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Ve
tor Spa
es

De�nition (Ve
tor spa
e)

Let F be a �eld, whose elements are referred to as s
alars. A ve
tor spa
e over F is non empty

set V , whose elements are referred to as ve
tors with the following algebrai
 stru
ture

V is an additive group; that is; there is a �xed mapping V × V → V denoted by

(x , y) → x + y (1)

and satisfying the following axioms:

1 (x + y) + z = x + (y + z) (asso
iative law)

2 x + y = y + x (
ommutative law)

3

there exists a zero-ve
tor 0; i.e. a ve
tor su
h that x + 0 = 0+ x = x for every x ∈ V
4

To every ve
tor x there is a ve
tor −x su
h that x + (−x) = 0
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De�nition (Ve
tor spa
e)

There is a �xed mapping F× V → V denoted by

(λ, x) → λx (2)

and satisfying the axioms

1 (λµ)x = λ(µx) (asso
iative law)

2 (λ+ µ)x = λx + µx

λ(x + y) = λx + λy (distributive laws)

3

1 · x = x (1 unit element of F)

A ve
tor spa
e over a �eld F is sometimes 
alled an F-spa
e. A ve
tor spa
e over the real �eld

is 
alled a real ve
tor spa
e and a ve
tor spa
e over the 
omplexed �eld is 
alled a 
omplex

ve
tor spa
e.
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Examples of Ve
tor Spa
es

Example

Let F be a �eld. The set F
F
of all fun
tions from F to F is a ve
tor spa
e over F, under the

operations of ordinary addition and s
alar multipli
ation of fun
tions:

(f + g)(x) = f (x) + g(x)

and

(af )(x) = a(f (x))

Example

The set Mm,n(F) of all m × n matri
es with entries in a �eld F is a ve
tor spa
e over F, under

the operation of matrix addition and s
alar multipli
ation.
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Example

The set F
n
of all ordered n-tuples whose 
omponents lie in a �eld F, is a ve
tor spa
e over F,

with addition and s
alar multipli
ation de�ned 
omponent-wise:

(a
1

, . . . , an) + (b
1

, . . . , bn) = (a
1

+ b
1

, . . . , an + bn)

and

c(a
1

, . . . , an) = (ca
1

, . . . , can)

When 
onvenient, we will also write the elements of F
n
in the 
olumn form. When F is a �nite

�eld Fq with q elements, we write V (n, q) for Fn
q.
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Example

Sequen
e spa
es

The set Seq(F) of all in�nite sequen
es with members from a �led F is a ve
tor spa
e

under the 
omponent-wise operations

(sn) + (tn) = (sn + tn)

and

a(sn) = (asn)

The set c
0

of all sequen
es of 
omplex numbers that 
onverge to 0

The set ℓ∞ of all bounded 
omplex sequen
es

Let p be a positive integer. The set ℓp of all 
omplex sequen
es (sn) for whi
h

∞∑

n=1

|sn|
p < ∞

under 
omponent-wise operations.
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Exer
ise

Exer
ise

Che
k if R
2

with 
anoni
al s
alar multipli
ation and addition de�ned by the formula

1 (x , y)⊕ (x ′, y ′) = (x + x ′, y + 3y ′)

2 (x , y)⊕ (x ′, y ′) = (x + x ′, y − y ′)

is a ve
tor spa
e.

Exer
ise

Che
k if R
2

with 
anoni
al addition and s
alar multipli
ation de�ned by the formula

1 r ⊙ (x , y) = (ry , rx)

2 r ⊙ (x , y) = (rx , r2y)

is a ve
tor spa
e.
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De�nition

Let S be non-empty subset of a ve
tor spa
e V . A linear 
ombination of ve
tors in S is an

expression of the form

a
1

v
1

+ a
2

v
2

+ . . . + anvn (3)

where v
1

, . . . , vn ∈ S and a
1

, . . . , an ∈ F. The s
alars are 
alled 
oe�
ients of the linear


ombination. A linear 
ombination is trivial if every 
oe�
ient ai is zero. Otherwise, it is

non-trivial.
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De�nition

A subspa
e of a ve
tor spa
e V is a subset S of V that is a ve
tor spa
e in its own right under

the operations obtained by restri
ting the operations of V to S . We use the notation S ⊆ V to

indi
ate that S is a subspa
e of V and S ⊂ V to indi
ate that S is a proper subspa
e of V ,

that is S ⊆ V but S 6= V . The zero subspa
e of V is {0}.

Theorem

A non-empty subset S of a ve
tor spa
e V is a subspa
e of V if and only if S is 
losed under

addition and s
alar multipli
ation or, equivalently S is 
losed under linear 
ombinations, that is

a, b ∈ F, u, v ∈ S ⇒ au + bv ∈ S (4)
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Examples of subspa
es

Example

Consider the ve
tor spa
e V (n, 2) of all binary n-tuples, that is, n-tuples of 0's and 1's. The

weight W(v) of a ve
tor v ∈ V (n, 2) is the number of non-zero 
oordinates in v . For instan
e,

W(101010) = 3. Let En be the set of all ve
tors in V of even weight. Then En is a subspa
e of

V (n, 2).

Example

Any subspa
e of the ve
tor spa
e V (n, q) is 
alled a linear 
ode. Linear 
odes are among the

most important and most studied types of 
odes, be
ause their stru
ture allows for e�
ient

en
oding and de
oding of information.
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Exer
ise

Exer
ise

Che
k if the following subsets are subspa
es of the ve
tor spa
e R
2

1 {(x ,−x); x ∈ R}

2 {(x , x − 1); x ∈ R}

3 {(x , y); xy ≥ 0}
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De�nition

Let S and T be subspa
es of V . The sum S + T is de�ned by

S + T = {u + v ; u ∈ S , v ∈ T} (5)

The sum of subspa
es S and T of V is a subspa
e of V .
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Internal Dire
t Sums

De�nition

A ve
tor spa
e V is the (internal) dire
t sum of a family F = {Si ; i ∈ I} of subspa
es of V ,

written

V =
⊕

F or V =
⊕

i∈I

F (6)

if the following holds

1 V is the sum (join) of the family F :

V =
∑

i∈I

Si (7)

2

For ea
h i ∈ I

Si ∩



∑

j 6=i

Sj


 = {0} (8)
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In this 
ase, ea
h Si is 
alled a dire
t summand of V . If F = {S
1

, . . . ,Sn} is a �nite family, the

dire
t sum is often written

V = S
1

⊕ . . .⊕ Sn (9)

Finally, if V = S ⊕ T , then T is 
alled a 
omplement of S in V .
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Spanning Sets

De�nition

The subspa
e spanned (or subspa
e generated) by a non-empty set S of ve
tors in V is the set

of all linear 
ombinations of ve
tors from S :

〈S〉 = span (S) = {r
1

v
1

+ . . . + rnvn; ri ∈ F, vi ∈ S} (10)

When S = {v
1

, . . . , vn} is a �nite set, we use the notation 〈v
1

, . . . vn〉 or span (v
1

, . . . vn). A set

S of ve
tors in V is said to span V , or generate V , if V = span (S).
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Linear Independen
e

De�nition

Let V be a ve
tor spa
e. A non-empty set S of ve
tors in V is linearly independent if �r any

distin
t ve
tors s
1

, . . . , sn in S

a
1

s
1

+ . . .+ ansn = 0 ⇒ ai = 0 for all i (11)

In word, S linearly independent if the only linear 
ombination of ve
tors from S that is equal to

0 is the trivial linear 
ombination, all of whose 
oe�
ients are ). If S is not linearly

independent, it is said to be linearly dependent.
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De�nition

Let S be a non-empty set of ve
tors in V . To say that a non-zero ve
tor v ∈ V is an

essentially unique linear 
ombination of the ve
tors in S is to sat that, up to order of terms,

there is one and only one way to express v as a linear 
ombination

v = a
1

s
1

+ . . .+ ansn (12)

where si 's are distin
t ve
tors inS and the 
oe�
ients ai are non-zero.

More expli
itly v 6= 0 is an essentially unique linear 
ombination of the ve
tors in S if v ∈ 〈S〉
and if whenever

v = a
1

s
1

+ . . .+ ansn and v = b
1

t
1

+ . . .+ bmtm

where si 's are distin
t the ti 's are distin
t and all 
oe�
ients are non-zero then n = m and

after re-indexing of the bi ti 's if ne
essary, we have ai = bi and si = ti for all i = 1, . . . , n.
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Theorem

Let S 6= {0} be a non-empty set of ve
tors in V . The following are equivalent

1 S is linearly independent.

2

Every non-zero ve
tor v ∈ span (S) is an essentially unique linear 
ombination of the

ve
tors in S

3

No ve
tor in S is a linear 
ombination of the other ve
tors in S .
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Theorem

Lest S be a set of ve
tors in V . the following are equivalent:

1 S is linearly independent and spans V

2

Every non-zero ve
tor v ∈ V is an essentially unique 
ombination of ve
tors in S

3 S is minimal spanning linearly independent set, but any proper subset does not span V

4 S is a maximal linearly independent set,that is, S is linearly independent, but any proper

superset of S is not linearly independent

De�nition

A set of ve
tors in V that satis�es any (and hen
e all) of above 
onditions is 
alled a basis for

V .

M.W. (CNMiKnO PG Gda«sk) Le
ture 01 2013-2016 20 / 34



Theorem

A �nite set S = {v
1

, . . . , vn} of ve
tors in V is a basis for V if and only if

V = 〈v
1

〉 ⊕ . . .⊕ 〈vn〉 (13)

Example

The ith standard ve
tor in F
n
is the ve
tor ei that has 0's in all 
oordinate positions ex
ept the

ith, where it has a 1. Thus,

e
1

= (1, 0, . . . , 0), e
2

= (0, 1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1) (14)

The set {e
1

, . . . , en} is 
alled the standard basis for F
n
.
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Theorem

Let V be a non-zero ve
tor spa
e. Let I be a linearly independent set in V and let S be a

spanning set in V 
ontaining I . Then there is a basis B for V whi
h I ⊆ B ⊆ S . In parti
ular

1

Any ve
tor spa
e, ex
ept the zero spa
e {0}, has a basis.

2

Any linearly independent set in V is 
ontained in a basis.

3

Any spanning set in V 
ontains a basis.
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Example

Let S be an arbitrary set and 
onsider the set C (S) of all mappings f : S → F su
h that

f (s) = 0 for all but �nitely many s ∈ S . Then if f and g are two su
h mappings, and λ is any

s
alar, the mappings f + g and λf de�ned by

(f + g)(s) = f (s) + g(s)

and

(λf )(s) = λ · f (s)

are again 
ontained in C (S). Thus we make the set C (S) into a ve
tor spa
e.

Now for ea
h a ∈ S denote by fa the mapping given by

fa(s) =

{
1 if s = a

0 if s 6= a

Then the ve
tors fa are a basis of C (S).
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Theorem

Let V be ve
tor spa
e and assume that the ve
tors v
1

, . . . , vn are linearly independent and the

ve
tors s
1

, . . . , sm span V . Then n ≤ m.

Corollary

If V has a �nite spanning set, then any two bases of V have the same size.

Theorem

If V is a ve
tor spa
e, then any two bases for V have the same 
ardinality.
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De�nition

A ve
tor spa
e V is �nite-dimensional if it is the zero spa
e {0}, or if it has a �nite basis. All

other ve
tor spa
es are in�nite-dimensional. the dimension of the zero spa
e is 0 and the

dimension of any non-zero ve
tor spa
e V is the 
ardinality of any basis of V . If a ve
tor spa
e

V has a basis of 
ardinality κ, we say that V is κ-dimensional and write dim(V ) = κ.

Theorem

Let V be a ve
tor spa
e

1

If B is a basis of V and if B = B
1

∪ B
2

and B
1

∩ B
2

= ∅ then

V = 〈B
1

〉 ⊕ 〈B
2

〉

2

Let V = S ⊕ T . If B
1

is a basis for S and B
2

is a basis for T , then B
1

∩ B
2

= ∅ and

B = B
1

∪ B
2

is a basis for V .
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Theorem

Let S and T be subspa
es of a ve
tor spa
e V . Then

dim(S) + dim(T ) = dim(T + S) + dim(S ∩ T ) (15)

In parti
ular, if T is any 
omplement of S in V , then

dim(S) + dim(T ) = dim(V ) (16)

that is,

dim(S ⊕ T ) = dim(S) + dim(T ) (17)
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De�nition

Let V be a ve
tor spa
e of dimension n, An ordered basis for V is and ordered n-tuple

(v
1

, . . . , vn) of ve
tors for whi
h the set {v
1

, . . . , vn} is a basis for V

If B = (v
1

, . . . , vn) is an ordered basis for V , then for ea
h v ∈ V there is a unique ordered

n-tuple (r
1

, . . . , rn) of s
alars for whi
h

v = r
1

v
1

+ . . .+ rnvn (18)

A

ordingly, we 
an de�ne the 
oordinate map φB : V → F
n
by

φB(v) = [v ]B =




r
1

.

.

.

rn


 (19)

where the 
olumn matrix [v ]B is known as the 
oordinate matrix of v with respe
t to the

ordered basis B. Clearly, knowing [v ]B is equivalently to knowing v (assuming knowledge of B).
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It is easy to see that the 
oordinate map φB is bije
tive and preserves the ve
tor spa
e

operations, that is

φB(r1v1 + . . .+ rnvn) = r
1

φB(v1) + . . .+ rnφB(vn)

or equivalently

[r
1

v
1

+ . . .+ rnvn] = r
1

[v
1

] + . . .+ rn[vn]

Fun
tions from one ve
tor spa
e to another that preserve the ve
tor spa
e operations are 
alled

linear transformations.
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Example

Given the basis B = (b
1

, b
2

) =

([
3

1

]
,

[
1

−1

])
of the ve
tor spa
e R

2

. Find the 
oordinate

ve
tor [v ]B of the ve
tor v =

[
5

−1

]
. Now given the 
oordinate ve
tor [x ]B =

[
2

−3

]
�nd

the ve
tor x ∈ R
2

.
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Exer
ises

1

Whi
h of the following sets of ve
tors in R
4

are linearly independent, (a generating set, a

basis)?

1 (1, 1, 1, 1), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 0, 1)
2 (1, 0, 0, 0), (2, 0, 0, 0)
3 (17, 39, 25, 10), (13, 12, 99, 4), (16, 1, 0, 0)
4 (1, 1

2

, 0, 0), (0, 0, 1, 1), (0, 1
2

, 1
2

, 1), ( 1
4

, 0, 0, 1
4

)

Extend the linearly independent sets to bases.

2

Are the ve
tors x
1

= (1, 0, 1); x
2

= (i , 1, 0); x
3

= (i , 2, 1+ i) linearly independent in C
3

?

Express x = (1, 2, 3) and y = (i , i , i) as linear 
ombinations of x
1

, x
2

, x
3

.

3

Let S be any set and 
onsider the set of maps

f : S → F
n

su
h that f (x) = 0 for all but �nitely many x ∈ S . Make this set into ve
tor spa
e

(denoted by C (S ,Fn)). Constru
t a basis for this ve
tor spa
e.
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4

Consider the set of polynomial fun
tions f : R → R,

f (x) =
n∑

i=0

αix
i .

Make this set into a ve
tor spa
e, and 
onstru
t a natural basis.

5

Let (ξ1, ξ2, ξ3) be an arbitrary ve
tor in F
3

. Whi
h of the following subsets are subspa
es?

1

all ve
tors with ξ1 = ξ2 = ξ3

2

all ve
tors with ξ3 = 0

3

all ve
tors with ξ1 = ξ2 − ξ3

4

all ve
tors with ξ1 = 1

6

Find subspa
es Fa, Fb, Fc , Fd generated by the sets of previous exer
ise, and 
onstru
t

bases for these subspa
es.
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7

Find 
omplementary spa
es for subspa
es of previous problem and 
onstru
t bases for

these 
omplementary spa
es. Show that there exists more then one 
omplementary spa
e

for ea
h given subspa
e.

8

Show that

1 F3 = Fa + Fb

2 F3 = Fb + Fc

3 F
3 = Fa + Fc

Find the interse
tions Fa ∩ Fb, Fb ∩ Fc , Fa ∩ Fc and de
ide in whi
h 
ases the sums above

are dire
t.
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9

Let (x
1

, x
2

) be a basis of a 2-dimensional ve
tor spa
e. Show that the ve
tors

x̃
1

= x
1

+ x
2

, x̃
2

= x
1

− x
2

again form a basis. Let (ξ1, ξ2) and (ξ̃1, ξ̃2) be the 
omponents of a ve
tor x relative to

the bases (x
1

, x
2

) and (x̃
1

, x̃
2

) respe
tively. Express the 
omponents (ξ̃1, ξ̃2) in terms of

the 
omponents (ξ1, ξ2).

10

Consider an n-dimensional 
omplex ve
tor spa
e E . Sin
e the multipli
ation with real


oe�
ients in parti
ular is de�ned in E , this spa
e may also be 
onsidered as a real ve
tor

spa
e. Let (z
1

, . . . , zn) be a basis of E . Show that the ve
tors z
1

, . . . , zn, iz1, . . . , izn form

a basis of E if E 
onsidered as a real ve
tor spa
e.
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11

In F
4


onsider the subspa
e T of all ve
tors ξ1, ξ2, ξ3, ξ4) satisfying ξ1 + 2ξ2 = ξ3 + 2ξ4.

Show that the ve
tors: x
1

= (1, 0, 1, 0) and x
2

= (0, 1, 0, 1) are linearly independent and

lie in T ; then extend this set of two ve
tors to a basis of T .

12

Let α
1

, α
2

, α
3

be �xed real numbers. Show that all ve
tors (η1, η2, η3, η4) in R
4

obeying

η4 = α
1

η
1

+ α
2

η
2

+ α
3

η
3

form a subspa
e V . Show that V is generated by

x
1

= (1, 0, 0, α
1

), x
2

= (0, 1, 0, α
2

), x
3

= (0, 0, 1, α
3

).

Verify that x
1

, x
2

, x
3

form a basis of the subspa
e V .
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