Lecture 02

 Linear transformations and linear functionals

 Linear transformations and linear functionals}

M.W.
Mathematics Teaching and Distance Learning Centre Gdańsk Technical University

2012-2017

(1) Linear transformations

(2) The Kernel and Image of a Linear Transformation
(3) Linear Transformations from \mathbb{F}^{n} to \mathbb{F}^{m}

Linear transformations

Definition

Let V and W be vector spaces over a field \mathbb{F}. A function $\tau: V \rightarrow W$ is a linear transformation if

$$
\begin{equation*}
\tau(r u+s v)=r \tau(u)+s \tau(v) \tag{1}
\end{equation*}
$$

for all scalars $r, s \in \mathbb{F}$ and vectors $u, v \in V$. The set of all linear transformations from V to W is denoted by $\mathcal{L}(V, W)$

- A linear transformation from V to V is called a linear operator on V. The set of all linear operators on V is denoted by $\mathcal{L}(V)$. A linear operator on a real vector space is called real operator and a linear operator on a complex vector space is called a complex operator.
- A linear transformation from V to the base field \mathbb{F} (thought of as a vector space over itself) is called a linear functional on V. The set of all linear functionals on V is denoted by V^{*} and called the dual space of V.

Definition

The following terms are also employed:

- homomorphism for linear transformation
- endomorphism for linear operator
- monomorphism (or embedding) for injective transformation
- epimorphism for surjective linear transformation
- isomorphism for bijective linear transformation
- automorphism for bijective linear operator

Examples

Example

(1) The derivative $D: V \rightarrow V$ is a linear operator on the vector space V of all infinitely differentiable functions on \mathbb{R}.
(2) The integral operator $\tau: \mathbb{F}[x] \rightarrow \mathbb{F}[x]$ defined

$$
\tau f=\int_{0}^{x} f(t) d t
$$

is linear operator on $\mathbb{F}[x]$.
(3) Let A be an $m \times n$ matrix over \mathbb{F}. The function $\tau_{A}: \mathbb{F}^{n} \rightarrow \mathbb{F}^{m}$ defined by $\tau_{A} v=A v$, where all vectors are written as column vectors, is linear transformation from \mathbb{F}^{n} to \mathbb{F}^{m}.
(9) The coordinate $\operatorname{map} \phi: V \rightarrow \mathbb{F}^{n}$ of an n-dimensional vector space is linear transformation from V to \mathbb{F}^{n}.

Theorem

(1) The set $\mathcal{L}(V, W)$ is a vector space under ordinary addition of functions and scalar multiplication of function by elements of \mathbb{F}
(2) If $\sigma \in \mathcal{L}(U, V)$ and $\tau \in \mathcal{L}(V, W)$, then the composition $\tau \sigma$ is in $\mathcal{L}(U, W)$
(3) If $\tau \in \mathcal{L}(V, W)$ is bijective then $\tau^{-1} \in \mathcal{L}(W, V)$

Theorem

Let V and W be vector spaces and let $\mathcal{B}=\left\{v_{i} ; i \in I\right\}$ be a basis for V. Then we can define a linear transformation $\tau \in \mathcal{L}(V, W)$ by specifying the values of τv_{i} arbitrarily for all $v_{i} \in \mathcal{B}$ and extending τ to V by linearity, that is,

$$
\begin{equation*}
\tau\left(a_{1} v_{1}+\ldots+a_{n} v_{n}\right)=a_{1} \tau v_{1}+\ldots+a_{n} \tau v_{n} \tag{2}
\end{equation*}
$$

This process defines a unique linear transformation, that is, if $\tau, \sigma \in \mathcal{L}(V, W)$ satisfy $\tau v_{i}=\sigma v_{i}$ for all $v_{i} \in \mathcal{B}$ then $\tau=\sigma$.

Definition

Let $\tau \in \mathcal{L}(V, W)$. The subspace

$$
\begin{equation*}
\operatorname{ker}(\tau)=\{v \in V ; \tau v=0\} \tag{3}
\end{equation*}
$$

is called the kernel of τ and the subspace

$$
\begin{equation*}
\operatorname{im}(\tau)=\{\tau v ; v \in V\} \tag{4}
\end{equation*}
$$

is called the image of τ. The dimension of $\operatorname{ker}(\tau)$ is called the nullity of τ and is denoted by null (τ). The dimension of $\operatorname{im}(\tau)$ is called the rank of τ and is denoted by $\operatorname{rk}(\tau)$.

Theorem

Let $\tau \in \mathcal{L}(V, W)$. Then

- τ is surjective if and only if $\operatorname{im}(\tau)=W$
- τ is injective if and only if $\operatorname{ker}(\tau)=\{0\}$

Definition

A bijective linear transformation $\tau: V \rightarrow W$ is called an isomorphism form V to W. When an isomorphism form V to W exists, we say that V and W are isomorphic and write $V \cong W$.

Example

Let $\operatorname{dim}(V)=n$. For any ordered basis \mathcal{B} of V, the coordinate map $\phi_{B}: V \rightarrow \mathbb{F}^{n}$ that sends each vector $v \in V$ to its coordinate matrix $[V]_{\mathcal{B}} \in \mathbb{F}^{n}$ is an isomorphism. Hence any n-dimensional vector space over \mathbb{F} is isomorphic to \mathbb{F}^{n}.

Theorem

Let $\tau \in \mathcal{L}(V, W)$ be an isomorphism. Let $S \subseteq V$. Then
(1) S spans V if and only if τS spans W
(3) S is linearly independent in V if and only if τS is linearly independent in W
(0) S is a basis for V if and only if τS is a basis for W.

Theorem

A linear transformation $\tau \in \mathcal{L}(V, W)$ is an isomorphism if and only if there is a basis \mathcal{B} for V for which $\tau \mathcal{B}$ is a basis for W. In this case, τ maps any basis of V to a basis of W.

Theorem

Let V and W be vector spaces over \mathbb{F}. Then $V \cong W$ if and only if $\operatorname{dim}(V)=\operatorname{dim}(W)$.

Theorem

(1) If A is a $m \times n$ matrix over \mathbb{F}. Denote as

$$
\tau_{A}(v)=A v
$$

then $\tau_{A} \in \mathcal{L}\left(\mathbb{F}^{n}, \mathbb{F}^{m}\right)$.
(2) If $\tau \in \mathcal{L}\left(\mathbb{F}^{n}, \mathbb{F}^{m}\right)$ then $\tau=\tau_{A}$, where

$$
\begin{equation*}
A=\left(\tau e_{1}|\ldots| \tau e_{n}\right) \tag{5}
\end{equation*}
$$

The matrix A is called the matrix of τ.

Example

Example

Consider the linear transformation $\tau: \mathbb{F}^{3} \rightarrow \mathbb{F}^{3}$ defined by

$$
\tau(x, y, z)=(x-2 y, z, x+y+z)
$$

Then we have, in column form,

$$
\tau\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
x-2 y \\
z \\
x+y+z
\end{array}\right]=\left[\begin{array}{ccc}
1 & -2 & 0 \\
0 & 0 & 1 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

and so the standard matrix of τ is

$$
A=\left[\begin{array}{ccc}
1 & -2 & 0 \\
0 & 0 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

Change of Basis Matrices

Theorem

Let $\mathcal{B}=\left(b_{1}, \ldots, b_{n}\right)$ and $\mathcal{C}=\left(c_{1}, \ldots, c_{n}\right)$ be ordered bases for a vector space V. Then the change of basis operator $\phi_{\mathcal{B}, \mathcal{C}}=\phi_{\mathcal{C}} \phi_{\mathcal{B}}^{-1}$ is an automorphism of \mathbb{F}^{n} whose standard matrix is

$$
\begin{equation*}
M_{\mathcal{B}, \mathcal{C}}=\left(\left[b_{1}\right]_{\mathcal{C}}|\ldots|\left[b_{n}\right]_{\mathcal{C}}\right) \tag{6}
\end{equation*}
$$

Hence

$$
\begin{equation*}
[v]_{\mathcal{C}}=M_{\mathcal{B}, \mathcal{C}}[v]_{\mathcal{B}} \tag{7}
\end{equation*}
$$

and $M_{\mathcal{C}, \mathcal{B}}=M_{\mathcal{B}, \mathcal{C}}^{-1}$.

The matrix of a Linear Transformation

Theorem

Let $\tau \in \mathcal{L}(V, W)$ and let $\mathcal{B}=\left(b_{1}, \ldots, b_{n}\right)$ and $\mathcal{C}=\left(c_{1}, \ldots, c_{m}\right)$ be ordered bases for V and W respectively. Then τ can be represented with respect to \mathcal{B} and \mathcal{C} as matrix multiplication, that is,

$$
\begin{equation*}
[\tau v]_{\mathcal{C}}=[\tau]_{\mathcal{B}, \mathcal{C}}[v]_{\mathcal{B}} \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
[\tau]_{\mathcal{B}, \mathcal{C}}=\left(\left[\tau b_{1}\right]_{\mathcal{C}} \mid \ldots\left[\tau b_{n}\right]_{\mathcal{C}}\right) \tag{9}
\end{equation*}
$$

is called the matrix of τ with respect to the bases \mathcal{B} and \mathcal{C}. When $V=W$ and $\mathcal{B}=\mathcal{C}$, we denote $[\tau]_{\mathcal{B}, \mathcal{B}}$ by $[\tau]_{\mathcal{B}}$ and so

$$
\begin{equation*}
[\tau v]_{\mathcal{B}}=[\tau]_{\mathcal{B}}[v]_{\mathcal{B}} \tag{10}
\end{equation*}
$$

Example

Example

Let $D: \mathcal{P}_{2} \rightarrow \mathcal{P}_{2}$ be the derivative operator, defined on the vector space of all polynomials of degree at most 2 . Let $\mathcal{B}=\mathcal{C}=\left(1, x, x^{2}\right)$. Then

$$
[D(1)]_{\mathcal{C}}=[0]_{\mathcal{C}}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right],[D(x)]_{\mathcal{C}}=[1]_{\mathcal{C}}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[D\left(x^{2}\right)\right]_{\mathcal{C}}=[2 x]_{\mathcal{C}}=\left[\begin{array}{l}
0 \\
2 \\
0
\end{array}\right]
$$

and so

$$
[D]_{\mathcal{C}}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right]
$$

Example

Example

Hence, for example, if $p(x)=5+x+2 x^{2}$, then

$$
[D p(x)]_{\mathcal{C}}=[D]_{\mathcal{B}}[p(x)]_{\mathcal{B}}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
5 \\
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
1 \\
4 \\
0
\end{array}\right]
$$

and so $D p(x)=1+4 x$.

Exercises

(1) Using definition find the change of basis matrix from the base \mathcal{B} to \mathcal{B}^{\prime} of the vector space \mathbb{R}^{2}, if

- $\mathcal{B}=([1,1],[3,2]), \quad \mathcal{B}^{\prime}=([3,4],[9,8])$
- $\mathcal{B}=([7,3],[9,4]), \quad \mathcal{B}^{\prime}=([1,0],[16,7])$
- $\mathcal{B}=([5,2],[4,1]), \quad \mathcal{B}^{\prime}=([9,3],[-1,2])$
(2) Using properties of the change of basis matrix, find the change of basis matrix from the base \mathcal{B} to \mathcal{B}^{\prime} of the vector space \mathbb{R}^{3}, if
- $\mathcal{B}=([1,2,3],[1,3,4],[1,5,7]), \quad \mathcal{B}^{\prime}=([2,3,4],[4,4,5],[6,3,4])$
- $\mathcal{B}=([5,2,4],[3,1,1],[5,1,2]), \quad \mathcal{B}^{\prime}=([5,3,6],[16,1,0],[5,2,4])$

Exercises

(1) Having the following information, find the matrix $M_{\mathcal{B C}}(\varphi)$ of the linear transformation $\varphi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$

- $\varphi\left(\left[x_{1}, x_{2}, x_{3}\right]\right)=\left[4 x_{1}+x_{2}-3 x_{3}, 7 x_{1}+2 x_{2}-5 x_{3}\right]$
$\mathcal{B}=([-2,9,0],[4,0,5],[0,7,2]), \quad \mathcal{C}=([1,4],[2,7])$
- $\varphi\left(\left[x_{1}, x_{2}, x_{3}\right]\right)=\left[5 x_{1}+3 x_{2}-3 x_{3}, 6 x_{1}+4 x_{2}-5 x_{3}\right]$
$\mathcal{B}=([4,4,1],[5,8,2],[4,5,11]), \quad \mathcal{C}=([5,6],[4,5])$
(2) Linear transformation $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is given by
- $[4,5] \rightarrow[-1,2,5], \quad[5,7] \rightarrow[-2,1,4]$
- $[1,-2] \rightarrow[1,3,1], \quad[3,-5] \rightarrow[6,10,4]$

Find the formula of $\varphi\left(\left[x_{1}, x_{2}\right]\right)$.

