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Vector Spaces

Definition (Vector space)

Let F be a field, whose elements are referred to as scalars. A vector space over I is non empty
set V, whose elements are referred to as vectors with the following algebraic structure

@ V is an additive group; that is; there is a fixed mapping V x V — V denoted by

(x,y) > x+y (1)

and satisfying the following axioms:
Q (x+y)+z=x+(y+ z) (associative law)
Q x+y =y + x (commutative law)
© there exists a zero-vector 0; i.e. a vector such that x +0 =0+ x = x for every x € V
@ To every vector x there is a vector —x such that x + (—x) =0
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Definition (Vector space)

@ There is a fixed mapping F x V — V denoted by
(A, x) = Ax (2)

and satisfying the axioms
O (Au)x = A(ux) (associative law)
Q (A + p)x = Ax + px
A(x + y) = Ax + Ay (distributive laws)
© 1:-x=x (1 unit element of )

v

A vector space over a field IF is sometimes called an [F-space. A vector space over the real field
is called a real vector space and a vector space over the complexed field is called a complex
vector space.
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Examples of Vector Spaces

Example

Let F be a field. The set F¥ of all functions from F to F is a vector space over IF, under the
operations of ordinary addition and scalar multiplication of functions:

(f +8)(x) = f(x) + &(x)
and

(af)(x) = a(f(x))

The set M, (FF) of all m x n matrices with entries in a field I is a vector space over IF, under
the operation of matrix addition and scalar multiplication.
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Example

The set F" of all ordered n-tuples whose components lie in a field IF, is a vector space over F,
with addition and scalar multiplication defined component-wise:

(al,...,an)—i—(bl,...,b,,):(al+b1,...,a,,+b,,)
and
c(a1,...,an) = (ca1,...,can)

When convenient, we will also write the elements of [F” in the column form. When F is a finite
field Fy with g elements, we write V(n, q) for Fg.
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Example
Sequence spaces

@ The set Seq(F) of all infinite sequences with members from a filed F is a vector space
under the component-wise operations

(sn) + (tn) = (sn + tn)

and
a(sn) = (asn)
@ The set ¢y of all sequences of complex numbers that converge to 0
@ The set /> of all bounded complex sequences

o Let p be a positive integer. The set ¢P of all complex sequences (s,,) for which

o
> lsalP < o0
n=1

e[S OMpDONENT-\\ > 0]0. d
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Exercise

Exercise

Check if R? with canonical scalar multiplication and addition defined by the formula
9 (xy)o(X,y)=(x+x'y+3y)
9 (x,y)@(x,y)=(x+x\y—y)

is a vector space.

v
Exercise

Check if R? with canonical addition and scalar multiplication defined by the formula
Q ro(x,y) = (ry,m)
Q@ ro(xy) = (rx,r?y)

is a vector space.

M.W. (CNMiKnO PG Gdansk) Lecture 01 2013-2016 8/ 34



Definition
Let S be non-empty subset of a vector space V. A linear combination of vectors in S is an
expression of the form

aivy + axvo + ...+ apvy
where vq,...,v, € S and ay,...,a, € F. The scalars are called coefficients of the linear
combination. A linear combination is trivial if every coefficient a; is zero. Otherwise, it is
non-trivial.

(3)
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Definition
A subspace of a vector space V is a subset S of V that is a vector space in its own right under
the operations obtained by restricting the operations of V' to S. We use the notation S C V to

indicate that S is a subspace of V and S C V to indicate that S is a proper subspace of V,
that is S C V but S # V. The zero subspace of V is {0}.

| A\

Theorem

A non-empty subset S of a vector space V is a subspace of V if and only if S is closed under
addition and scalar multiplication or, equivalently S is closed under linear combinations, that is

abeF,uveS=au+bves (4)

v

M.W. (CNMiKnO PG Gdansk) Lecture 01 2013-2016 10 / 34



Examples of subspaces

Consider the vector space V/(n,2) of all binary n-tuples, that is, n-tuples of 0's and 1’s. The
weight W(v) of a vector v € V/(n,2) is the number of non-zero coordinates in v. For instance,
W(101010) = 3. Let E, be the set of all vectors in V' of even weight. Then E, is a subspace of
V(n,?2).

v

Example

Any subspace of the vector space V(n, q) is called a linear code. Linear codes are among the
most important and most studied types of codes, because their structure allows for efficient
encoding and decoding of information.
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Exercise

Check if the following subsets are subspaces of the vector space R?
QO {(x,—x); x e R}
Q {(x,x—1); xe R}
Q {(x,y): xy >0}

M.W. (CNMiKnO PG Gdansk) Lecture 01 2013-2016 12 / 34



Definition
Let S and T be subspaces of V. The sum S + T is defined by

S+T={u+v;, veS veT} (5)

The sum of subspaces S and T of V is a subspace of V.
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Internal Direct Sums

A vector space V is the (internal) direct sum of a family 7 = {S;; i € I} of subspaces of V,

written
V=@Proav=Epr (6)
icl
if the following holds
© V is the sum (join) of the family F:

V:ZSI (7)

i€l

@ Foreachiel

J#i
V.
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In this case, each S; is called a direct summand of V. If F = {S5;,...,S5,} is a finite family, the
direct sum is often written
V:S]_@...@Sn (9)

Finally, if V =S @& T, then T is called a complement of S in V.
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Spanning Sets

Definition
The subspace spanned (or subspace generated) by a non-empty set S of vectors in V is the set
of all linear combinations of vectors from S:

(S§) =span(S)={nwvu+...+rvs rerF, v,eS} (10)

When S = {w1,...,v,} is a finite set, we use the notation (vi,...v,) or span (vi,...Vv,). A set
S of vectors in V is said to span V, or generate V, if V = span(5).

v
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Linear Independence

Definition

Let V be a vector space. A non-empty set S of vectors in V is linearly independent if fir any
distinct vectors si,...,s,in S

aisy+...+aps,=0=a; =0 forall / (11)

In word, S linearly independent if the only linear combination of vectors from S that is equal to
0 is the trivial linear combination, all of whose coefficients are ). If S is not linearly
independent, it is said to be linearly dependent.
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Definition

Let S be a non-empty set of vectors in V. To say that a non-zero vector v € V is an
essentially unique linear combination of the vectors in S is to sat that, up to order of terms,
there is one and only one way to express v as a linear combination

v=aisy +...+ ans, (12)

where s;'s are distinct vectors inS and the coefficients a; are non-zero.

More explicitly v # 0 is an essentially unique linear combination of the vectors in S if v € (S)
and if whenever
v=ais1+...+apspand v = bity + ...+ bptm

where s;'s are distinct the t;'s are distinct and all coefficients are non-zero then n = m and
after re-indexing of the b;t;'s if necessary, we have a; = b; and s; = t; forall i =1,...,n.
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Theorem

Let S # {0} be a non-empty set of vectors in V. The following are equivalent
© S is linearly independent.

@ Every non-zero vector v € span (S) is an essentially unique linear combination of the
vectors in S

© No vector in S is a linear combination of the other vectors in S.
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Lest S be a set of vectors in V. the following are equivalent:
© S is linearly independent and spans V
© Every non-zero vector v € V is an essentially unique combination of vectors in S
© S is minimal spanning linearly independent set, but any proper subset does not span V

© S is a maximal linearly independent set,that is, S is linearly independent, but any proper
superset of S is not linearly independent

Definition

A set of vectors in V that satisfies any (and hence all) of above conditions is called a basis for
V.
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A finite set S = {v1,...,vn} of vectors in V is a basis for V if and only if

V=(wn)e&...® (v, (13)

Example

The jth standard vector in [F" is the vector e; that has 0's in all coordinate positions except the
ith, where it has a 1. Thus,

e =(1,0,...,0), e =(0,1,0,...,0), ..., e, =(0,...,0,1) (14)

The set {e1,...,e,} is called the standard basis for ",
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Let V be a non-zero vector space. Let | be a linearly independent set in V' and let S be a
spanning set in 'V containing |. Then there is a basis B for V. which | C B C S. In particular

©Q Any vector space, except the zero space {0}, has a basis.

© Any linearly independent set in V is contained in a basis.

© Any spanning set in V contains a basis.
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Example

Let S be an arbitrary set and consider the set C(S) of all mappings f: S — F such that
f(s) = 0 for all but finitely many s € S. Then if f and g are two such mappings, and X is any
scalar, the mappings f + g and Af defined by

(f +&)(s) = f(s) + &(s)

and

(A)(s) = A £(s)

are again contained in C(S). Thus we make the set C(S) into a vector space.
Now for each a € S denote by f, the mapping given by

1 if s=a
fa(s)_{O if s#a

Then the vectors f; are a basis of C(S).

4
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Let V be vector space and assume that the vectors vy, ..., v, are linearly independent and the
vectors S, ...,Sm span V. Then n < m.

If V has a finite spanning set, then any two bases of VV have the same size.

If V is a vector space, then any two bases for V' have the same cardinality.
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Definition

A vector space V is finite-dimensional if it is the zero space {0}, or if it has a finite basis. All
other vector spaces are infinite-dimensional. the dimension of the zero space is 0 and the
dimension of any non-zero vector space V is the cardinality of any basis of V. If a vector space
V has a basis of cardinality x, we say that V is k-dimensional and write dim(V) = &.

Theorem

Let V be a vector space
Q IfB is a basis of V and if B =B U By and B; N By = () then

V = (B1) & (Ba)

Q Let V=S@T. If By is a basis for S and B» is a basis for T, then By N By = 0 and
B = B; UBs is a basis for V.
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Theorem

Let S and T be subspaces of a vector space V. Then
dim(S) +dim(T) =dim(T +S) +dim(SN T) (15)
In particular, if T is any complement of S in V, then
dim(S) +dim(T) = dim(V) (16)
that is,
dim(S® T) =dim(S) +dim(T) (17)1
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Definition
Let V be a vector space of dimension n, An ordered basis for V is and ordered n-tuple

(vi,...,vy) of vectors for which the set {vi,...,v,} is a basis for V
If B=(v1,...,vy) is an ordered basis for V, then for each v € V there is a unique ordered
n-tuple (r, ..., ry) of scalars for which

v=nw+...+ v, (18)

Accordingly, we can define the coordinate map ¢p: V — F" by

n

¢(v) =[VIs=| : (19)

I'n

where the column matrix [v]z is known as the coordinate matrix of v with respect to the
ordered basis B. Clearly, knowing [v]5 is equivalently to knowing v (assuming knowledge of B).
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It is easy to see that the coordinate map ¢ is bijective and preserves the vector space
operations, that is

gbg(rlvl 4+ ...+ I’nVn) = rlqu(Vl) 4+ ...+ I’nqu(Vn)

or equivalently
[nvi+ ...+ mva]l =nlv] + ...+ rlval

Functions from one vector space to another that preserve the vector space operations are called
linear transformations.
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Example

1 =1

Given the basis B = (b1, bp) = ([ 3 ] , [ ! ]) of the vector space R2. Find the coordinate

vector [v]p of the vector v = [ _? ] Now given the coordinate vector [x|p = [ _§ ] find

the vector x € R2.
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Exercises

© Which of the following sets of vectors in R* are linearly independent, (a generating set, a
basis)?
o (1,1,1,1),(1,0,0,0),(0,1,0,0),(0,0,0,1)
o (1,0,0,0),(2,0,0,0)
o (17,39,25, 10), (13, 12,99, 4), (16,1,0,0)
f2) (1,;,0 0),(0,0,1,1), (0,;,;,1) (3,0,0,1)
Extend the linearly independent sets to bases.
Q Are the vectors x; = (1,0,1); xo = (i, 1,0); x3 = (i,2,1 + i) linearly independent in C3?
Express x = (1,2,3) and y = (/,/,7) as linear combinations of xi, x2, x3.

© Let S be any set and consider the set of maps
f:S—F"

such that f(x) = 0 for all but finitely many x € S. Make this set into vector space
(denoted by C(S,F")). Construct a basis for this vector space.
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Q@ Consider the set of polynomial functions f: R — R,

f(x)= z”: ax’.
i=0

Make this set into a vector space, and construct a natural basis.
Q Let (¢1,£2,€3) be an arbitrary vector in F3. Which of the following subsets are subspaces?
@ all vectors with ¢! = ¢2 =¢3
@ all vectors with €3 =0
© all vectors with ¢! = ¢2 — ¢3
O all vectors with ¢! =1
O Find subspaces F,, Fp, Fc, F4 generated by the sets of previous exercise, and construct
bases for these subspaces.
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@ Find complementary spaces for subspaces of previous problem and construct bases for
these complementary spaces. Show that there exists more then one complementary space
for each given subspace.

© Show that
o F3= F,+ Fp
o F3= Fp+ Fc
O FP=F,+F

Find the intersections F; N Fp, Fp N Fe, F; N F. and decide in which cases the sums above
are direct.
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O Let (x1,x2) be a basis of a 2-dimensional vector space. Show that the vectors
X1 =x1+xX, X=x1—X

again form a basis. Let (¢1,£2) and (§~1,§~2) be the components of a vector x relative to
the bases (x1, x2) and (X1, x) respectively. Express the components (£1,£2) in terms of
the components (¢!, £2).

@ Consider an n-dimensional complex vector space E. Since the multiplication with real
coefficients in particular is defined in E, this space may also be considered as a real vector
space. Let (z1,...,2,) be a basis of E. Show that the vectors z, ..., z,, iz, ..., iz, form
a basis of E if E considered as a real vector space.

M.W. (CNMiKnO PG Gdansk) Lecture 01 2013-2016 33 /34



@ In F* consider the subspace T of all vectors ¢!, &2 €3, ¢4) satisfying €1 + 262 = €3 + 2¢4,
Show that the vectors: x; = (1,0,1,0) and xo = (0,1,0,1) are linearly independent and
lie in T; then extend this set of two vectors to a basis of T.

@ Let a1, ap, a3 be fixed real numbers. Show that all vectors (71,72, 13, 1n*) in R* obeying
n* = any + apny + asns form a subspace V. Show that V is generated by

X1 = (1,0,0,0[1), X2 = (0) 1,0,0[2), X3 = (0)07 1,0[3).

Verify that xi, xo, x3 form a basis of the subspace V.
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