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© Infinite series

© Positive term series

© Series

@ Power series.
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Definition (Infinite series)

If {a,} is an infinite sequence (a, € R for n =1,2,3,...), then the expression of the form
al+ag+33+...:Zan

is called an infinite series, or simply a series.
Each number a, is called nth term.

Sn:a1+az+a3+...+an:Zak

is called nth partial sum.
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Definition (convergence and divergence of series)

(o]
> en
n=1

with sequence of partial sums (S,) is convergent (or converges) if lim S, =S for some real
n—oo

An infinite series

number S. The series is divergent (or diverges) if this limit does not exists.

o
If > an is a convergent infinite series and lim S, = S, then S is called the sum of the series
=1 n—00

and we write

def
8p = 9

n=1

If a series diverges, it has no sum.
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Prove convergance of the series making direct use of the definition of convergance
[ee]
1.
Q>
n=1
— 1
0> L
n=1
Find the sum
- 1
U 2D n(n+1)’
n=1

9 X ey
n=1

© X Infid.
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Theorem (necessary condition of convergence of series)

o
If an infinite series . a, is convergent, then lim a, = 0.
n=1 n—o0

Corollary

| N\

o
If lim a, # 0, then the infinite series > a, is divergent.
n—o0o n=1
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Show that the series are divergent

00
n+2
o Zl n+100
n=

o 1
Q@ > nsing
n=1
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Definition (harmonic series)

We call the series of the form

i5—1+1+1+1+
nzln_ 2 3 4

the harmonic series.

The harmonic series is divergent.
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Definition (geometric series)

A series of the form

Zalq"_lzal+alq+a1q2+....

we call a geometric series with a quotient q.

Theorem (divergence of geometric series)

The geometric series

o

Zalq”_l —a+a1g+ag>+...
with a; # 0

O converges and has the sum ' if [q] <1
Q diverges if |q| > 1.
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Definition (p-series, Dirichlet series)

A series of the form
o
>
p’
n=1 n
where p is positive real number is called p-series.
Theorem (divergence of p-series)
The p-series
(o]
>
nP’
n=1
O converges if p > 1,
Q divergesifp<1
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Theorem (convergence of linear combination)

o o
Let the series Y an, Y. b, be convergent and let o, B € R.

n=1 n=1
Then - - -
Z(aan + Bby) = aZa,, + ﬂz bp.
n=1 n=1 n=1
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Tests of convergence

© Comparison Test.

© Limit Comparison Test.
© Ratio Test.

© The Root Test.

© The Integral Test.
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Theorem (Comparison Test)
Let 0 < a, < b, for every n > ng. Then:

(o] (o]
Q If > b, converges, then ) a, converges,
n=1 n=1

Q If > a, diverges, then ) b, diverges.

3

Il

—_

S

Il

&
A\,

Example

Check convergence of the following series
o0
1
© 2 Zm

g Z arctgn
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Theorem (Limit Comparison Test)

Let a,, b, > 0 for every n > ng and let

where 0 < k < 0.

[e.°] [e.°]
Then either both series Y a, and > b, converge or both diverge to cc.
n=1 n=1

| \

Example

Check convergence of the following series

2n—1
o Z 3n2—2n+1’

n_on
(2] Z%.
4n—3

n=1

v
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Theorem (Ratio Test, d'Alembert’s Ratio Test)

Let
dn+1
=

[im

n—o0

o0
Then the series > a, converges if ¢ < 1 and diverges if ¢ > 1.

n=1

If g =1 then the series may be convergent or divergent.
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Example

Check convergence of the following series
[e.°] on
0 Z e
n=1
[e.°] on
g ?1
n=1

[&.°]
27437
g Zl 3n+4n -
n—=
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Theorem (The Root Test, The Cauchy Root Test)

Let

lim /|an| = q.
n—o0

o0
Then the series > a, converges if ¢ < 1 and diverges if ¢ > 1.

n=1

If g =1 then the series may be convergent or divergent.
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Check convergence of the following series
) z ("+1) ,

nl00
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Theorem (The Integral Test)

If the function f is positive valued, continuous, and decreasing in [ng, o), where ny € N.

Then the series -
> f(n)

n=ng
and improper integral

(e}

/ F(x)dx

no

are both convergent or both divergent to co.
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Example

Check convergence of the following series
= 1
0 Z 3n+1"
n=1

— 1
9 Z ninn?’
n=1

< 2
n
o Zl 4n249°
n=
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Definition (Alternating series)

A series of the form
o0

> (=) ay,

n=1

where a, > 0, is called an alternating series.

Theorem (Alternating Series Test)

If the sequence (ay,) is decreasing (non-increasing) and lim a, = 0, then the alternating series
n—o00

oo
Z(_l)n—i-lan
n=1

is convergent.

M.W. (CNMiKnO PG Gdansk) Series 2013-2017 21 /26



Definition (Absolutely convergent series)

o
An infinite series > a, is absolutely convergent if the series
n=1

o
> lanl
n=1

is convergent.

If an infinite series is absolutely convergent, then it is convergent.

Definition (Conditionally convergent series)

An infinite series is conditionally convergent if it is convergent and it is not absolutely
convergent.
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Check convergence of the following series

0 (_1)n
0 nZ::I (3n+)1'

00
o Z cos nm ,
n=1 "

g
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Power series

A power series in the variable x is a series of the form

[o¢]
ao+31X+32X2+a3X3+... = E aka
k=0
where the coefficients ag, a1, ap, ... are real or complex numbers.

Given the power series
o
3" o
k=0

with a given choice of coefficients ag, a1, a2, ... , what values of x give us convergent series,
and which values give divergent series?
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For a power series
o
E aka
k=0

there are three possibilities:

o0
@ The power series S a;x* diverges for all x # 0
k=0
o0
© The power series axk converges for all values of x
k=0

o
© There is a positive number R such that > axx* converges for all values of x with |x| < R
k=0
and diverges for all values of x with |x| > R.

At first sight, this looks like a very useless result, because it doesn’t answer the question of
which values of x are allowed. However, it is a very useful result: it tells us what sort of
behaviour we can expect, and what to look for in a power series.
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So, given our theorem, how do we go about calculating R?

Theorem

|

Given the power series S aixX, suppose that one of the following limits exist:

k=0
K= lim |2 K= lim /]ag].
k—oo | ak k—o0
Then the following is true:
O If K =0 then the power series i ok converges for all values of x;
k=0

o
© If K > 0, then the radius of convergence R of the power series > axx* is R = %
k=0

, K= lim {/]ax
k—o00

© If either of the limits
ak+1
dk

K= |lim

k— o0

o
fails to exist, then the power series > a;x* diverges for all values of x # 0.

k=0
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Find the redious of convergance

o (3 (+oy

o z 3",

o) ; 2(4 — x)",
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Find the intervals of convergance of the power series

(4] ioj Lix—2)n,

(2x-3)
QZZT
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