Lecture Multi-variable functions

M.W.

Mathematics Teaching and Distance Learning Centre Gdańsk University of Technology

2013-2017

M.W. (CNMiKnO PG Gdańsk)

メロト メポト メヨト メヨ

2013-2017

1 / 33

1 Sets on plane, in 3D and \mathbb{R}^n

2 Functions of Two and Three Variables

Definition (plane, space, \mathbb{R}^n)

$$\mathbb{R}^2 = \{(x, y); \quad x, y \in \mathbb{R}\}$$

 $\mathbb{R}^3 = \{(x, y, z); \quad x, y, z \in \mathbb{R}\}$
 $\mathbb{R}^n = \{(x_1, x_2, \dots, x_n); \quad x_i \in \mathbb{R}, i = 1, 2, \dots, n\}$

Definition (distance of points)

$$d(P_1, P_2) = |P_1P_2| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$
$$d(P_1, P_2) = |P_1P_2| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$
$$d(P_1, P_2) = |P_1P_2| = \sqrt{(y_1 - x_1)^2 + (y_2 - x_2)^2 + \dots + (y_n - x_n)^2}$$

590

イロト イ理ト イヨト イ

Definition (open ball)

The open (metric) ball of radius r > 0 centred at a point P_0 is defined by

$$B(P_0, r) = \{P: d(P, P_0) < r\}$$

In \mathbb{R}^2 an open ball is an open disk.

Definition (neighbourhood)

A set V is a neighbourhood of a point P if there exists an open ball with centre P and radius r > 0, such that $B(P, r) = \{x \in \mathbb{R}^n \mid d(x, P) < r\}$ is contained in V.

Definition (punctured neighbourhood)

A punctured neighbourhood of a point P (sometimes called a deleted neighbourhood) is a neighbourhood of P, without $\{P\}$.

Definition (bounded set)

If exists P_0 and a number r > 0 such that the set A is contained in the ball $B(P_0, r)$, then the set A is called bounded set.

In the opposite case the set A is called unbounded.

Definition (Interior point of a set, Interior of a set)

If there exists an open ball with centre P contained in the set A, then P is called interior point of the set A.

The set of all interior point of the set is called the interior of the set.

Definition (open set)

If every point of a set is its interior point, then the set is called an open set.

Definition (boundary)

If every ball with centre P contains points belonging to the set A and points not belonging to the set (belonging to the complement of the set A), then P is called a boundary point of the set A.

The set of all boundary points is called the boundary of a set.

Definition (closed set)

If a set contains its boundary then it is called a closed set.

Definition (domain, closed domain)

Nonempty subset of \mathbb{R}^n is called a domain, if:

- it is open
- ② cannot be represented as the union of two or more disjoint nonempty open sets

A domain with its boundary is called a closed domain.

Definition (Functions of Two Variables)

Let $A \subset \mathbb{R}^2$. A function f of two variables is a rule that assigns to each ordered pair (x, y) in A a unique real number denoted by f(x, y). The set A is called the domain of f and its range is the set of values that f takes on, i.e., $\{f(x, y)| (x, y) \in A\}$. Notation

$$f: A \to \mathbb{R}^2$$

We often write z = f(x, y) to make explicit the value taken on by f at the point (x, y). The variables x and y are independent variables and z is the dependent variable.

Definition (Functions of Three Variables)

A function of three variables, f, is a rule that assigns to each ordered triple (x, y, z) in a domain $A \subset \mathbb{R}^3$ a unique real number denoted by f(x, y, z). Notation

$$f: A \to \mathbb{R}^2$$

or u = f(x, y, z), where $(x, y, z) \in A$.

Definition (Functions of *n* Variables)

A function of *n* variables is a rule that assigns a number $z = f(x_1, ..., x_n)$ to an *n*-tuple $(x_1, ..., x_n)$ of real numbers.

Example

For example, if a company uses n different ingredients in a food product, c_i is the cost per unit of the *i*th ingredient, and x_i is the units of the *i*th ingredient, then the total cost C of the ingredients is a function of n variables x_1, \ldots, x_n :

$$C = f(x_1,\ldots,x_n) = c_1x_1 + \ldots + c_nx_n$$

We can sometimes write functions more compactly with vector notation. If $x = [x_1, \ldots, x_n]$, we may write f(x) in place of $f(x_1, \ldots, x_n)$. So we could write the cost function as

$$f(x) = c \cdot x$$

where $c = [c_1, ..., c_n]$.

Example

Find and plot the domain of the following functions

•
$$f(x,y) = \frac{1}{\sqrt{x}} + \sqrt{y}$$

2
$$f(x,y) = \frac{1}{\sqrt{1-x^2-y^2}}$$

Image: A match a ma

Definition (sequence of points in \mathbb{R}^2)

A sequence of points in \mathbb{R}^2 we call a mapping that assigns each natural number a point of plane.

We denote such sequence by (P_n) , where $P_n = (x_n, y_n)$ is *n*th element of the sequence. The set of all elements $\{(x_n, y_n); n \in \mathbb{N}\}$ is denoted by $\{P_n\}$ or $\{(x_n, y_n)\}$.

Definition (Proper limit)

$$\lim_{n\to\infty} P_n = P_0 \Leftrightarrow (\lim_{n\to\infty} x_n = x_0 \land \lim_{n\to\infty} y_n = y_0)$$

Remark

A sequence (P_n) is convergent to a point P_0 , if in every ball with centre P_0 there are almost all elements of the sequence.

2013-2017

13 / 33

Definition (Heine's definition of a function limit)

Let $(x_0, y_0) \in \mathbb{R}^2$ and the function f be defined at least in the punctured neighbourhood $S(x_0, y_0)$ of (x_0, y_0) . The number g is called proper limit of function f at point (x_0, y_0) denoted by

$$\lim_{(x,y)\to(x_0,y_0)}f(x,y)=g$$

if and only if

$$\begin{array}{c} \forall \qquad (\lim_{n \to \infty} (x_n, y_n) = (x_0, y_0)) \Rightarrow (\lim_{n \to \infty} f(x_n, u_n) = g) \\ \{(x_n, y_n)\} \subset S(x_0, y_0) \end{array}$$

Remark

Improper limit we define in the same way.

Definition (Cauchy's definition of a function limit)

Let f be a function of two variables defined on a disk with centre (x_0, y_0) , except possibly at (x_0, y_0) . Then we say that the limit of f(x, y) as (x, y) approaches (x_0, y_0) is L and we write

 $\lim_{(x,y)\to(x_0,y_0)}f(x,y)=L$

if for every number $\varepsilon > 0$ there is a corresponding number $\delta > 0$ such that $|f(x, y) - L| < \varepsilon$ whenever $0 < d((x_0, y_0), (x, y)) < \delta$

This means that the values of f(x, y) can be made as close as we wish to the number L by taking the point (x, y) close enough to the point (x_0, y_0) .

Theorem (Arithmetic of limits)

If functions f and g have proper limits at point (x_0, y_0) , then

$$\lim_{(x,y)\to(x_0,y_0)} [f(x,y) + g(x,y)] = \lim_{(x,y)\to(x_0,y_0)} f(x,y) + \lim_{(x,y)\to(x_0,y_0)} g(x,y)$$

$$\lim_{(x,y)\to(x_0,y_0)} [f(x,y) \cdot g(x,y)] = \lim_{(x,y)\to(x_0,y_0)} f(x,y) \cdot \lim_{(x,y)\to(x_0,y_0)} g(x,y)$$

$$\lim_{(x,y)\to(x_0,y_0)} \frac{f(x,y)}{g(x,y)} = \frac{\lim_{(x,y)\to(x_0,y_0)} f(x,y)}{\lim_{(x,y)\to(x_0,y_0)} g(x,y)}, if \lim_{(x,y)\to(x_0,y_0)} g(x,y) \neq 0$$

Theorem (limit of composite function)

If functions p, q and f satisfy the following conditions

$$im_{(x,y)\to(x_0,y_0)} f(p,q) = g$$

then

$$\lim_{(x,y)\to(x_0,y_0)}f(p(x,y),q(x,y))=g$$

2013-2017

17 / 33

Remark

We can admit improper limits in both theorems, if results are well defined.

We have no l'Hospital's rule to calculate limits of indefinite terms of multivalued functions.

→ < ∃→

2013-2017

18 / 33

Example

Calculate limits if exist

$$\begin{array}{c}
\lim_{(x,y)\to(1,2)} \frac{x^2+y}{2x^2+y^3} \\
\underset{(x,y)\to(0,0)}{\lim} \frac{x^2y}{x^3+y^3}
\end{array}$$

イロト イポト イヨト イヨト

Definition (Continuity)

Let $(x_0, y_0) \in \mathbb{R}^2$ and let the function f be defined on a disk $O(x_0, y_0)$ with centre (x_0, y_0) . The function f is called continuous at point (x_0, y_0) if and only if

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0,y_0)$$

Theorem (continuity of sum, product and quotient of functions)

If functions f and g are continuous at point (x_0, y_0) , then at this point are also continuous functions:

- f + g
- Image: f · g
- 3 $\frac{f}{g}$, if only $g(x_0, y_0) \neq 0$

Theorem (Continuity of composite function)

If the function p, q and f satisfy the following conditions

- p and q are continuous at point (x_0, y_0)
- 2 f is continuous at point $(p_0, q_0) = (p(x_0, y_0), q(x_0, y_0))$

then the function f(p(x, y), q(x, y)) is continuous at the point (x_0, y_0) .

Definition (Partial Derivatives of first order)

Let the function f be defined on a disk $O(x_0, y_0)$ with centre (x_0, y_0) . The partial derivative of the first order of f(x, y) with respect to x at the point (x_0, y_0) is

$$\frac{\partial f}{\partial x}(x_0, y_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x}$$

The partial derivative of f(x, y) with respect to y at the point (x_0, y_0) is

$$\frac{\partial f}{\partial y}(x_0, y_0) = \lim_{\Delta y \to 0} \frac{f(x_0, y_0 + \Delta y) - f(x_0, y_0)}{\Delta y}$$

Definition (Partial Derivatives on an open set)

If a function f has partial derivatives of first order at every point of an open set $D \subset \mathbb{R}^2$, then functions

$$rac{\partial f}{\partial x}(x,y), \ rac{\partial f}{\partial y}(x,y), \ ext{where} \ (x,y) \in D,$$

are called partial derivatives of first order on the set D and are denoted by $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial v}$ or f_x , f_y .

Remark

The definition of the partial derivatives for functions of more than two independent variables are analogous to the two variable definitions.

2013-2017

24 / 33

Example

Find the values of $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$: **1** $f(x, y) = 2x^3 + y - 3xy^2 - 1$ **2** $f(x, y) = \frac{2x^2}{y} - \frac{y^2}{x}$ **3** $f(x, y) = x^y$ **4** $f(x, y) = e^{-\cos x} \sin y$

イロト 不得下 不良下 不良下 一度…

Theorem (derivative of composite function (case 1))

Suppose that

• x = x(t), y = y(t) are both differentiable functions at t_0 ,

2 x = f(x, y) has continuous partial derivatives at $(x(t_0), y(t_0))$

Then composite function F(t) = f(x(t), y(t)) is differentiable functions at t_0

$$\frac{dF}{dt} = \frac{\partial f}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial f}{\partial y} \cdot \frac{dy}{dt}.$$

Derivatives $\frac{dx}{dt}$, $\frac{dy}{dt}$ are evaluated at t_0 , and partial derivatives $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ at $(x(t_0), y(t_0))$.

Example

- If $z = x^2y + xy^3$, where $x = \cos t$, $y = \sin t$, find dz/dt when $t = \pi/2$.
- 2 Find dz/dt if $z = \sqrt{x^2 + y^2}$ and $x = e^{2t}$ and $y = e^{-2t}$.

イロト イポト イヨト イヨト 一日

2013-2017

27 / 33

Theorem (derivative of composite function (case 2))

Suppose that

- x = x(u, v), y = y(u, v) have partial derivatives at $(u_0, v_0),$
- 3 x = f(x, y) has continuous partial derivatives at $(x(u_0, v_0), y(u_0, v_0))$

Then the composite function F(u, v) = f(x(u, v), y(u, v)) has at (u_0, v_0) partial derivatives

$$\frac{\partial F}{\partial u} = \frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial u} + \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial u}, \quad \frac{\partial F}{\partial v} = \frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial v} + \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial v}$$

Partial derivatives $\frac{\partial x}{\partial u}$, $\frac{\partial x}{\partial v}$, $\frac{\partial y}{\partial u}$, $\frac{\partial y}{\partial v}$ are evaluated at (u_0, v_0) , and partial derivatives $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ at $(x(u_0, v_0), y(u_0, v_0))$.

Example

Find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$ for the following examples • $z = e^{xy} \sin x$, where x = 2s + 4t, $y = \frac{2s}{3t}$. • $z = \ln(x^2 + y^2)$, where $x = e^s \cos t$ and $y = e^s \sin t$. • w = xy + xz + yz, where x = st, $y = e^{st}$, z = x + t.

> E

29 / 33

2013-2017

Definition (Partial Derivatives of second order)

Let a function f has partial derivatives of first order $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ be defined on a disk $O(x_0, y_0)$ with centre (x_0, y_0) .Partial Derivatives of second order of the function f at point (x_0, y_0) are defined as:

$$\frac{\partial^2 f}{\partial x^2}(x_0, y_0) = \left(\frac{\partial}{\partial x}\frac{\partial f}{\partial x}\right)(x_0, y_0), \quad \frac{\partial^2 f}{\partial y \partial x}(x_0, y_0) = \left(\frac{\partial}{\partial y}\frac{\partial f}{\partial x}\right)(x_0, y_0)$$
$$\frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) = \left(\frac{\partial}{\partial x}\frac{\partial f}{\partial y}\right)(x_0, y_0), \quad \frac{\partial^2 f}{\partial y^2}(x_0, y_0) = \left(\frac{\partial}{\partial y}\frac{\partial f}{\partial y}\right)(x_0, y_0)$$

Definition (Partial Derivatives on an Open Set)

If a function f has partial derivatives of second order at every point of an open set $D \subset \mathbb{R}^2$, then functions $\frac{\partial^2 f}{\partial x^2}(x, y)$, $\frac{\partial^2 f}{\partial x \partial y}(x, y)$, $\frac{\partial^2 f}{\partial y \partial x}(x, y)$, $\frac{\partial^2 f}{\partial y^2}(x, y)$, where $(x, y) \in D$ are called partial derivatives of second order on the set D and are denoted by $\frac{\partial^2 f}{\partial x^2}$, $\frac{\partial^2 f}{\partial y \partial x}$, $\frac{\partial^2 f}{\partial y^2}$ or f_{xx} , f_{xy} , f_{yx} , f_{yy} .

Example

Calculate second order partial derivatives

•
$$f(x,y) = x^2y - 2y^3x^2 + x - y - 1$$

$$f(x,y) = x \sin y$$

3
$$f(x,y) = \ln(x^2y - y^2)$$

Example

Show that

•
$$xz_x - z_y = 0$$
 if $z = xe^y$

2
$$z_x + z_y = 1$$
 if $z = \ln(e^x + e^y)$

メロト メ停下 メミト メ

Theorem (Schwartz theorem)

If partial derivatives $\frac{\partial^2 f}{\partial x \partial y}$, $\frac{\partial^2 f}{\partial y \partial x}$ are continuous at a point (x_0, y_0) , then they are equal i.e. $\partial^2 f$ $\partial^2 f$

$$\frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) = \frac{\partial^2 f}{\partial y \partial x}(x_0, y_0)$$

Remark

Analogous equalities are also true for mixed derivatives of n variable functions ($n \ge 2$), and mixed derivatives of higher order.