjjxjn�1 can for n > N be made less than corresponding

terms of the series � n
jxjn�1

jx0jn
, which converges, by the ratio test, for jxj < jx0j < R.

Hence, �nanx
n�1 converges absolutely for all points x0 (no matter how close jx0j is to R).

If, however, jxj > R, lim
n!1

anx
n 6¼ 0 and thus lim

n!1
nanx

n�1 6¼ 0, so that �nanx
n�1 does not converge.
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Thus, R is the radius of convergence of �nanx
n�1.

Note that the series of derivatives may or may not converge for values of x such that jxj ¼ R.

11.40. Illustrate Problem 11.39 by using the series
X

1

n¼1

xn

n2 � 3n.

lim
n!1

unþ1

un

























¼ lim
n!1

xnþ1

ðnþ 1Þ2 � 3nþ1
� n

2 � 3n
xn































¼ lim
n!1

n2

3ðnþ 1Þ2
jxj ¼ jxj

3

so that the series converges for jxj < 3. At x ¼ �3 the series also converges, so that the interval of
convergence is �3 @ x @ 3.

The series of derivatives is

X

1

n¼1

nxn�1

n2 � 3n ¼
X

1

n¼1

xn�1

n � 3n

By Problem 11.25(a) this has the interval of convergence �3 @ x < 3.

The two series have the same radius of convergence, i.e., R ¼ 3, although they do not have the same

interval of convergence.

Note that the result of Problem 11.39 can also be proved by the ratio test if this test is applicable. The

proof given there, however, applies even when the test is not applicable, as in the series of Problem 11.22.

11.41. Prove that in any interval within its interval of convergence a power series
ðaÞ represents a continuous function, say, f ðxÞ,
ðbÞ can be integrated term by term to yield the integral of f ðxÞ,
ðcÞ can be differentiated term by term to yield the derivative of f ðxÞ.

We consider the power series �anx
n, although analogous results hold for �anðx� aÞn.

(a) This follows from Problem 11.33 and 11.34, and the fact that each term anx
n of the series is continuous.

(b) This follows from Problems 11.33 and 11.35, and the fact that each term anx
n of the series is continuous

and thus integrable.

(c) From Problem 11.39, the series of derivatives of a power series always converges within the interval of
convergence of the original power series and therefore is uniformly convergent within this interval.
Thus, the required result follows from Problems 11.33 and 11.36.

If a power series converges at one (or both) end points of the interval of convergence, it is possible to
establish (a) and (b) to include the end point (or end points). See Problem 11.42.

11.42. Prove Abel’s theroem that if a power series converges at an end point of its interval of conver-
gence, then the interval of uniform convergence includes this end point.

For simplicity in the proof, we assume the power series to be
X

1

k¼0

akx
k with the end point of its interval

of convergence at x ¼ 1, so that the series surely converges for 0 @ x @ 1. Then we must show that the
series converges uniformly in this interval.

Let

RnðxÞ ¼ anx
n þ anþ1x

nþ1 þ anþ2x
nþ2 þ � � � ; Rn ¼ an þ anþ1 þ anþ2 þ � � �

To prove the required result we must show that given any � > 0, we can find N such that jRnðxÞj < � for
all n > N, where N is independent of the particular x in 0 @ x @ 1.
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Now

RnðxÞ ¼ ðRn � Rnþ1Þxn þ ðRnþ1 � Rnþ2Þxnþ1 þ ðRnþ2 � Rnþ3Þxnþ2 þ � � �
¼ Rnx

n þ Rnþ1ðxnþ1 � xnÞ þ Rnþ2ðxnþ2 � xnþ1Þ þ � � �
¼ xnfRn � ð1� xÞðRnþ1 þ Rnþ2xþ Rnþ3x

2 þ � � �Þg

Hence, for 0 @ x < 1,

jRnðxÞj @ jRnj þ ð1� xÞðjRnþ1j þ jRnþ2jxþ jRnþ3jx2 þ � � �Þ ð1Þ

Since �ak converges by hypothesis, it follows that given � > 0 we can choose N such that jRkj < �=2 for
all k A n. Then for n > N we have from (1),

jRnðxÞj @
�

2
þ ð1� xÞ �

2
þ �

2
xþ �

2
x2 þ � � �

� �

¼ �

2
þ �

2
¼ � ð2Þ

since ð1� xÞð1þ xþ x2 þ x3 þ � � �Þ ¼ 1 (if 0 @ x < 1).

Also, for x ¼ 1; jRnðxÞj ¼ jRnj < � for n > N.

Thus, jRnðxÞj < � for all n > N, where N is independent of the value of x in 0 @ x @ 1, and the
required result follows.

Extensions to other power series are easily made.

11.43. Prove Abel’s limit theorem (see Page 272).

As in Problem 11.42, assume the power series to be
X

1

k¼1

akx
k, convergent for 0 @ x @ 1.

Then we must show that lim
x!1�

X

1

k¼0

akx
k ¼

X

1

k¼0

ak.

This follows at once from Problem 11.42, which shows that �akx
k is uniformly convergent for

0 @ x @ 1, and from Problem 11.34, which shows that �akx
k is continuous at x ¼ 1.

Extensions to other power series are easily made.

11.44. (a) Prove that tan�1 x ¼ x� x3

3
þ x5

5
� x7

7
þ � � � where the series is uniformly convergent in

�1 @ x @ 1.

(b) Prove that
�

4
¼ 1� 1

3
þ 1

5
� 1

7
þ � � � .

(a) By Problem 2.25 of Chapter 2, with r ¼ �x2 and a ¼ 1, we have

1

1þ x2
¼ 1� x2 þ x4 � x6 þ � � � � 1 < x < 1 ð1Þ

Integrating from 0 to x, where �1 < x < 1, yields

ðx

0

dx

1þ x2
¼ tan�1 x ¼ x� x3

3
þ x5

5
� x7

7
þ � � � ð2Þ

using Problems 11.33 and 11.35.

Since the series on the right of (2) converges for x ¼ �1, it follows by Problem 11.42 that the series
is uniformly convergent in �1 @ x @ 1 and represents tan�1 x in this interval.

(b) By Problem 11.43 and part (a), we have

lim
x!1�

tan�1 x ¼ lim
x!1�

x� x3

3
þ x5

5
� x7

7
þ � � �

 !

or
�

4
¼ 1� 1

3
þ 1

5
� 1

7
þ � � �

11.45. Evaluate

ð1

0

1� e�x2

x2
dx to 3 decimal place accuracy.
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We have eu ¼ 1þ uþ u2

2!
þ u3

3!
þ u4

4!
þ u5

5!
þ � � � ; �1 < u < 1:

Then if u ¼ �x2; e�x2 ¼ 1� x2 þ x4

2!
� x6

3!
þ x8

3!
¼ x10

5!
þ � � � ; �1 < x < 1:

Thus
1� e�x2

x2
¼ 1� x2

2!
þ x4

3!
� x6

4!
þ x8

5!
� � � � :

Since the series converges for all x and so, in particular, converges uniformly for 0 @ x @ 1, we can

integrate term by term to obtain

ð1

0

1� e�x2

x2
dx ¼ x� x3

3 � 2!þ
x5

5 � 3!�
x7

7 � 4!þ
x9

9 � 5!� � � �












1

0

¼ 1� 1

3 � 2!þ
1

5 � 3!�
1

7 � 4!þ
1

9 � 5!� � � �

¼ 1� 0:16666þ 0:03333� 0:00595þ 0:00092� � � � ¼ 0:862

Note that the error made in adding the first four terms of the alternating series is less than the fifth term,

i.e., less than 0.001 (see Problem 11.15).

MISCELLANEOUS PROBLEMS

11.46. Prove that y ¼ JpðxÞ defined by (16), Page 276, satisfies Bessel’s differential equation

x2y 00 þ xy 0 þ ðx2 � p2Þy ¼ 0

The series for JpðxÞ converges for all x [see Problem 11.110(a)]. Since a power series can be differ-

entiated term by term within its interval of convergence, we have for all x,

y ¼
X

1

n¼0

ð�1Þnxpþ2n

2pþ2nn!ðnþ pÞ!

y 0 ¼
X

1

n¼0

ð�1Þnð pþ 2nÞxpþ2n�1

2pþ2nn!ðnþ pÞ!

y 00 ¼
X

1

n¼0

ð�1Þnð pþ 2nÞð pþ 2n� 1Þ xpþ2n�2

2pþ2nn!ðnþ pÞ!

Then,

ðx2 � p2Þy ¼
X

1

n¼0

ð�1Þnxpþ2nþ2

2pþ2nn!ðnþ pÞ!�
X

1

n¼0

ð�1Þnp2xpþ2n

2pþ2nn!ðnþ pÞ!

xy 0 ¼
X

1

n¼0

ð�1Þnðpþ 2nÞxpþ2n

2pþ2nn!ðnþ pÞ!

x2y 00 ¼
X

1

n¼0

ð�1Þnð pþ 2nÞð pþ 2n� 1Þxpþ2n

2pþ2nn!ðnþ pÞ!
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Adding,

x2y 00 þ xy 0 þ ðx2 � p2Þy ¼
X

1

n¼0

ð�1Þnxpþ2nþ2

2pþ2nn!ðnþ pÞ!

þ
X

1

n¼0

ð�1Þn½�p2 þ ð pþ 2nÞ þ ð pþ 2nÞð pþ 2n� 1Þ�xpþ2n

2pþ2nn!ðnþ pÞ!

¼
X

1

n¼0

ð�1Þnxpþ2nþ2

2pþ2nn!ðnþ pÞ!þ
X

1

n¼0

ð�1Þn½4nðnþ pÞ�xpþ2n

2pþ2nn!ðnþ pÞ!

¼
X

1

n¼1

ð�1Þn�1xpþ2n

2pþ2n�2ðn� 1Þ!ðn� 1þ pÞ!þ
X

1

n¼1

ð�1Þn4xpþ2n

2pþ2nðn� 1Þ!ðnþ p� 1Þ!

¼ �
X

1

n¼1

ð�1Þn4xpþ2n

2pþ2nðn� 1Þ!ðnþ p� 1Þ!þ
X

1

n¼1

ð�1Þn4xpþ2n

2pþ2nðn� 1Þ!ðnþ p� 1Þ!
¼ 0

11.47. Test for convergence the complex power series
X

1

n¼1

zn�1

n3 � 3n�1
.

Since lim
n!1

unþ1

un

























¼ lim
n!1

zn

ðnþ 1Þ3 � 3n
� n

3 � 3n�1

zn�1































¼ lim
n!1

n3

3ðnþ 1Þ3
jzj ¼ jzj

3
, the series converges for

jzj
3

< 1,

i.e., jzj < 3, and diverges for jzj > 3.

For jzj ¼ 3, the series of absolute values is
X

1

n¼1

jzjn�1

n3 � 3n�1
¼
X

1

n¼1

1

n3
, so that the series is absolutely

convergent and thus convergent for jzj ¼ 3.

Thus, the series converges within and on the circle jzj ¼ 3.

11.48. Assuming the power series for ex holds for complex numbers, show that

eix ¼ cos xþ i sin x

Letting z ¼ ix in ez ¼ 1þ zþ z2

2!
þ z3

3!
þ � � � ; we have

eix ¼ 1þ ixþ i2x2

2!
þ i3x3

3!
þ � � � ¼ 1� x2

2!
þ x4

4!
� � � �

 !

þ i x� x3

3!
þ x5

5!
� � � �

 !

¼ cos xþ i sinx

Similarly, e�ix ¼ cos x� i sinx. The results are called Euler’s identities.

11.49. Prove that lim
n!1

1þ 1

2
þ 1

3
þ 1

4
þ � � �þ 1

n
� ln n

� �

exists.

Letting f ðxÞ ¼ 1=x in (1), Problem 11.11, we find

1

2
þ 1

3
þ 1

4
þ � � �þ 1

M
@ lnM @ 1þ 1

2
þ 1

3
þ 1

4
þ � � �þ 1

M � 1

from which we have on replacing M by n,

1

n
@ 1þ 1

2
þ 1

3
þ 1

4
þ � � �þ 1

n
� ln n @ 1

Thus, the sequence Sn ¼ 1þ 1

2
þ 1

3
þ 1

4
þ � � �þ 1

n
� ln n is bounded by 0 and 1.
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Consider Snþ1 � Sn ¼
1

nþ 1
� ln

nþ 1

n

� �

. By integrating the inequality
1

nþ 1
@

1

x
@

1

n
with respect

to x from n to nþ 1, we have

1

nþ 1
@ ln

nþ 1

n

� �

@
1

n
or

1

nþ 1
� 1

n
@

1

nþ 1
� ln

nþ 1

n

� �

@ 0

i.e., Snþ1 � Sn @ 0, so that Sn is monotonic decreasing.

Since Sn is bounded and monotonic decreasing, it has a limit. This limit, denoted by �, is equal to
0:577215 . . . and is called Euler’s constant. It is not yet known whether � is rational or not.

11.50. Prove that the infinite product
Y

1

k¼1

ð1þ ukÞ, where uk > 0, converges if
X

1

k¼1

uk converges.

According to the Taylor series for ex (Page 275), 1þ x @ ex for x > 0, so that

Pn ¼
Y

n

k¼1

ð1þ ukÞ ¼ ð1þ u1Þð1þ u2Þ � � � ð1þ unÞ @ eu1 � eu2 � � � eun ¼ eu1þu2þ���þun

Since u1 þ u2 þ � � � converges, it follows that Pn is a bounded monotonic increasing sequence and so has

a limit, thus proving the required result.

11.51. Prove that the series 1� 1þ 1� 1þ 1� 1þ � � � is C � 1 summable to 1/2.

The sequence of partial sums is 1; 0; 1; 0; 1; 0; . . . .

Then S1 ¼ 1;
S1 þ S2

2
¼ 1þ 0

2
¼ 1

2
;
S1 þ S2 þ S3

3
¼ 1þ 0þ 1

3
¼ 2

3
; . . . :

Continuing in this manner, we obtain the sequence 1; 12 ;
2
3 ;

1
2 ;

3
5 ;

1
2 ; . . . ; the nth term being

Tn ¼
1=2 if n is even
n=ð2n� 1Þ if n is odd

�

. Thus, lim
n!1

Tn ¼ 1
2 and the required result follows.

11.52. (a) If f ðnþ1ÞðxÞ is continuous in ½a; b� prove that for c in ½a; b�, f ðxÞ ¼ f ðcÞ þ f 0ðcÞðx� cÞ þ
1

2!
f 00ðcÞðx� cÞ2 þ � � �þ 1

n!
f ðnÞðcÞðx� cÞn þ 1

n!

ðx

c

ðx� tÞn f ðnþ1ÞðtÞ dt.
(b) Obtain the Lagrange and Cauchy forms of the remainder in Taylor’s Formula. (See Page

274.)

The proof of (a) is made using mathematical induction. (See Chapter 1.) The result holds for n ¼ 0
since

f ðxÞ ¼ f ðcÞ þ
ðx

C

f 0ðtÞ dt ¼ f ðcÞ þ f ðxÞ� f ðcÞ

We make the induction assumption that it holds for n ¼ k and then use integration by parts with

dv ¼ ðx� tÞk
k!

dt and u ¼ f kþ1ðtÞ

Then

v ¼ � ðx� tÞkþ1

ðkþ 1Þ! and du ¼ f kþ2ðtÞ dt

Thus,

1

k!

ðx

C

ðx� tÞk f ðkþ1ÞðtÞ dt ¼ � f kþ1ðtÞðx� tÞkþ1

ðkþ 1Þ!













x

C

þ 1

ðkþ 1Þ!

ðx

C

ðx� tÞkþ1 f ðkþ2ÞðtÞ dt

¼ f kþ1ðcÞðx� cÞkþ1

ðkþ 1Þ! þ 1

ðkþ 1Þ!

ðx

C

ðx� tÞkþ1f ðkþ2ÞðtÞ dt

Having demonstrated that the result holds for kþ 1, we conclude that it holds for all positive integers.



To obtain the Lagrange form of the remainder Rn, consider the form

f ðxÞ ¼ f ðcÞ þ f 0ðcÞðx� cÞ þ 1

2!
f 00ðcÞðx� cÞ2 þ � � �þ K

n!
ðx� cÞn

This is the Taylor polynomial Pn�1ðxÞ plus
K

n!
ðx� cÞn: Also, it could be looked upon as Pn except that

in the last term, f ðnÞðcÞ is replaced by a number K such that for fixed c and x the representation of f ðxÞ is
exact. Now define a new function

�ðtÞ ¼ f ðtÞ� f ðxÞ þ
X

n�1

j¼1

f ð jÞðtÞ ðx� tÞ j
j!

þ Kðx� tÞn
n!

The function � satisfies the hypothesis of Rolle’s Theorem in that �ðcÞ ¼ �ðxÞ ¼ 0, the function is

continuous on the interval bound by c and x, and � 0 exists at each point of the interval. Therefore, there
exists � in the interval such that � 0ð�Þ ¼ 0. We proceed to compute � 0 and set it equal to zero.

� 0ðtÞ ¼ f 0ðtÞ þ
X

n�1

j¼1

f ð jþ1ÞðtÞ ðx� tÞ j
j!

�
X

n�1

j¼1

f ð jÞðtÞ ðx� tÞ j�1

ð j � 1Þ! � Kðx� tÞn�1

ðn� 1Þ!

This reduces to

� 0ðtÞ ¼ f ðnÞðtÞ
ðn� 1Þ! ðx� tÞn�1 � K

ðn� 1Þ! ðx� tÞn�1

According to hypothesis: for each n there is �n such that

�ð�nÞ ¼ 0

Thus

K ¼ f ðnÞð�nÞ

and the Lagrange remainder is

Rn�1 ¼
f ðnÞð�nÞ

n!
ðx� cÞn

or equivalently

Rn ¼
1

ðnþ 1Þ! f
ðnþ1Þð�nþ1Þðx� cÞnþ1

The Cauchy form of the remainder follows immediately by applying the mean value theorem for
integrals. (See Page 274.)

11.53. Extend Taylor’s theorem to functions of two variables x and y.

Define FðtÞ ¼ f ðx0 þ ht; y0 þ ktÞ, then applying Taylor’s theorem for one variable (about t ¼ 0Þ

FðtÞ ¼ Fð0Þ þ F 0ð0Þ þ 1

2!
F 00ð0Þt2 þ � � �þ 1

n!
F ðnÞð0Þtn þ 1

ðnþ 1Þ!F
ðnþ1Þð�Þtnþ1; 0 < � < t

Now let t ¼ 1

Fð1Þ ¼ f ðx0 þ h; y0 þ kÞ ¼ Fð0Þ þ F 0ð0Þ þ 1

2!
F 00ð0Þ þ � � �þ 1

n!
F ðnÞð0Þ þ 1

ðnþ 1Þ!F
ðnþ1Þð�Þ

When the derivatives F 0ðtÞ; . . . ;F ðnÞðtÞ;F ðnþ1Þð�Þ are computed and substituted into the previous expres-
sion, the two variable version of Taylor’s formula results. (See Page 277, where this form and notational
details can be found.)

11.54. Expand x2 þ 3y� 2 in powers of x� 1 and yþ 2. Use Taylor’s formula with h ¼ x� x0,
k ¼ y� y0, where x0 ¼ 1 and y0 ¼ �2.

CHAP. 11] INFINITE SERIES 297



x2 þ 3y� 2 ¼ �10� 4ðx� 1Þ þ 4ð yþ 2Þ� 2ðx� 1Þ2 þ 2ðx� 1Þð yþ 2Þ þ ðx� 1Þ2ð yþ 2Þ

(Check this algebraically.)

11.55. Prove that ln
xþ y

2
¼ xþ y� 2

2þ �ðxþ y� 2Þ ; 0 < � < 1; x > 0; y > 0. Hint: Use the Taylor formula

with the linear term as the remainder.

11.56. Expand f ðx; yÞ ¼ sin xy in powers of x� 1 and y� �

2
to second-degree terms.

1� 1

8
�2ðx� 1Þ2 � �

2
ðx� 1Þ y� �

2

� �

� y� �

2

� �2

Supplementary Problems

CONVERGENCE AND DIVERGENCE OF SERIES OF CONSTANTS

11.57. (a) Prove that the series
1

3 � 7þ
1

7 � 11þ
1

11 � 15þ � � � ¼
X

1

n¼1

1

ð4n� 1Þð4nþ 3Þ converges and (b) find its sum.

Ans. (b) 1/12

11.58. Prove that the convergence or divergence of a series is not affected by (a) multiplying each term by the
same non-zero constant, (b) removing (or adding) a finite number of terms.

11.59. If �un and �vn converge to A and B, respectively, prove that �ðun þ vnÞ converges to Aþ B.

11.60. Prove that the series 3
2 þ ð32Þ

2 þ ð32Þ
3 þ � � � ¼ �ð32Þ

n diverges.

11.61. Find the fallacy: Let S ¼ 1� 1þ 1� 1þ 1� 1þ � � � . Then S ¼ 1� ð1� 1Þ� ð1� 1Þ� � � � ¼ 1 and
S ¼ ð1� 1Þ þ ð1� 1Þ þ ð1� 1Þ þ � � � ¼ 0. Hence, 1 ¼ 0.

COMPARISON TEST AND QUOTIENT TEST

11.62. Test for convergence:

ðaÞ
X

1

n¼1

1

n2 þ 1
; ðbÞ

X

1

n¼1

n

4n2 � 3
; ðcÞ

X

1

n¼1

nþ 2

ðnþ 1Þ
ffiffiffiffiffiffiffiffiffiffiffi

nþ 3
p ; ðdÞ

X

1

n¼1

3n

n � 5n ; ðeÞ
X

1

n¼1

1

5n� 3
;

ð f Þ
X

1

n¼1

2n� 1

ð3nþ 2Þn4=3:

Ans: ðaÞ conv., ðbÞ div., ðcÞ div., ðdÞ conv., ðeÞ div., ð f Þ conv.

11.63. Investigate the convergence of (a)
X

1

n¼1

4n2 þ 5n� 2

nðn2 þ 1Þ3=2
; ðbÞ

X

1

n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n� ln n

n2 þ 10n3

r

. Ans. (a) conv., (b) div.

11.64. Establish the comparison test for divergence (see Page 267).
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11.65. Use the comparison test to prove that

ðaÞ
X

1

n¼1

@
1

np
converges if p > 1 and diverges if p @ 1; ðbÞ

X

1

n¼1

tan�1 n

n
diverges, ðcÞ

X

1

n¼1

n2

2n
converges.

11.66. Establish the results (b) and (c) of the quotient test, Page 267.

11.67. Test for convergence:

ðaÞ
X

1

n¼1

ðln nÞ2
n2

; ðbÞ
X

1

n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n tan�1ð1=n3Þ
q

; ðcÞ
X

1

n¼1

3þ sin n

nð1þ e�nÞ ; ðdÞ
X

1

n¼1

n sin2ð1=nÞ:

Ans. (a) conv., (b) div., (c) div., (d) div.

11.68. If �un converges, where un A 0 for n > N, and if lim
n!1

nun exists, prove that lim
n!1

nun ¼ 0.

11.69. (a) Test for convergence
X

1

n¼1

1

n1þ1=n
. (b) Does your answer to (a) contradict the statement about the p

series made on Page 266 that �1=np converges for p > 1?
Ans. (a) div.

INTEGRAL TEST

11.70. Test for convergence: (a)
X

1

n¼1

n2

2n3 � 1
; ðbÞ

X

1

n¼2

1

nðln nÞ3
; ðcÞ

X

1

n¼1

n

2n
; ðdÞ

X

1

n¼1

e�
ffiffi

n
p

ffiffiffi

n
p ðeÞ

X

1

n¼2

ln n

n
;

ð f Þ
X

1

n¼10

2lnðln nÞ

n ln n
:

Ans: ðaÞ div., ðbÞ conv., ðcÞ conv., ðdÞ conv., ðeÞ div., ð f Þ div.

11.71. Prove that
X

1

n¼2

1

nðln nÞp, where p is a constant, (a) converges if p > 1 and (b) diverges if p @ 1.

11.72. Prove that
9

8
<
X

1

n¼1

1

n3
<

5

4
.

11.73. Investigate the convergence of
X

1

n¼1

etan
�1 n

n2 þ 1
:

Ans: conv.

11.74. (a) Prove that 2
3 n

3=2 þ 1
3 @

ffiffiffi

1
p

þ
ffiffiffi

2
p

þ
ffiffiffi

3
p

þ � � �þ ffiffiffi

n
p

@ 2
3 n

3=2 þ n1=2 � 2
3.

(b) Use (a) to estimate the value of
ffiffiffi

1
p

þ
ffiffiffi

2
p

þ
ffiffiffi

3
p

þ � � �þ
ffiffiffiffiffiffiffiffi

100
p

, giving the maximum error.

(c) Show how the accuracy in (b) can be improved by estimating, for example,
ffiffiffiffiffi

10
p

þ
ffiffiffiffiffi

11
p

þ � � �þ
ffiffiffiffiffiffiffiffi

100
p

and adding on the value of
ffiffiffi

1
p

þ
ffiffiffi

2
p

þ � � �þ
ffiffiffi

9
p

computed to some desired degree of accuracy.

Ans: ðbÞ 671:5� 4:5

ALTERNATING SERIES

11.75. Test for convergence: (a)
X

1

n¼1

ð�1Þnþ1

2n
; ðbÞ

X

1

n¼1

ð�1Þn
n2 þ 2nþ 2

; ðcÞ
X

1

n¼1

ð�1Þnþ1n

3n� 1
;

ðdÞ
X

1

n¼1

ð�1Þn sin�1 1

n
; ðeÞ

X

1

n¼2

ð�1Þn ffiffiffi

n
p

ln n
:

Ans. (a) conv., (b) conv., (c) div., (d) conv., (e) div.
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11.76. (a) What is the largest absolute error made in approximating the sum of the series
X

1

n¼1

ð�1Þn
2nðnþ 1Þ by the sum

of the first 5 terms?
Ans. 1/192
(b) What is the least number of terms which must be taken in order that 3 decimal place accuracy will
result?

Ans. 8 terms

11.77. (a) Prove that S ¼ 1

13
þ 1

23
þ 1

33
þ � � � ¼ 4

3

1

13
� 1

23
þ 1

33
� � � �

� �

.

(b) How many terms of the series on the right are needed in order to calculate S to six decimal place

accuracy?
Ans. (b) at least 100 terms

ABSOLUTE AND CONDITIONAL CONVERGENCE

11.78. Test for absolute or conditional convergence:

ðaÞ
X

1

n¼1

ð�1Þn�1

n2 þ 1
ðcÞ

X

1

n¼2

ð�1Þn
n ln n

ðeÞ
X

1

n¼1

ð�1Þn�1

2n� 1
sin

1
ffiffiffi

n
p

ðbÞ
X

1

n¼1

ð�1Þn�1n

n2 þ 1
ðdÞ

X

1

n¼1

ð�1Þnn3
ðn2 þ 1Þ4=3

ð f Þ
X

1

n¼1

ð�1Þn�1n3

2n � 1

Ans. (a) abs. conv., (b) cond. conv., (c) cond. conv., (d) div., (e) abs. conv., ( f ) abs. conv.

11.79. Prove that
X

1

n¼1

cos n�a

x2 þ n2
converges absolutely for all real x and a.

11.80. If 1� 1
2 þ 1

3 � 1
4 þ � � � converges to S, prove that the rearranged series 1þ 1

3 � 1
2 þ 1

5 þ 1
7 � 1

4 þ 1
9 þ 1

11 � 1
6 þ � � �

¼ 3
2S. Explain.

[Hint: Take 1/2 of the first series and write it as 0þ 1
2 þ 0� 1

4 þ 0þ 1
6 þ � � �; then add term by term to the first

series. Note that S ¼ ln 2, as shown in Problem 11.100.]

11.81. Prove that the terms of an absolutely convergent series can always be rearranged without altering the sum.

RATIO TEST

11.82. Test for convergence:

ðaÞ
X

1

n¼1

ð�1Þnn
ðnþ 1Þen ; ðbÞ

X

1

n¼1

102n

ð2n� 1Þ! ; ðcÞ
X

1

n¼1

3n

n3
; ðdÞ

X

1

n¼1

ð�1Þn23n
32n

; ðeÞ
X

1

n¼1

ð
ffiffiffi

5
p

� 1Þn
n2 þ 1

:

Ans. (a) conv. (abs.), (b) conv., (c) div., (d) conv. (abs.), (e) div.

11.83. Show that the ratio test cannot be used to establish the conditional convergence of a series.

11.84. Prove that (a)
X

1

n¼1

n!

nn
converges and (b) lim

n!1
n!

nn
¼ 0.

MISCELLANEOUS TESTS

11.85. Establish the validity of the nth root test on Page 268.

11.86. Apply the nth root test to work Problems 11.82ðaÞ, (c), (d), and (e).

11.87. Prove that 1
3 þ ð23Þ

2 þ ð13Þ
3 þ ð23Þ

4 þ ð13Þ
5 þ ð23Þ

6 þ � � � converges.
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11.88. Test for convergence: (a)
1

3
þ 1 � 4
3 � 6þ

1 � 4 � 7
3 � 6 � 9þ � � � , (b)

2

9
þ 2 � 5
9 � 12þ

2 � 5 � 8
9 � 12 � 15þ � � � .

Ans. (a) div., (b) conv.

11.89. If a; b, and d are positive numbers and b > a, prove that

a

b
þ aðaþ dÞ
bðbþ dÞ þ

aðaþ dÞðaþ 2dÞ
bðbþ dÞðbþ 2dÞ þ � � �

converges if b� a > d, and diverges if b� a @ d.

SERIES OF FUNCTIONS

11.90. Find the domain of convergence of the series:

ðaÞ
X

1

n¼1

xn

n3
; ðbÞ

X

1

n¼1

ð�1Þnðx� 1Þn
2nð3n� 1Þ ; ðcÞ

X

1

n¼1

1

nð1þ x2Þn ; ðdÞ
X

1

n¼1

n2
1� x

1þ x

� �n

; ðeÞ
X

1

n¼1

enx

n2 � nþ 1

Ans: ðaÞ � 1 @ x @ 1; ðbÞ � 1 < x @ 3; ðcÞ all x 6¼ 0; ðdÞ x > 0; ðeÞ x @ 0

11.91. Prove that
X

1

n¼1

1 � 3 � 5 � � � ð2n� 1Þ
2 � 4 � 6 � � � ð2nÞ xn converges for �1 @ x < 1.

UNIFORM CONVERGENCE

11.92. By use of the definition, investigate the uniform convergence of the series

X

1

n¼1

x

½1þ ðn� 1Þx�½1þ nx�
�

Hint: Resolve the nth term into partial fractions and show that the nth partial sum is SnðxÞ ¼ 1� 1

1þ nx
:

�

Ans. Not uniformly convergent in any interval which includes x ¼ 0; uniformly convergent in any other

interval.

11.93. Work Problem 11.30 directly by first obtaining SnðxÞ.

11.94. Investigate by any method the convergence and uniform convergence of the series:

ðaÞ
X

1

n¼1

x

3

� �n

; ðbÞ
X

1

n¼1

sin2 nx

2n � 1
; ðcÞ

X

1

n¼1

x

ð1þ xÞn ; x A 0:

Ans. (a) conv. for jxj < 3; unif. conv. for jxj @ r < 3. (b) unif. conv. for all x. (c) conv. for x A 0; not
unif. conv. for x A 0, but unif. conv. for x A r > 0.

11.95. If FðxÞ ¼
X

1

n¼1

sin nx

n3
, prove that:

(a) FðxÞ is continuous for all x, (b) lim
x!0

FðxÞ ¼ 0; ðcÞ F 0ðxÞ ¼
X

1

n¼1

cos nx

n2
is continous everywhere.

11.96. Prove that

ð�

0

cos 2x

1 � 3 þ cos 4x

3 � 5 þ cos 6x

5 � 7 þ � � �
� �

dx ¼ 0.

11.97. Prove that FðxÞ ¼
X

1

n¼1

sin nx

sinh n�
has derivatives of all orders for any real x.

11.98. Examine the sequence unðxÞ ¼
1

1þ x2n
; n ¼ 1; 2; 3; . . . ; for uniform convergence.

11.99. Prove that lim
n!1

ð1

0

dx

ð1þ x=nÞn ¼ 1� e�1.
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POWER SERIES

11.100. (a) Prove that lnð1þ xÞ ¼ x� x2

2
þ x3

3
� x4

4
þ � � � .

ðbÞ Prove that ln 2 ¼ 1� 1
2 þ 1

3 � 1
4 þ � � � :

�

Hint: Use the fact that
1

1þ x
¼ 1� xþ x2 � x3 þ � � � and integrate.

�

11.101. Prove that sin�1 x ¼ xþ 1

2

x3

3
þ 1 � 3
2 � 4

x5

5
þ 1 � 3 � 5
2 � 4 � 6

x7

7
þ � � � , �1 @ x @ 1.

11.102. Evaluate (a)

ð1=2

0

e�x2 dx; ðdÞ
ð1

0

1� cos x

x
dx to 3 decimal places, justifying all steps.

Ans. ðaÞ 0:461; ðbÞ 0:486

11.103. Evaluate (a) sin 408; ðbÞ cos 658; ðcÞ tan 128 correct to 3 decimal places.
Ans: ðaÞ 0:643; ðbÞ 0:423; ðcÞ 0:213

11.104. Verify the expansions 4, 5, and 6 on Page 275.

11.105. By multiplying the series for sinx and cos x, verify that 2 sin x cos x ¼ sin 2x.

11.106. Show that ecos x ¼ e 1� x2

2!
þ 4x4

4!
� 31x6

6!
þ � � �

 !

; �1 < x < 1.

11.107. Obtain the expansions

ðaÞ tanh�1 x ¼ xþ x3

3
þ x5

5
þ x7

7
þ � � � � 1 < x < 1

ðbÞ lnðxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ 1
p

Þ ¼ x� 1

2

x3

3
þ 1 � 3
2 � 4

x5

5
� 1 � 3 � 5
2 � 4 � 6

x7

7
þ � � � � 1 @ x @ 1

11.108. Let f ðxÞ ¼ e�1=x2 x 6¼ 0
0 x ¼ 0

�

. Prove that the formal Taylor series about x ¼ 0 corresponding to f ðxÞ exists
but that it does not converge to the given function for any x 6¼ 0.

11.109. Prove that

ðaÞ lnð1þ xÞ
1þ x

¼ x� 1þ 1

2

� �

x2 þ 1þ 1

2
þ 1

3

� �

x3 � � � � for � 1 < x < 1

ðbÞ flnð1þ xÞg2 ¼ x2 � 1þ 1

2

� �

2x3

3
þ 1þ 1

2
þ 1

3

� �

2x4

4
� � � � for � 1 < x @ 1

MISCELLANEOUS PROBLEMS

11.110. Prove that the series for JpðxÞ converges (a) for all x, (b) absolutely and uniformly in any finite interval.

11.111. Prove that (a)
d

dx
fJ0ðxÞg ¼ �J1ðxÞ; ðbÞ d

dx
fxpJpðxÞg ¼ xpJp�1ðxÞ; ðcÞ Jpþ1ðxÞ ¼

2p

x
JpðxÞ� Jp�1ðxÞ.

11.112. Assuming that the result of Problem 11.111(c) holds for p ¼ 0;�1;�2; . . . ; prove that

(a) J�1ðxÞ ¼ �J1ðxÞ; ðbÞ J�2ðxÞ ¼ J2ðxÞ; ðcÞ J�nðxÞ ¼ ð�1ÞnJnðxÞ; n ¼ 1; 2; 3; . . . :

11.113. Prove that e1=2xðt�1=tÞ ¼
X

1

p¼�1
JpðxÞ tp.

[Hint: Write the left side as ext=2e�x=2t, expand and use Problem 11.112.]
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11.114. Prove that
X

1

n¼1

ðnþ 1Þzn

nðnþ 2Þ2
is absolutely and uniformly convergent at all points within and on the circle jzj ¼ 1.

11.115. (a) If
X

1

n¼1

anx
n ¼

X

1

n¼1

bnx
n for all x in the common interval of convergence jxj < R where R > 0, prove that

an ¼ bn for n ¼ 0; 1; 2; . . . . (b) Use (a) to show that the Taylor expansion of a function exists, the

expansion is unique.

11.116. Suppose that lim
ffiffiffiffiffiffiffiffijunjn

p ¼ L. Prove that �un converges or diverges according as L < 1 or L > 1. If L ¼ 1

the test fails.

11.117. Prove that the radius of convergence of the series �anx
n can be determined by the following limits, when

they exist, and give examples: (a) lim
n!1

an
anþ1

























; ðbÞ lim
n!1

1
ffiffiffiffiffiffiffiffijanjn

p ; ðcÞ lim
n!1

1
ffiffiffiffiffiffiffiffijanjn

p :

11.118. Use Problem 11.117 to find the radius of convergence of the series in Problem 11.22.

11.119. (a) Prove that a necessary and sufficient condition that the series �un converge is that, given any � > 0, we

can find N > 0 depending on � such that jSp � Sqj < � whenever p > N and q > N, where
Sk ¼ u1 þ u2 þ � � �þ uk.

ðbÞ Use ðaÞ to prove that the series
X

1

n¼1

n

ðnþ 1Þ3n converges.

ðcÞ How could you use ðaÞ to prove that the series
X

1

n¼1

1

n
diverges?

[Hint: Use the Cauchy convergence criterion, Page 25.]

11.120. Prove that the hypergeometric series (Page 276) (a) is absolutely convergent for jxj < 1, (b) is divergent

for jxj > 1, (c) is absolutely divergent for jxj ¼ 1 if aþ b� c < 0; ðdÞ satisfies the differential equation
xð1� xÞy 00 þ fc� ðaþ bþ 1Þxgy 0 � aby ¼ 0.

11.121. If Fða; b; c; xÞ is the hypergeometric function defined by the series on Page 276, prove that
(a) Fð�p; 1; 1;�xÞ ¼ ð1þ xÞp; ðbÞ xFð1; 1; 2;�xÞ ¼ lnð1þ xÞ; ðcÞ Fð12 ; 12 ; 32 ; x

2Þ ¼ ðsin�1 xÞ=x.

11.122. Find the sum of the series SðxÞ ¼ xþ x3

1 � 3þ
x5

1 � 3 � 5þ � � � .
[Hint: Show that S 0ðxÞ� 1þ xSðxÞ and solve.]

Ans: ex
2=2

ðx

0

e�x2=2 dx

11.123. Prove that

1þ 1

1 � 3þ
1

1 � 3 � 5þ
1

1 � 3 � 5 � 7þ � � � ¼ ffiffiffi

e
p

1� 1

2 � 3þ
1

22 � 2! � 5�
1

23 � 3! � 7þ
1

24 � 4! � 9� � � �
� �

11.124. Establish the Dirichlet test on Page 270.

11.125. Prove that
X

1

n¼1

sin nx

n
is uniformly convergent in any interval which does not include 0;��;�2�; . . . .

[Hint: use the Dirichlet test, Page 270, and Problem 1.94, Chapter 1.]

11.126. Establish the results on Page 275 concerning the binomial series.
[Hint: Examine the Lagrange and Cauchy forms of the remainder in Taylor’s theorem.]
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11.127. Prove that
X

1

n¼1

ð�1Þn�1

nþ x2
converges uniformly for all x, but not absolutely.

11.128. Prove that 1� 1

4
þ 1

7
� 1

10
þ � � � ¼ �

3
ffiffiffi

3
p þ 1

3
ln 2

11.129. If x ¼ yey, prove that y ¼
X

1

n¼1

ð�1Þn�1nn�1

n!
xn for �1=e < x @ 1=e.

11.130. Prove that the equation e�� ¼ �� 1 has only one real root and show that it is given by

� ¼ 1þ
X

1

n¼1

ð�1Þn�1nn�1e�n

n!

11.131. Let
x

ex � 1
¼ 1þ B1xþ B2x

2

2!
þ B3x

3

3!
þ � � � . (a) Show that the numbers Bn, called the Bernoulli numbers,

satisfy the recursion formula ðBþ 1Þn � Bn ¼ 0 where Bk is formally replaced by Bk after expanding.
(b) Using (a) or otherwise, determine B1; . . . ;B6.

Ans: ðbÞ B1 ¼ � 1
2 ;B2 ¼ 1

6 ;B3 ¼ 0;B4 ¼ � 1
30 ;B5 ¼ 0;B6 ¼ 1

42.

11.132. (a) Prove that
x

ex � 1
¼ x

2
coth

x

2
� 1

� �

: ðbÞ Use Problem 11.127 and part (a) to show that B2kþ1 ¼ 0 if

k ¼ 1; 2; 3; . . . :

11.133. Derive the series expansions:

ðaÞ cothx ¼ 1

x
þ x

3
� x3

45
þ � � �þ B2nð2xÞ2n

ð2nÞ!x þ � � �

ðbÞ cotx ¼ 1

x
� x

3
� x3

45
þ � � � ð�1Þn B2nð2xÞ2n

ð2nÞ!x þ � � �

ðcÞ tanx ¼ xþ x3

3
þ 2x5

15
þ � � � ð�1Þn�1 2ð22n � 1ÞB2nð2xÞ2n�1

ð2nÞ! þ � � �

ðdÞ cscx ¼ 1

x
þ x

6
þ 7

360
x3 þ � � � ð�1Þn�1 2ð22n�1 � 1ÞB2nx

2n�1

ð2nÞ! þ � � �

[Hint: For (a) use Problem 11.132; for (b) replace x by ix in (a); for (c) use tanx ¼ cot x� 2 cot 2x; for (d) use

csc x ¼ cotxþ tanx=2.]

11.134. Prove that
Y

1

n¼1

1þ 1

n3

� �

converges.

11.135. Use the definition to prove that
Y

1

n¼1

1þ 1

n

� �

diverges.

11.136. Prove that
Y

1

n¼1

ð1� unÞ, where 0 < un < 1, converges if and only if �un converges.

11.137. (a) Prove that
Y

1

n¼2

1� 1

n2

� �

converges to 1
2. (b) Evaluate the infinite product in (a) to 2 decimal places and

compare with the true value.

11.138. Prove that the series 1þ 0� 1þ 1þ 0� 1þ 1þ 0� 1þ � � � is the C � 1 summable to zero.
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11.139. Prove that the Césaro method of summability is regular. [Hint: See Page 278.]

11.140. Prove that the series 1þ 2xþ 3x2 þ 4x3 þ � � �þ nxn�1 þ � � � converges to 1=ð1� xÞ2 for jxj < 1.

11.141. A series
X

1

n¼0

an is called Abel summable to S if S ¼ lim
x!1�

X

1

n¼0

anx
n exists. Prove that

ðaÞ
X

1

n¼0

ð�1Þnðnþ 1Þ is Abel summable to 1/4 and

ðbÞ
X

1

n¼0

ð�1Þnðnþ 1Þðnþ 2Þ
2

is Abel summable to 1/8.

11.142. Prove that the double series
X

1

m¼1

X

1

n¼1

1

ðm2 þ n2Þp, where p is a constant, converges or diverges according as

p > 1 or p @ 1, respectively.

11.143. (a) Prove that

ð1

x

ex�u

u
du ¼ 1

x
� 1

x2
þ 2!

x3
� 3!

x4
þ � � � ð�1Þn�1ðn� 1Þ!

xn
þ ð�1Þnn!

ð1

x

ex�u

unþ1
du.

ðbÞ Use ðaÞ to prove that

ð1

x

ex�u

u
du � 1

x
� 1

x2
þ 2!

x3
� 3!

x4
þ � � �
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