Fourier Series

Mathematicians of the eighteenth century, including Daniel Bernoulli and Leonard Euler, expressed
the problem of the vibratory motion of a stretched string through partial differential equations that had
no solutions in terms of “elementary functions.”  Their resolution of this difficulty was to introduce
infinite series of sine and cosine functions that satisfied the equations. In the early nineteenth century,
Joseph Fourier, while studying the problem of heat flow, developed a cohesive theory of such series.
Consequently, they were named after him. Fourier series and Fourier integrals are investigated in this
and the next chapter. As you explore the ideas, notice the similarities and differences with the chapters
on infinite series and improper integrals.

PERIODIC FUNCTIONS

A function f(x) is said to have a period T or to be periodic with period T if for all x, f(x + T) = f(x),
where T is a positive constant. The least value of T > 0 is called the least period or simply the period of

().

EXAMPLE 1. The function sinx has periods 27w, 47, 67, ..., since sin(x + 27), sin (x + 4x), sin (x + 67), ... all
equal sinx. However, 27 is the least period or the period of sin x.

EXAMPLE 2. The period of sinnx or cosnx, where n is a positive integer, is 25/n.
EXAMPLE 3. The period of tanx is 7.

EXAMPLE 4. A constant has any positive number as period.

Other examples of periodic functions are shown in the graphs of Figures 13-1(a), (b), and (¢) below.
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FOURIER SERIES

Let f(x) be defined in the interval (—L, L) and outside of this interval by f(x + 2L) = f(x), i.e., f(x)
is 2L-periodic. It is through this avenue that a new function on an infinite set of real numbers is created
from the image on (—L, L). The Fourier series or Fourier expansion corresponding to f(x) is given by

o
a nwx . nmXx
—+ E (an cos — + b, sin —) (1)
2 L L

where the Fourier coefficients a, and b, are

1 L
a, :ZJ f(x)cos ? dx
-L n=20,1,2,... 2)

1 L
by =1 JL f(x)sin ? dx

ORTHOGONALITY CONDITIONS FOR THE SINE AND COSINE FUNCTIONS

Notice that the Fourier coefficients are integrals. These are obtained by starting with the series, (/),
and employing the following properties called orthogonality conditions:

L

(a) cos?cos%dx—Oﬁm;ﬁnandLlfm—n
-L
L
(b) sm@sm@dx_o1fm;£nandL1fm_n 3
J-r L L
L mix nix
(c) sin 7 cos A dx = 0. Where m and n can assume any positive integer values.
-L

An explanation for calling these orthogonality conditions is given on Page 342. Their application in
determining the Fourier coefficients is illustrated in the following pair of examples and then demon-
strated in detail in Problem 13.4.

EXAMPLE 1. To determine the Fourier coefficient g, integrate both sides of the Fourier series (/), i.e.,

‘[LLf(x)dx = JL 9 gy +J Z{an cos X , Sin ?} dx

L

L L L
1
Now J % gy = ayL, J sin X gy = 0, J cos 77 g = 0, therefore, a, = —J f(x)dx
1 2 L _r L LJj_;

-1

EXAMPLE 2. To determine a;, multiply both sides of (1) by cos T Y and then integrate. Using the orthogonality
1
conditions (3), and (3)., we obtain a; = LJ f(x) cos X d\c Now see Problem 13.4.

If L = 7, the series (/) and the coefficients (2) or (3) are particularly simple. The function in this
case has the period 2.

DIRICHLET CONDITIONS
Suppose that

(1) f(x) is defined except possibly at a finite number of points in (—L, L)
(2) f(x) is periodic outside (—L, L) with period 2L
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(3) f(x) and f'(x) are piecewise continuous in (—L, L).

Then the series (/) with Fourier coefficients converges to

(a) f(x)if x is a point of continuity

AL

Here f(x + 0) and f(x — 0) are the right- and left-hand limits of f(x) at x and represent hm f(x+e¢€)and
lim f(x — ¢€), respectively. For a proof see Problems 13.18 through 13.23.

e—0+

The conditions (1), (2), and (3) imposed on f(x) are sufficient but not necessary, and are generally
satisfied in practice. There are at present no known necessary and sufficient conditions for convergence
of Fourier series. It is of interest that continuity of f(x) does not alone ensure convergence of a Fourier
series.

if x is a point of discontinuity

ODD AND EVEN FUNCTIONS

A function f(x) is called odd if f(—x) = —f(x). Thus, x°, x> — 3x> 4 2x, sin x, tan 3x are odd
functions.

A function f(x) is called even if f(—x) = f(x). Thus, x* 2x® —4x> + 5, cosx, ¢* + ¢~ are even
functions.

The functions portrayed graphically in Figures 13-1(a) and 13-1(b) are odd and even respectively,
but that of Fig. 13-1(c¢) is neither odd nor even.

In the Fourier series corresponding to an odd function, only sine terms can be present. In the
Fourier series corresponding to an even function, only cosine terms (and possibly a constant which we
shall consider a cosine term) can be present.

HALF RANGE FOURIER SINE OR COSINE SERIES

A half range Fourier sine or cosine series is a series in which only sine terms or only cosine terms are
present, respectively. When a half range series corresponding to a given function is desired, the function
is generally defined in the interval (0, L) [which is half of the interval (—L, L), thus accounting for the
name half range] and then the function is specified as odd or even, so that it is clearly defined in the other
half of the interval, namely, (—L, 0). In such case, we have

) L
a,=0, b,= J f(x)sin BT for half range sine series
L, L )

L nix .
b,=0, a,= —J f(x) cos A dx for half range cosine series
0

PARSEVAL’S IDENTITY

If a, and b, are the Fourier coefficients corresponding to f(x) and if f(x) satisfies the Dirichlet
conditions.

1

L 2 0
24 _ 9 2, 52
Then ZJ_L{f(X)} dx = 2 + ;(an + bn (5)

(See Problem 13.13.)
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DIFFERENTIATION AND INTEGRATION OF FOURIER SERIES

Differentiation and integration of Fourier series can be justified by using the theorems on Pages 271
and 272, which hold for series in general. It must be emphasized, however, that those theorems provide
sufficient conditions and are not necessary. The following theorem for integration is especially useful.

Theorem. The Fourier series corresponding to f(x) may be integrated term by term from « to x, and the

X

resulting series will converge uniformly to J f(x)dx provided that f(x) is piecewise continuous in
a
—L £ x £ L and both « and x are in this interval.

COMPLEX NOTATION FOR FOURIER SERIES
Using Euler’s identities,
¢ = cosf +isin, e =cosh—isind (6)

where i = ~/—1 (see Problem 11.48, Chapter 11, Page 295), the Fourier series for f(x) can be written as

S =) ¢t (7)
where
N EP—
Cp = 2LJ_L]‘()C)e dx )

In writing the equality (7), we are supposing that the Dirichlet conditions are satisfied and further
that f(x) is continuous at x. If f(x) is discontinuous at x, the left side of (7) should be replaced by
(((x4+0)+/(x—-0)

3 .

BOUNDARY-VALUE PROBLEMS

Boundary-value problems seek to determine solutions of partial differential equations satisfying
certain prescribed conditions called boundary conditions. Some of these problems can be solved by
use of Fourier series (see Problem 13.24).

EXAMPLE. The classical problem of a vibrating string may be idealized in the following way. See Fig. 13-2.

Suppose a string is tautly stretched between points (0, 0) and (L, 0). Suppose the tension, F, is the
same at every point of the string. The string is made to
vibrate in the xy plane by pulling it to the parabolic
position g(x) = m(Lx — x*) and releasing it. (m is a 2(x)
numerically small positive constant.) Its equation will
be of the form y = f(x, ). The problem of establishing
this equation is idealized by (a) assuming that the con-
stant tension, F, is so large as compared to the weight wlL

of the string that the gravitational force can be neglected, L=1

(b) the displacement at any point of the string is so small m=1

that the length of the string may be taken as L for any of mel

its positions, and (c) the vibrations are purely transvegse. - N
ay 0 1

The force acting on a segment PQ is gAXW’ 209 = m(Zx—x2)

X <X| < x4 Ax, g~ 32ftpersec.’. If « and B are the
angles that F makes with the horizontal, then the vertical Fig. 13-2
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difference in tensions is F(sina — sin 8). This is the force producing the acceleration that accounts for

the vibratory motion. { tan a tan

ay Vi+tan’e /1+tan?p
—(x, )¢, where the squared terms in the denominator are neglected because the vibrations are small.
a
X

Now F{sina —sin g} = F

d
} ~ F{tana — tan 8} = F{%(x+ Ax, t)—

Next, equate the two forms of the force, i.e.,

ay ay w 82y
Fi—= Ax, ) ——(x, ) =—Ax—>
{Bx (x+Ax 1) x (x )} g * ar

.. . [F; : .
divide by Ax, and then let Ax — 0. After letting o = Wg’ the resulting equation is
ar? x>
This homogeneous second partial derivative equation is the classical equation for the vibrating
string. Associated boundary conditions are

y0,0)=0,y(L,1)=0,1>0

The initial conditions are
2, Y
y(x,0) =m(Lx — x )’E(X’O):O’O <x<L

The method of solution is to separate variables, i.e., assume
y(x, 1) = G(x)H(1)
Then upon substituting
G(x)H"(1) = o G"(x) H(t)
Separating variables yields
G

G- kg

Since the solution must be periodic, trial solutions are

= o’k, where k is an arbitrary constant

G(x) = ¢; sinvV—k x + ¢, cos vV —k x, < 0
H(t) = ¢y sinav/—k 1 + ¢4 cosav/—k ¢
Therefore
y=GH =[c;sin V—kx+ ¢ COS «/—_kx][c3 sinav/—k 1 + €4 COS av/—k 7]

The initial condition y = 0 at x = 0 for all ¢ leads to the evaluation ¢, = 0.
Thus

y =[c; sinv/ =k x][c; sinav —k t + ¢, cosav —k ]

Now impose the boundary condition y =0 at x = L, thus 0 = [¢;sin~/—k L][¢; sinav/—kt+
cycosav —k .

¢ # 0 as that would imply y = 0 and a trivial solution. The next simplest solution results from the
, nmwo . . A . nm nw .
choice ~/—k = A since y = [cl smfx] [c3 smaT t+cy cosaf t] and the first factor is zero when

x=0L.
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With this equation in place the boundary condition 8—J;(x, 0) =0, 0 < x < L can be considered.

v [ sin ][ " cosa™ " sina t]
—=|c — x||cza¢—— cosa— t — c4o— sina—
o LT L L L L L

Attr=0

0 [ sinnn ] nr
=|C — X |[C30 —
UL IPTL

Since ¢; # 0 and sinnfn x is not identically zero, it follows that ¢; = 0 and that

—[ sinnn ][ nncos nnt]
y=|¢ Lx c4aL aL

The remaining initial condition is
y(x,0) = m(Lx — x),0<x <L

When it is imposed
nm

nw .
m(Lx — x?) = ¢jc400 — sin — x
L L

However, this relation cannot be satisfied for all x on the interval (0, L). Thus, the preceding

extensive analysis of the problem of the vibrating string has led us to an inadequate form
nw . nxw niw
Y = ¢1c40— SIin — xcosa— !
L L L

and an initial condition that is not satisfied. At this point the power of Fourier series is employed. In
particular, a theorem of differential equations states that any finite sum of a particular solution also is a
solution. Generalize this to infinite sum and consider

o
nmw nmw
= b,sin— xcosa— ¢
Y ; S L
with the initial condition expressed through a half range sine series, i.e.,

o0
Zb,,sin%x:m(Lx—xz), t=0
n=1

According to the formula of Page 338 for coefficient of a half range sine series

L L .
by = L (Lx — xz)sm? dx
That is
L Lo Ly
—b, = J Losin 2% dx—J sin X gy
2m 0 L 0 L

Application of integration by parts to the second integral yields

L

L 3 L
L L
b, =L xsin@dx-i——cosnn-i— —cos@bcdx
2m L L

0 ni o N

When integration by parts is applied to the two integrals of this expression and a little algebra is
employed the result is

e
b, = L 3
(nm)

(1 — cosnm)
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Therefore,

o0
. nmw nw
y= Xl:b,,sm fxcosaft
n=

with the coefficients b, defined above.

ORTHOGONAL FUNCTIONS

Two vectors A and B are called orthogonal (perpendicular) if A- B =0or 4By + 4A,B, + A38; =0,
where A = A,i+ 4,j+ Az;k and B = Bji+ B,j+ Bs;k. Although not geometrically or physically evi-
dent, these ideas can be generalized to include vectors with more than three components. In particular,
we can think of a function, say, A(x), as being a vector with an infinity of components (i.e., an infinite
dimensional vector), the value of each component being specified by substituting a particular value of x in
some interval (@, b). It is natural in such case to define two functions, A(x) and B(x), as orthogonal in
(a, b) if

b
J A(x)B(x)dx =0 ©)

A vector A is called a unit vector or normalized vector if its magnitude is unity, i.e., if A - A = 4% = 1.
Extending the concept, we say that the function A(x) is normal or normalized in (a, b) if

)
| ez ac=1 (10)
From the above it is clear that we can consider a set of functions {¢,(x)},k =1, 2, 3, ..., having the

properties
b
[ ans,ras=0 mn an
b

J {¢m(x)}2 dx =1 m = 1,2,3,... (12)

In such case, each member of the set is orthogonal to every other member of the set and is also
normalized. We call such a set of functions an orthonormal set.
The equations (/7) and (/2) can be summarized by writing

b
J ¢m(x)d)n(x) dx = Smn (13)

where §,,,, called Kronecker’s symbol, is defined as 0 if m # n and 1 if m = n.

Just as any vector r in three dimensions can be expanded in a set of mutually orthogonal unit vectors
i, j, k in the form r = ¢;i + ¢,j + 3k, so we consider the possibility of expanding a function f(x) in a set
of orthonormal functions, i.e.,

fO=Y 0t a<x=h (14)
n=1

As we have seen, Fourier series are constructed from orthogonal functions. Generalizations of
Fourier series are of great interest and utility both from theoretical and applied viewpoints.
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Solved Problems

13.1. Graph each of the following functions.
3 0<x<5 .
(a) f(x)= Period = 10
-3 S5<x<
AN
~— Period —
_— _———— ———— ) f— _—— _———
3
T T T T T ¥ T T T T T X
=25 =20 -15 =10 -5 0f 3 5 10 15 20 25
Fig. 13-3

343

Since the period is 10, that portion of the graph in —5 < x < 5 (indicated heavy in Fig. 13-3 above) is
extended periodically outside this range (indicated dashed).

x=0,5,-5,10,-10, 15, —15, and so on.

Note that f(x) is not defined at

These values are the discontinuities of f(x).

sinx 0Zx=<m .
®) f(x)= Period = 2n
0 T<X<2m
JX) la——— Pperiod ——
N - TN TG

N // \\ // \\ /l

A yi A yi — i X
-3 -2 - 0 T 2 3n 4

Fig. 13-4

Refer to Fig. 13-4 above.

Note that f(x) is defined for all x and is continuous everywhere.

0 0x<2
(¢) f(x) =31 2=<x<4 Period=6
0 4<5x<6
S &) )
=—— Period —
—_— _—— ==y R —_— -
1
1
| - ™ T il L 1 T L L T T
-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14

Refer to Fig. 13-5 above.

+10, +14,....

Fig. 13-5

Note that f(x) is defined for all x and is discontinuous at x = 42, +4, £8,
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L L
13.2. ProveJ sinkﬂdx:J cos T =0 k=123
Lo LT

Lk L kax|* L L
J,L sin % dx = i cos %x » =~ coskn—kg cos(—km) =0
Lk L . kax|" L L .
[% cos ? dx = o sin %x » = sin ki — o sin(—km) =0
L mmx nmx L mmx . nnx 0 m#n
13.3. Prove (a) J cOS —— cos — dx = J sin —— sin — dx =
L L L L L L m=n

L mix nix
b in — —dx=0
) J_L sin 7 cos 7 x

where m and n can assume any of the values 1,2,3,....
(a) From trigonometry: cos A cos B =1{cos(4 — B) 4+ cos(4 + B)}, sinAsinB=1{cos(4 — B) — cos
(4 + B)}.

Then, if m # n, by Problem 13.2,

L L
1 — )
J,LCOS mLﬂ cos ? dx = —JL{cos w—i—cos @} dx=0

Similarly, if m # n,

L L _ "
J sinmsin@dx:lj {cosw—cosw}dx:o
_L L I L

If m = n, we have

L L
) 1 2

J cos X cos nx dx = —J (1 + cos nnx) dx =L

_L L _L L

L 2
L L
1 2
J sin@sin@dx=—J 1 —cos e dx=1L
_L L L 2).. L

Note that if m = n these integrals are equal to 2L and 0 respectively.
(h) We have sin Acos B = %{sin(A — B) +sin(4 + B)}. Then by Problem 13.2, if m # n,

L L
1 — )1
Jillsin ? cos ? dx:EJ L{sin M%—sin w} dx=0

If m =n,

The results of parts (a) and (b) remain valid even when the limits of integration —L, L are replaced

by ¢, ¢ + 2L, respectively.

oo
13.4. If the series 4 + Z(an cos ? + b, sin ?) converges uniformly to f(x) in (—L, L), show that

forn=1,2.3 "

1~ nITXx 1 (- . nmx a
(Cl) a, = zJLf(X) COS T dx, (b) bn = ZJLf(X) Sin T dx, (C) A= ? .
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(a) Multiplying
> nwx nwx
f() =4+ Z(an cos ==+ b, sin T) ()
n=1
by cos ? and integrating from —L to L, using Problem 13.3, we have
L
J f(x) cos X gy = J cos X g
» L

L
Z{ J cos @ cos n% dx + b, J_L cos mzx sin % dx}

a,, L iftm#0

1 L
Thus am:—J f(x)cos@dx fm=1,2,3,...
L), L

(b) Multiplying (/) by sin % and integrating from —L to L, using Problem 13.3, we have

L L
J f(x)sin@dx:AJ sin 277 gy
—L L —L L
TX nwx L mnx | nmx
+Z{anJ 51n—cosTdr+b LL 17 7 }
=b,L
1 (r . mmx .
Thus b,=—=1 f(x)sin — dx ifm=1,2,3,...
L), L

(¢) Integrating of (/) from —L to L, using Problem 13.2, gives

L 1
JiLf(x) dx =2AL or A= ZJ f(x)dx

1 L
Putting m = 0 in the result of part (a), we find qy = ZJ f(x)dx and so A = %.
-L

The above results also hold when the integration limits —L, L are replaced by ¢, ¢ + 2L.

Note that in all parts above, interchange of summation and integration is valid because the series is
assumed to converge uniformly to f(x) in (—L, L). Even when this assumption is not warranted, the
coefficients a,, and b,, as obtained above are called Fourier coefficients corresponding to f(x), and the
corresponding series with these values of «,, and b,, is called the Fourier series corresponding to f(x).
An important problem in this case is to investigate conditions under which this series actually converges
to f(x). Sufficient conditions for this convergence are the Dirichlet conditions established in Problems

13.18 through 13.23.

13.5. (@) Find the Fourier coefficients corresponding to the function

0 -5<x<0 .
f(x):{3 0<x<5 Period = 10

(b) Write the corresponding Fourier series.
(¢) How should f(x) be defined at x = —5, x = 0, and x = 5 in order that the Fourier series will

converge to f(x) for -5 < x £ 5?7

The graph of f(x) is shown in Fig. 13-6.
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13.6. Expand f(x) = x>, 0 < x < 2 in a Fourier series if (a) the period is 27, (b) the period is not

FOURIER SERIES

Jx) |
~+— Period —

P — _—i- -—— - -

3

{

T a T ™ i

-15 -10 -5 5 10 15

Fig. 13-6

(a) Period =2L =10 and L = 5.

1 (et nwx 1 nwx
a, = zJL f(x) COoS T dx = EJ_Sf(.X) COS T dx
1((° nwx 3 nwx 30 nwx
=— 0 — 3 —dx} == —d
5”5( ) cos 5 x+L( )cos 5 v} 5Lcos 5 dx
5
:é(isin@> —0  ifn#0
5 \nmw 5 /1
30 Omx 3(°
Ifn_O,an_ao_gjocos?dx_gjodx_3.
1 [et2L . nmx 1P . nmx
bn—zj( f(x)smde—gj_sf(x)sdex
1 nwx

0 . nmXx S
3 ”—5(0) sin — dx + L(3) sin

3 5 cos nwx
5 nmw 5

(b) The corresponding Fourier series is

> _3(1 —cosnn)

0 niw

o0

(o]
a nwx . onmxy 3 3(1 —cosnm) . nmx
2+n2:1:<a,,cos 7 + b, sin L>_2+n2=1: - sin 5
3+6 S.nnx+ls.n3nx+ls
=—+4—|sin —+-sin — 4+ —si
2 7 53 5 5

(¢) Since f(x) satisfies the Dirichlet conditions, we can say that the series converges to f(x) at all points of

continuity and to fx+0)+/(x~0)

2

of discontinuity, the series converges to (3 4+ 0)/2 = 3/2 as seen from the graph.
follows,

3/2 x=-5

0 —5<x<0

f(x)=143/2 x=0 Period = 10
3 0<x<S5
3/2 x=5

then the series will converge to f(x) for —5 < x < 5.

specified.
(a) The graph of f(x) with period 27 is shown in Fig. 13-7 below.

5
”’5” dx} - %L sin "= dx

Smx

in —-4---

5

Choose the interval ¢ to ¢ + 2L as —5 to 5, so that ¢ = —5.

)

at points of discontinuity. At x = —5, 0, and 5, which are points

If we redefine f(x) as
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S )
/ / / / /
/ / / / //
/ / / /
/ / / 4 / /
/ 7/ 7/ V4 P /
- - — - /// _ - _ - .
*én *éltzz *IZrt o 2l't 4111 6|7t
Fig. 13-7
Period = 2L =27 and L =n. Choosing ¢ = 0, we have
1 c+2L 3 1 2
4 =7 L f(x)cos ELY dx = - L x? cos nx dx
1 sinnx —cosnx —sinnx\||*" 4
) () o[ -3 e
T n n n 0 n

1 27‘[ 8 2
Ifn:O,a():;J x%lx:%.
0

2

c+2L 1
b, = _L f(x)sin % dx = ;L X% sin nx dx

1 : : ; 2w _4
:;{(xz)(_co;nx) _(2x)(_sn;;ax> +(2)(co;3nx>H0 :Tn

47 /4 4
Then f(x) = x> = i + <— cosnx — 771 sin nx>.

3 n?
n=1

This is valid for 0 < x < 27. At x = 0 and x = 27 the series converges to 27>,

(b) If the period is not specified, the Fourier series cannot be determined uniquely in general.

. 1 1 1 2

13.7. Using the results of Problem 13.6, prove that B + 2 + 7 4. = %

A . 477 4

At x = 0 the Fourier series of Problem 13.6 reduces to KN + 2—2.
n=1 n

By the Dirichlet conditions, the series converges at x = 0 to %(O + 47%) =277,

a7 X4

00 1 7T2
Then KN + 272, and so ;n—z =5

—2:
n:ln

ODD AND EVEN FUNCTIONS, HALF RANGE FOURIER SERIES

13.8. Classify each of the following functions according as they are even, odd, or neither even nor odd.

2 0<x<3

(a)f(x):{_2 3o v-0 Period = 6

From Fig. 13-8 below it is seen that f(—x) = —f(x), so that the function is odd.

cosx O<x<m .
®) () = { Period = 27

0 T<X<2mW
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From Fig. 13-9 below it is seen that the function is neither even nor odd.
S
s\\ 1 ‘\\
\ ~
\\ \\

= N r T T N — X

-2 \ - o 4 2 \ 3n

\\ \
o S

Fig. 13-9

(¢) f(x)=x(10 —x),0 < x < 10, Period = 10.

From Fig. 13-10 below the function is seen to be even.

S )
~ TN
Vd N
e AN
N / \ /
\ ’ \ 25 /
N 7/ \ /
A4 l /
] ! X
-10 o 5 10
Fig. 13-10

Show that an even function can have no sine terms in its Fourier expansion.

Method 1: No sine terms appear if b, =0,n=1,2,3,.... To show this, let us write
1~ . nmX 1(° . nmXx 1~ . nmX
bn = ZJiL‘f(X) S T dx = ZjiLf‘(X) Sin T dx + ZJO f(x) S T dx (1)
If we make the transformation x = —u in the first integral on the right of (/), we obtain
10 1 (* 1 (*
Z J_Lf(x) sin ? dx = ZL f(=u) sin(— %) du = — ZL f(=u)sin % du )

1 1
— _ZL f(u)sin % du = _ZL f(x)sin ? dx

where we have used the fact that for an even function f(—u) = f(u) and in the last step that the dummy
variable of integration u can be replaced by any other symbol, in particular x. Thus, from (7), using (2), we
have
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n

b, J f(\)sm dv-}-lrf(x)smdx_

o0
. _a nix . NTX
Method 2: Assume f(x) = > + n; (an c0s —— + b, sin T)
o0
_ @ nmwx . hmXx
Then f(—x) = 5 + E (a,,cos 7 — by sin 7 )

n=1

If f(x) is even, f(—x) = f(x). Hence,

oo X
+ Z(a cos X + b, sin Lx) = ?0 Z:(a cos X — b, sin ?)
nwx ay & nwx
and so Zb sin — re., f(x)= > + ;an cos —

and no sine terms appear.
In a similar manner we can show that an odd function has no cosine terms (or constant term) in its
Fourier expansion.

. 2 (£ niTx
13.10. If f(x) is even, show that (a) a, = ZJ f(x)cos A dx, (b) b,=0.
0

1

0
(a) a,,:LJ:f(x)cosnzxdx:LJ f(x)cos—d‘H—lJ f(x)cos—d

Letting x = —u,

1

ZJiLf(x) cos % dx = _J S(=u) cos( nu) du %J:f(u) cos % du

since by definition of an even function‘f(—u) =f(u). Then

L
0

(b) This follows by Method 1 of Problem 13.9.

13.11. Expand f(x) =sinx, 0 < x < 7, in a Fourier cosine series.

A Fourier series consisting of cosine terms alone is obtained only for an even function. Hence, we
extend the definition of f(x) so that it becomes even (dashed part of Fig. 13-11 below). With this extension,
f(x) is then defined in an interval of length 2z. Taking the period as 2w, we have 2L = 27 so that L = 7.

Jx)
-~ TN -~
N ’ N s \ N
Ny N/ \ / N
Y \l’ ] T X
-2 - o T 2
Fig. 13-11

By Problem 13.10, b, = 0 and

2 L 2 (7
a, = ZJ J(x)cos ? dx = —J sin x cos nx dx
0 TJo
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g

_cos(n+ 1)x  cos(n — l)x}

= lr{sin(x + nx) + sin(x — nx)} = ! {
T Jo

T n+1 n—1 0
_ 1 [l—=cos(n+lm cos(n—Dm—1] 1 [l+cosnr 1+ cosnm
T n+1 n—1 | n+1 n—1
=2(1
_ 2 teosnm) e
m(n= —1)
T 2 ‘2, F14
Forn=1, a :—j sinxcosxdx:—sm * =0.
7)o T 2 |
2 (" . 2 i
Forn=0, ay=—| sinxdx=—(—cosx)] =—
T J)o b4 0
2 2& (1
Then f(x)y=—- fz(_zcﬂ cos nx
o omwi= nt—1

_z_i cos2x+cos4x+cos6x+
T ow\22-1 42-1 6-1

13.12. Expand f(x) = x,0 < x < 2, in a half range (a) sine series, (b) cosine series.

(a) Extend the definition of the given function to that of the odd function of period 4 shown in Fig. 13-12
below. This is sometimes called the odd extension of f(x). Then 2L =4, L = 2.

Sx)
/ / 7
/ / /
Vd . 7/
P 0 4 X
f Ll I 7/ ] A ]
o 0 2, 2 y 6 /
/7 7/ 7/ 7/
Ve / /7 7/
Fig. 13-12
Thus a, = 0 and
2 (5. . nmX 2> . nmx
bn:ZJOf(X)SlanX—EJOXSIHT dx
2
= {(x)(n—j cos ?) — (1)(’72—::2 sin ?)} . = n—;: cos nm
Then f(x) = i_—4 cos nsin 12X
h = nm 2
T 2 2 2 3 2

() Extend the definition of f(x) to that of the even function of period 4 shown in Fig. 13-13 below. This is
the even extension of f(x). Then 2L =4, L = 2.
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S
N\ 7\ \ s\
7 N\ / N N 7/ N\
7 N\ / N\ N 7/
| \T/ I ] M T X
-6 -4 -2 0 2 4 6
Fig. 13-13

Thus b, =0,
2

2 (£ ) 2 p
a, :zjof(x)cos e dx:zjoxcos ? dx

fon ) 0G|

0
4
:ﬁ(COSI’UT—l) Ifn;éO
n°m

2
If n:O,a():J xdx =2.
0

= 4
Then fx)=1+ ;W(cosnn — 1)cos %
—1—E cosn—x—i—i 3T —i—l 57r_x+
= 2 '3 TR 2

It should be noted that the given function f(x) = x, 0 < x < 2, is represented equally well by the
two different series in (a) and (b).

PARSEVAL’S IDENTITY

13.13. Assuming that the Fourier series corresponding to f(x) converges uniformly to f(x) in (=L, L),
prove Parseval’s identity

1

ZJ {f(x)} dx— +E(a +b)

where the integral is assumed to exist.

nwx
If f(x) = —+ Z(a cos 11X 7 +b,1 7 ) then multiplying by f(x) and integrating term by term

from —L to L (Wthh is justified since the series is uniformly convergent) we obtain
L ya 00 ' .
[ verac=2] swac ] swes T an | s
-L 2 ). o . L . 7
a I
:7L+L;(an +b2) 0

where we have used the results

L

L niTx . NmX L
J_Lf(x) cos < dx = La,, J_Lf(x) sin 5 dx = Lb,, J_Lf(x) dx = Lay 2

obtained from the Fourier coefficients.
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13.14.

13.15.
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The required result follows on dividing both sides of (/) by L. Parseval’s identity is valid under less
restrictive conditions than that imposed here.

(a) Write Parseval’s identity corresponding to the Fourier series of Problem 13.12(b).
I 1 1 1
TR TR Ul
(a) Here L=2.dg=2.ay = — (cosnt — 1).n # 0, b, = 0.
n-m

(b) Determine from (a) the sum S of the series —

Then Parseval’s identity becomes

lr {f(x)}zdx—lrxdx @+Z 6 (cosnr— 17
2)., T2), -

L8 +64 +1+1+ PR S S B _

o’ 3T 34 s 96

I I I
(h) S=jgtytyt <14+++)+(+++)

24 34 34 24 44 64
1 1 1 1 /1 1 1
“\Ermte ) talpta et
4 4
T S . T
:%—i_ﬁ’ fromwhlchS—%

Prove that for all positive integers M,

2
—°+Z( +b2) %J {f (X)) dx

where a, and b, are the Fourier coefficients corresponding to f(x), and f(x) is assumed piecewise

continuous in (—L, L).

M
ap nwx . NTX
Let Syu(x) = > + HEZI (an cos —— + b, sin T> 0))

For M =1,2,3,... this is the sequence of partial sums of the Fourier series corresponding to f(x).
We have

L
J,L{f(X) - SM(X)}2 dx ; 0 (2)

since the integrand is non-negative. Expanding the integrand, we obtain

L

L L
2j £ Sy () dx—j 2 () dx < j (P dx 3)
L —L

Multiplying both sides of (/) by 2 f(x) and integrating from —L to L, using equations (2) of Problem
13.13, gives
L LM
2J F(X) Sy(x)dx = 2L 30 + ) (an+by) 4)
—L n=1
Also, squaring (/) and integrating from —L to L, using Problem 13.3, we find
L 2 M
J S3(x)dx =L 70 + ) (ay + by (5)
-L n=1

Substitution of (4) and (5) into (3) and dividing by L yields the required result.
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Taking the limit as M — oo, we obtain Bessel’s inequality
a% o, 2 2 L, 2
eSS VO ©

If the equality holds, we have Parseval’s identity (Problem 13.13).

We can think of S;,(x) as representing an approximation to f(x), while the left-hand side of (2), divided
by 2L, represents the mean square error of the approximation. Parseval’s identity indicates that as M — oo
the mean square error approaches zero, while Bessels’ inequality indicates the possibility that this mean
square error does not approach zero.

The results are connected with the idea of completeness of an orthonormal set. If, for example, we were
to leave out one or more terms in a Fourier series (say cos 4mx/L, for example), we could never get the mean
square error to approach zero no matter how many terms we took. For an analogy with three-dimensional
vectors, see Problem 13.60.

DIFFERENTIATION AND INTEGRATION OF FOURIER SERIES

13.16. (¢) Find a Fourier series for f(x) = x>, 0 < x < 2, by integrating the series of Problem 13.12(a).

00 -1 n—1
(b) Use (a) to evaluate the series Z%
n=1 n

(a) From Problem 13.12(a),
_4 s'nﬂ—lsinzﬂ—klsinh—x— (7
R S R e R )
Integrating both sides from 0 to x (applying the theorem of Page 339) and multiplying by 2, we find

x2=C—16<c ax 1 2nx 1 371x_.”>

2\ T E S s

16 11 1
where C:;(l —?+¥_P+...>.

(b) To determine C in another way, note that (2) represents the Fourier cosine series for x* in 0 < x < 2.
Then since L = 2 in this case,

)

a 1 (*F 1J2 5 4
= —_— = — D = — X d = —
C > Ljof(\c) > 0\ =3

Then from the value of C in (a), we have

2 (—1)"! 1 1 1
=]l -1t = 4. =
”X:; n2 22+32 42+

YR
¥

13.17. Show that term by term differentiation of the series in Problem 13.12(«) is not valid.

2 37
Term by term differentiation yields 2(005 ? — cos % + cos ;m - )

Since the nth term of this series does not approach 0, the series does not converge for any value of x.
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CONVERGENCE OF FOURIER SERIES

in(M + 1)t
13.18. Prove that (a) %+cost+cos2t+-~+cosM[:M
2sin5 1t
1 (" sin(M + 1)z 1 1 (° sin(M + by 1
(b)_J (- 12) dt ==, _J (' 12) dt = 3.
m)o 2sinst 2 w)_r 2sinjt 2

(a) We have cosntsinds = 1{sin(n + 1)t — sin(n — )1}
Then summing fromn =1 to M,
sin§ #{cos ¢ + cos 2t + - - - + cos Mt} = (sin3 1 — sin 1) + (sin3 ¢ — sin3 1)
+ -+ (sin(M + D)t — sin(M — 1)1)
= Msin(M + )1 —sinl 1}
On dividing by sini¢ and adding 3, the required result follows.

(b) Integrating the result in (a) from —z to 0 and 0 to =, respectively. This gives the required results, since
the integrals of all the cosine terms are zero.

T 7T
13.19. Prove that lim J f(x)sinnxdx = lim J f(x)cosnxdx = 0 if f(x) is piecewise continuous.
n—oo |__ n—oo |__
2 0
This follows at once from Problem 13.15, since if the series % + Z(aﬁ + b?) is convergent, lim a, =
lim bn =0. =1 n—00
n—oo

The result is sometimes called Riemann’s theorem.

13.20. Prove that A}im J f(x)sin(M + %)x dx = 0 if f(x) is piecewise continuous.

We have

T

r f(x)sin(M + Hxdx = J {f(x)sind x} cos Mx dx + Jn {f(x) cos$x}sin Mx dx

Then the required result follows at once by using the result of Problem 13.19, with f(x) replaced by
f(x) sin%x and f(x) cos%x respectively, which are piecewise continuous if f(x) is.
The result can also be proved when the integration limits are ¢ and b instead of —z and .

13.21. Assuming that L = m, i.e., that the Fourier series corresponding to f(x) has period 2L = 27, show
that

M - . |

a . 1 sin(M + )t

Su(x) :_0+Z(ancosnx+bn sin nx) :—} f(z+x)(.712)
2 n=1 ) _x 2 Sin 7 t

Using the formulas for the Fourier coefficients with L = 7, we have

T

. | 1
a,cosnx + b, sinnx = (—J f(u)cosnudu) cosnx + (—J
T) o T

| . .
=— J f(u)(cos nucos nx + sin nu sin nx) du
T =TT

f(u)sin nu du) sin nx

-7

= ! Jﬂ f(u)cosn(u — x)du
T)n

Ay

1
Also, 3= L £ (u)du
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M
Then Sy(x) = % + Xj(a,7 cos nx + b, sinnx)
n=1

— Jn S () du + 1 f: Jn f(u)cosn(u — x)du
- 27 r T _ -

:%J f(u){ +Zcosn(u—x)} du

1

-1 [ 1) sin(M + 5)(u —X)

2sin%(u —X)

du

using Problem 13.18. Letting u — x = ¢, we have
1 (™ sin(M + byt
Su =2 [ s I

) ey 2 sin% t

Since the integrand has period 27, we can replace the interval —m — x, w — x by any other interval of
length 27, in particular, —m, 7. Thus, we obtain the required result.

13.22. Prove that
—_— 0 —_— —_—
S — (f(x—er)—l—f(x 0)> _ lJ_ (f(l+x) f(x—0

2 T 2sin%t

)> sin(M + Y dt

+1J”<f(t+x)—f(x+0)
7 Jo

i 1
2 sin%t ) sin(M + )t dt

From Problem 13.21,

1(° sin(M + )¢ sin(M + Dt
Sued = [ s ET j JICE kst (1)
) 2sin5t 2sinyt
Multiplying the integrals of Problem 13.18(b) by f(x — 0) and f(x + 0), respectively,
X+0)+f(x—0) 1(° sin(M + 1) sin(M + 1)z
anikel )=—J sor-0) S Jf( o) InM + )0 @)
m)_ 2t 2sin5t

Subtracting (2) from (/) yields the required result.

13.23. If f(x) and f'(x) are piecewise continuous in (—, ), prove that

J&x+0)+/(x—-0)
2

th w(x) =

J+x)—f(x+0)

The function is piecewise continuous in 0 < ¢ < 7 because f(x) is piecewise con-

1
tinous. 2sinyt
Also, lim S+ _]:(x +0) = lim f+x) = fx+0) . _t — = lim J4x)—f(x+0) exists,
=0+ 2sinyt =0+ t 2sinyt =0+ t

since by hypothesis f'(x) is piecewise continuous so that the right-hand derivative of f(x) at each x exists.

f(t+X) —fx=0).

2s1n t

J+x)—f(x=-0).

251n§t

Thus

is piecewise continous in 0 < ¢ < 7.

Similarly,

is piecewise continous in —7 < ¢ < 0.
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Then from Problems 13.20 and 13.22, we have

J&x+0)+/(x-0)

lim 8,00 - { ! } 0 o jim 500 LOFOHE=0)

2

BOUNDARY-VALUE PROBLEMS

13.24. Find a solution U(x, ) of the boundary-value problem

2
&: M t>0,0<x<?2
ot x>
U@0,)=0,U2,5)=0 t>0
U(x,0)=x 0<x<?2

A method commonly employed in practice is to assume the existence of a solution of the partial
differential equation having the particular form U(x, t) = X(x) T(t), where X(x) and 7'(¢) are functions of
x and ¢, respectively, which we shall try to determine. For this reason the method is often called the method
of separation of variables.

Substitution in the differential equation yields

9 i dT d*X

where we have written X and 7 in place of X(x) and T'(¢).
Equation (2) can be written as

1 dT 1 d'X 3
ST d X de )
Since one side depends only on ¢ and the other only on x, and since x and ¢ are independent variables, it is
clear that each side must be a constant c.

In Problem 13.47 we see that if ¢ = 0, a solution satisfying the given boundary conditions cannot exist.
Let us thus assume that ¢ is a negative constant which we write as —A%>. Then from (3) we obtain two
ordinary differentiation equations

ar ., X
— 4+ 32T =0, AX=0 4
a " pra @
whose solutions are respectively
T = Cle_nz’, X = A;cosix + B;sinix ®))

A solution is given by the product of X and 7 which can be written
Ulx, 1) = e '(4 cos Ax + Bsin A.x) (6)

where 4 and B are constants.
We now seek to determine A and B so that (6) satisfies the given boundary conditions. To satisfy the
condition U(0, ) = 0, we must have

P A)=0  or  A=0 %)
so that (6) becomes
U(x, 1) = Be™**"sin Ax 8)
To satisfy the condition U(2, ) = 0, we must then have

Be™*'sin2). = 0 9)
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Since B = 0 makes the solution (8) identically zero, we avoid this choice and instead take

sin2h =0,  ie, 2L=mx or x:g (10)
where m =0, =1, +2, ....

Substitution in (8) now shows that a solution satisfying the first two boundary conditions is

mix

2

where we have replaced B by B,,, indicating that different constants can be used for different values of m.

If we now attempt to satisfy the last boundary condition U(x,0) = x,0 < x <2, we find it to be
impossible using (/7). However, upon recognizing the fact that sums of solutions having the form (/7)
are also solutions (called the principle of superposition), we are led to the possible solution

Ulx, 1) = B¢ " ™ /* sin (11)

= 5 8 g P 0

m=1

From the condition U(x, 0) = x,0 < x < 2, we see, on placing ¢ = 0, that (/2) becomes
- mux
X = B, sin —— 0<x<?2 13
X ’; o SN ) <x< (13)

This, however, is equivalent to the problem of expanding the function f(x) = x for 0 < x < 2 into a sine

—4
series. The solution to this is given in Problem 13.12(«), from which we see that B,, = — cosmu so that
(12) becomes e

00

4 5 .
U(x’ 1) = Z(—% cos Vﬂﬂ)e_3m 21/4 sin mzz'rx b

m=1

which is a formal solution. To check that (/4) is actually a solution, we must show that it satisfies the partial
differential equation and the boundary conditions. The proof consists in justification of term by term
differentiation and use of limiting procedures for infinite series and may be accomplished by methods of
Chapter 11.

The boundary value problem considered here has an interpretation in the theory of heat conduction.

The equation i kﬁ is the equation for heat conduction in a thin rod or wire located on the x-axis
X

between x = 0 and x = L if the surface of the wire is insulated so that heat cannot enter or escape. U(x, ¢) is
the temperature at any place x in the rod at time z. The constant k = K/sp (where K is the thermal
conductivity, s is the specific heat, and p is the density of the conducting material) is called the diffusivity.
The boundary conditions U(0, t) = 0 and U(L, ) = 0 indicate that the end temperatures of the rod are kept
at zero units for all time ¢ > 0, while U(x, 0) indicates the initial temperature at any point x of the rod. In
this problem the length of the rod is L = 2 units, while the diffusivity is k = 3 units.

ORTHOGONAL FUNCTIONS

13.25. (@) Show that the set of functions

. TX X . 27X 2nx . 3mx 3mx
I,SIHT,COST,SIH I , COS I , SIn I ,COST,...

forms an orthogonal set in the interval (—L, L).
(b) Determine the corresponding normalizing constants for the set in («) so that the set is
orthonormal in (—L, L).

(a) This follows at once from the results of Problems 13.2 and 13.3.
(b) By Problem 13.3,

L L
J sin’ mrx dx =L, J cos’ mrx dx =1L
_L L _L L
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L 1 mmx 2 L 1 mmx ?
Then J_L <\/; sin L) dx =1, J_L <\/; cos L) dx =1

Also JL (1)Ydx=2L or JL (L)zdx —1
’ -L L \WV2L
Thus the required orthonormal set is given by
; LsinE LcosE LsinZﬂ Lcoszn—x
2L°VL  L’\L L’ L L L L’

MISCELLANEOUS PROBLEMS

13.26. Find a Fourier series for f(x) = cosax, —m < x < &, where o« £ 0, +1, +2, £3,....

We shall take the period as 27 so that 2L = 2%, L = w.  Since the function is even, b, = 0 and

2 (F 2 (7
a,=—| f(x)cosnxdx =—| cosaxcosnxdx
LJo 7 Jo
1 7T
=—| {cos(e — n)x + cos(x + n)x} dx
T Jo
1 (sin(@ —n)wr = sin(a + n)w 2 sin ar oS N
o o—n a+n T (e —n?)
2 sin o
Oy =
ar
Then
. . 00
sinar 2« sinaw Cos nm
cosax = + 3 7 cosnx
am T as—n

n=1

sinam (1 2a cosx 4 20 cos? 20 08 3x 4
= —— X X — X+
T a o —12 ar —22 o? —3?

2 2 2
13.27. Prove that sinx = x l—x—2 1 — x2 1 — x2
a (27) (3m)

Let x = m in the Fourier series obtained in Problem 13.26. Then

sinom(l 2a 2a 2a )
cosa = —+ + + 4.
T

a o?—12 F—=22 gr_32
or

cot 1 200 " 200 " 200
Teotam — — =
o oF—12 =22 r-—32

+ .- (])

This result is of interest since it represents an expansion of the contangent into partial fractions.

By the Weierstrass M test, the series on the right of (/) converges uniformly for 0 < || < |x| < 1 and
the left-hand side of (/) approaches zero as o — 0, as is seen by using L’Hospital’s rule. Thus, we can
integrate both sides of (/) from 0 to x to obtain

* 1 Y 2a Y 2u
J()(ncotan—&)dazjoaz_] da—f—JOmdoH-"'

. ¥ > b
S o X X
or 1n< o )O:ln<l—12)+ln<1—22>+
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: 2 2 2
. S mwx . X X X
1.€., ln< X ) :n]ll;go 1n<] —F) +1n(1 —?> ++ln<] —F)

so that

. 2 2 2 2 2
SIn TXxX . X X X X X
= =,}£20<1—1—z><1‘2—z>“'(17)=<1‘1—z)<1‘2—z)"' @

Replacing x by x/m, we obtain
2 2
sinx=x(1-5)(1-=—] - @3)
n 2m)

called the infinite product for sin x, which can be shown valid for all x. The result is of interest since it
corresponds to a factorization of sin x in a manner analogous to factorization of a polynomial.

prove tha T L 212446688,
rov 271.3:3:-5-5-7-7-9.

Let x = 1/2 in equation (2) of Problem 13.27. Then,

(-0~ 6D

Taking reciprocals of both sides, we obtain the required result, which is often called Wallis’ product.

Supplementary Problems

FOURIER SERIES

13.29.

13.30.

Graph each of the following functions and find their corresponding Fourier series using properties of even
and odd functions wherever applicable.
B 8§ 0<x<?2 Period 4 5 [ 4=x=0 Period 8
(@) f(x) = 8 ex<d erio (b) f(x) = x 0=x<4 erio
. 2x 0=Zx<3 .
(¢) f(x)=4x,0 <x < 10, Period 10 @) f(x)= Period 6
0 3<x<0
‘ (l cosnn) nnx 8 K (1 — cosnm) nwx
40 N1 . nwx 6(cosn7r— 1) nmx 6cosnmw . nmx
(c) 20—;2; sin 5 +Z{ cosT— o sin T}

n=1

In each part of Problem 13.29, tell where the discontinuities of f(x) are located and to what value the series

converges at the discontunities.
Ans. (a) x=0,£2,+4,...;0 (b) no discontinuities (¢) x =0, +10,+20,...;20
(d) x ==3,49,£15,...;3
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13.31.

13.32.

13.33.

13.34.

13.35.

13.36.

13.37.

FOURIER SERIES [CHAP. 13

Expand f(x) = { i:z 2 i jz i g in a Fourier series of period 8.

Ans. ; cos T—f—? cos T—’_? cosT

16{ ax 1 3ax 1 Smx }
+...

(a) Expand f(x) =cosx, 0 < x < m, in a Fourier sine series.
(b) How should f(x) be defined at x = 0 and x = x so that the series will converge to f(x) for 0 < x < n?

Ans. (@) _Z”:ifz”f () £0) =f(m) =0

(a) Expand in a Fourier series f(x) = cosx, 0 < x < m if the period is r; and (b) compare with the result of
Problem 13.32, explaining the similarities and differences if any.
Ans. Answer is the same as in Problem 13.32.

X 0<x<4 . . . .
Expand f(x) = { Q_y 4 —yog IMaseries of (a) sines, (b) cosines.
32K 1 . nw . onmx 2cosnm/2 —cosnm — 1 nmwx
(a) ?;?SIHTSmT ;( pe )cosT

Prove that for 0 < x < 7,

T cos2x cosd4x cosbx
(a) x(rr—x)zz— B + LB + 32 + .-
sinx sin3x sin5
(b) x(r—x) = (13 + I )

Use the preceding problem to show that

3

00 1 2 lnl 2 lnl
@ Yp- 0YE-h 0 YXElL-T
n=1

ST T T 16

Lo 11 2 /3
Show that <5+ 55— &5 = 7 + 55+ 713 _ImV2

DIFFERENTIATION AND INTEGRATION OF FOURIER SERIES

13.38.

13.39.

(a) Show that for —m < x < 7,

_5 smx sin 2x " sin 3x _
o 1 2 3

(b) By integrating the result of (@), show that for —7 < x < 7,
, T (cos X cos2x cos3x )

YE3 TN T2 3

(¢) By integrating the result of (b), show that for —7 < x < 7,

12(sinx sin 2x sin3x_“.)

xX(w—x)(w+x) = ERY + 3

(a) Show that for —7m < x < 7,

1 2 3 4
XCOSX = —231nx+2(13 s1n2>c—ﬂsm3x+ﬁ sin4dx — - )

(b) Use (a) to show that for —m < x < 7,

1 2(005 2x cos3x cosdx )

xsmx:l—zcosx— 3 2.4 + 3.5
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13.40. By differentiating the result of Problem 13.35(b), prove that for 0 < x < 7,

T 4 cosx+cos3x+cos 5x+
=27
2w\ 12 32 52

PARSEVAL’S IDENTITY
13.41. By using Problem 13.35 and Parseval’s identity, show that

00 1 4 00 1
@ > =g Z—ﬁ‘”

1 1 1 -8 ,
13.42. Show that EREY + 79 + a7 4+ = T [Hint: Use Problem 13.11.]
00 1 7T4 0 1 7_[6

13.43. Show that (a —_— =, b —_— =

@ LGy O LGy

1 1 1 47* — 39
13.44. Show that =
M L B LA I LA S 16
BOUNDARY-VALUE PROBLEMS
W U

13.45. (a) Solve i 2— P subject to the conditions U(0, r) =0, U(4, ) = 0, U(x, 0) = 3sinx — 2 sin Swx, where

0<x<4,t>0.
(b) Give a possible physical interpretation of the problem and solution.

2 2
Ans. (a) U(x, 1) =3¢ > "sinmx — 2¢>°" ' sin Smx.

aw  rU . y 1 0<x<3 .
13.46. Solve il subject to the conditions U(0, ) =0, U(6,¢) =0, U(x,0) = {0 Ty =6 and interpret
physically.

Ans. U(x, 1) = i 2[71 — Cos(mn/3):|em2”2'/36 sin 77
mm 6
m=1
13.47. Show that if each side of equation (3), Page 356, is a constant ¢ where ¢ = 0, then there is no solution
satisfying the boundary-value problem.

13.48. A flexible string of length 7 is tightly stretched between points x = 0 and x = 7 on the x-axis, its ends are

fixed at these points. When set into small transverse vibration, the displacement Y (x, ¢) from the x-axis of
. . ) rY

any point x at time ¢ is given by W =d— PR
(a) Find a solution of this equation (sometimes called the wave equation) with a* = 4 which satisfies the
conditions Y(0,#) =0, Y(rr,1) =0, Y(x,0) = 0.1sinx 4+ 0.0l sin4x, Y,(x,0) =0 for 0 < x < m, ¢t > 0.
(b) Interpret physically the boundary conditions in () and the solution.
Ans. (a) Y(x,t) =0.1sinxcos2¢+ 0.01sin4x cos 8¢

where ¢ = T/p, T = tension, p = mass per unit length.

2 2

9 Y . ..
13.49. (a) Solve the boundary-value problem P :9—3 5 subject to the conditions Y(0,7) =0, Y(2,7) =0,
X

Y(x,0) =0.05x(2 — x), Y,(x,0) =0, where 0 < x <2,7> 0. (b) Interpret physically.

(2n — Dnx 3(2n — 1)mt
Ans. Y
ns. (a) Y(x, 1) = py Z(Zn 7 cos 3
W FU
13.50. Solve the boundary-value problem Fin g UQO0,0)=1,U(m, 1) =3, U(x,0)=2.
X

[Hint: Let U(x, f) = V(x, {) + F(x) and choose F(x) so as to simplify the differential equation and boundary
conditions for V(x, 7).]
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13.51.

13.52.

13.53.

FOURIER SERIES [CHAP. 13

4 L
Ans. U(x, 1) =1 + A Z COSTT. =17t i

m=1

Give a physical interpretation to Problem 13.50.

Solve Problem 13.49 with the boundary conditions for Y(x,0) and Y,(x, 0) interchanged, i.e., Y(x,) =0,
Y,(x,0) = 0.05x(2 — x), and give a physical interpretation.

Ans. Y(x,t) = 3 2 o 1 e sin (2n —21)7TX sin 3(2n; )t

nl

Verify that the boundary-value problem of Problem 13.24 actually has the solution (/4), Page 357.

MISCELLANEOUS PROBLEMS

13.54.

13.55.

13.56.

13.57.

13.58.

13.59.

13.60.

If -mr<x<mand ¢ #0,+£1,+£2,..., prove that

7T sin ax sin x 2sin2x  3sin3x
2sinar 12—q? 22— 32_¢q?

If —7 < x < 7, prove that

T sinhax  sinx 2sin2x N 3sin 3x
2 sinhar o2+ 12 o2 423 o2 +32
7 cosh ax 1 ®COSX  acos2x

®) 2 sinhaw ﬂ_a2+12+a2+22 -

2 2 2
Prove that sinhx = x 1+A—2 1+X72 1+X72
T (2m) (37)
2 2 2
Prove that cosx = 1—412 l—iz 1_4L2
T (37) (57)

[Hint: cos x = (sin2x)/(2 sin x).]

(a)

R 3 19.22.13.15...
Show that (a) —-= 7~ 10 10-14- 14

2.
4. 4 8 8-12-12-16- 16
3-5-7-9-11- 13-15-17...

(b) 72 =4

Let r be any three dimensional vector. Show that

@ @+ =0, 0P+ +ok=r
and discusse these with reference to Parseval’s identity.
n=1

2
b 00
If {¢,(x)},n=1,2,3,...1s orthonormal in (a, b), prove that J { f(x)— Z c,,d)n(x)} dx is a minimum when

b
- j F() o) dx

Discuss the relevance of this result to Fourier series.



