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Linear transformations

De�nition

Let V and W be vetor spaes over a �eld F. A funtion τ : V → W is a linear transformation

if

τ(ru + sv) = rτ(u) + sτ(v) (1)

for all salars r , s ∈ F and vetors u, v ∈ V . The set of all linear transformations from V to W

is denoted by L(V ,W )
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A linear transformation from V to V is alled a linear operator on V . The set of all linear

operators on V is denoted by L(V ). A linear operator on a real vetor spae is alled real

operator and a linear operator on a omplex vetor spae is alled a omplex operator.

A linear transformation from V to the base �eld F (thought of as a vetor spae over

itself) is alled a linear funtional on V . The set of all linear funtionals on V is denoted

by V ∗
and alled the dual spae of V .
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De�nition

The following terms are also employed:

homomorphism for linear transformation

endomorphism for linear operator

monomorphism (or embedding) for injetive transformation

epimorphism for surjetive linear transformation

isomorphism for bijetive linear transformation

automorphism for bijetive linear operator
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Examples

Example

1

The derivative D : V → V is a linear operator on the vetor spae V of all in�nitely

di�erentiable funtions on R.

2

The integral operator τ : F[x ] → F[x ] de�ned

τ f =

x
∫

0

f (t)dt

is linear operator on F[x ].

3

Let A be an m× n matrix over F. The funtion τA : F
n → F

m
de�ned by τAv = Av , where

all vetors are written as olumn vetors, is linear transformation from F
n
to F

m
.

4

The oordinate map φ : V → F
n
of an n-dimensional vetor spae is linear transformation

from V to F
n
.
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Theorem

1

The set L(V ,W ) is a vetor spae under ordinary addition of funtions and salar

multipliation of funtion by elements of F

2

If σ ∈ L(U,V ) and τ ∈ L(V ,W ) , then the omposition τσ is in L(U,W )

3

If τ ∈ L(V ,W ) is bijetive then τ−1 ∈ L(W ,V )
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Theorem

Let V and W be vetor spaes and let B = {vi ; i ∈ I} be a basis for V . Then we an de�ne a

linear transformation τ ∈ L(V ,W ) by speifying the values of τvi arbitrarily for all vi ∈ B and

extending τ to V by linearity, that is,

τ(a
1

v
1

+ . . .+ anvn) = a
1

τv
1

+ . . . + anτvn (2)

This proess de�nes a unique linear transformation, that is, if τ, σ ∈ L(V ,W ) satisfy τvi = σvi
for all vi ∈ B then τ = σ.
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De�nition

Let τ ∈ L(V ,W ). The subspae

ker(τ) = {v ∈ V ; τv = 0} (3)

is alled the kernel of τ and the subspae

im (τ) = {τv ; v ∈ V } (4)

is alled the image of τ . The dimension of ker(τ) is alled the nullity of τ and is denoted by

null (τ). The dimension of im (τ) is alled the rank of τ and is denoted by rk (τ).
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Theorem

Let τ ∈ L(V ,W ). Then

τ is surjetive if and only if im (τ) = W

τ is injetive if and only if ker(τ) = {0}
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De�nition

A bijetive linear transformation τ : V → W is alled an isomorphism form V to W . When an

isomorphism form V to W exists, we say that V and W are isomorphi and write V ∼= W .

Example

Let dim(V ) = n. For any ordered basis B of V , the oordinate map φB : V → F
n
that sends

eah vetor v ∈ V to its oordinate matrix [V ]B ∈ F
n
is an isomorphism. Hene any

n-dimensional vetor spae over F is isomorphi to F
n
.
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Theorem

Let τ ∈ L(V ,W ) be an isomorphism. Let S ⊆ V . Then

1 S spans V if and only if τS spans W

2 S is linearly independent in V if and only if τS is linearly independent in W

3 S is a basis for V if and only if τS is a basis for W .

Theorem

A linear transformation τ ∈ L(V ,W ) is an isomorphism if and only if there is a basis B for V

for whih τB is a basis for W . In this ase, τ maps any basis of V to a basis of W .

Theorem

Let V and W be vetor spaes over F. Then V ∼= W if and only if dim(V ) = dim(W ).
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Theorem

1

If A is a m × n matrix over F. Denote as

τA(v) = Av ,

then τA ∈ L(Fn,Fm).

2

If τ ∈ L(Fn,Fm) then τ = τA, where

A = (τe
1

| . . . |τen) (5)

The matrix A is alled the matrix of τ .
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Example

Example

Consider the linear transformation τ : F3 → F
3

de�ned by

τ(x , y , z) = (x − 2y , z , x + y + z)

Then we have, in olumn form,

τ





x

y

z



 =





x − 2y

z

x + y + z



 =





1 −2 0

0 0 1

1 1 1









x

y

z





and so the standard matrix of τ is

A =





1 −2 0

0 0 1

1 1 1
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Change of Basis Matries

Theorem

Let B = (b
1

, . . . , bn) and C = (c
1

, . . . , cn) be ordered bases for a vetor spae V . Then the

hange of basis operator φB,C = φCφ
−1

B
is an automorphism of F

n
whose standard matrix is

MB,C = ([b
1

]C | . . . |[bn]C) (6)

Hene

[v ]C = MB,C[v ]B (7)

and MC,B = M−1

B,C
.
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The matrix of a Linear Transformation

Theorem

Let τ ∈ L(V ,W ) and let B = (b
1

, . . . , bn) and C = (c
1

, . . . , cm) be ordered bases for V and

W respetively. Then τ an be represented with respet to B and C as matrix multipliation,

that is,

[τv ]C = [τ ]B,C[v ]B (8)

where

[τ ]B,C = ([τb
1

]C | . . . [τbn]C) (9)

is alled the matrix of τ with respet to the bases B and C. When V = W and B = C, we
denote [τ ]B,B by [τ ]B and so

[τv ]B = [τ ]B[v ]B (10)
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Example

Example

Let D : P
2

→ P
2

be the derivative operator, de�ned on the vetor spae of all polynomials of

degree at most 2. Let B = C = (1, x , x2). Then

[D(1)]C = [0]C =





0

0

0



 , [D(x)]C = [1]C =





1

0

0



 , [D(x2)]C = [2x ]C =





0

2

0





and so

[D]C =





0 1 0

0 0 2

0 0 0
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Example

Example

Hene , for example, if p(x) = 5+ x + 2x2, then

[Dp(x)]C = [D]B[p(x)]B =





0 1 0

0 0 2

0 0 0









5

1

2



 =





1

4

0





and so Dp(x) = 1+ 4x .

M.W. (CNMiKnO PG Gda«sk) Leture 02 2012-2017 18 / 20



Exerises

1

Using de�nition �nd the hange of basis matrix from the base B to B′
of the vetor spae

R
2

, if

B = ([1, 1], [3, 2]), B′ = ([3, 4], [9, 8])
B = ([7, 3], [9, 4]), B′ = ([1, 0], [16, 7])
B = ([5, 2], [4, 1]), B′ = ([9, 3], [−1, 2])

2

Using properties of the hange of basis matrix, �nd the hange of basis matrix from the

base B to B′
of the vetor spae R

3

, if

B = ([1, 2, 3], [1, 3, 4], [1, 5, 7]), B′ = ([2, 3, 4], [4, 4, 5], [6, 3, 4])
B = ([5, 2, 4], [3, 1, 1], [5, 1, 2]), B′ = ([5, 3, 6], [16, 1, 0], [5, 2, 4])
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Exerises

1

Having the following information, �nd the matrix MBC(ϕ) of the linear transformation

ϕ : R3 → R
2

ϕ([x
1

, x
2

, x
3

]) = [4x
1

+ x
2

− 3x
3

, 7x
1

+ 2x
2

− 5x
3

]
B = ([−2, 9, 0], [4, 0, 5], [0, 7, 2]), C = ([1, 4], [2, 7])
ϕ([x

1

, x
2

, x
3

]) = [5x
1

+ 3x
2

− 3x
3

, 6x
1

+ 4x
2

− 5x
3

]
B = ([4, 4, 1], [5, 8, 2], [4, 5, 11]), C = ([5, 6], [4, 5])

2

Linear transformation ϕ : R2 → R
3

is given by

[4, 5] → [−1, 2, 5], [5, 7] → [−2, 1, 4]
[1,−2] → [1, 3, 1], [3,−5] → [6, 10, 4]

Find the formula of ϕ([x
1

, x
2

]).
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