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© Inner product

© Hilbert spaces - examples

© Applications
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Let V be a vector space over F =R or F = C. An inner product on V is a function
(,): V x V — F with the following properties

O (Positive definiteness) For all v € V,

(v,v) >0and (v,v) =0< v=0 (1)

Q For F = C: (Conjugacy symmetry)

(u,v) = (v, u) (2)

For F = R: (Symmetry)
(u,v) = (v, u) (3)

© (Linearity in the first coordinate) For all u,v € V and r,s € F

(ru+sv,w) = r{u,w) + s(v, w) (4)
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Definition

A real (or complex) vector space V/, together with an inner product, is called a real (or
complexed) inner product space.

If F =R, then properties 2 i 3 imply that the inner product is linear in both coordinates , that
is, the inner product is bilinear. However, if F = C, then

(w,ru+sv) = (ru+sv,w) =F(w,u) +35(w,v) (5)

This is referred to as conjugate linearity in the second coordinate. A complex inner product is
linear in its first coordinate and conjugate linear in its second coordinate. This is often described
by saying that complex inner product is sesquilinear. (Sesqui means “one an a half times”).
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Examples

© The vector space R" is an inner product space under the standard inner product, defined by

((rny---yrm)(S1y---y8n)) =nsi+ ...+ sy (6)

The inner product space R" is often called n-dimensional Euclidean space

© The vector space C" is an inner product space under standard inner product defined by

((n,...yrm),(S1,---,5n)) = nS1+ ...+ raSn (7)

This inner product space is often called n-dimensional unitary space.
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© The vector space C[a, b] of all continuous complex-valued functions on the closed interval
[a, b] is a complex inner product space under the inner product

b

(Fe) = / F(x)g(x)dx (8)

a
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Important example

One of the most important inner product spaces is the vector space £ of all real (or
complexed) sequences (s,) with the property that

S fsal? < 00 (9)

under the inner product
<(5n)7 (tn)> — Z SnTn (10)
n=1

Such sequences are called square summable.
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If V is an inner product space, the norm, or length of v € V is defined by

vl = V{v,v) (11)

A vector v is a unit vector if ||v|| = 1.
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Q ||V]| >0 and ||v|| =0 if and only if v =0
Q ForallreF andv eV,
vl = Irl IV

© (The Cauchy-Schwartz inequality) For all v,u € V
[(u, V) < [ul] [Iv]] (12)

with equality if and only if one of u and v is a scalar multiple of the other.
Q (The triangle inequality) For all u,v € V

[lu+ v < lull + vl (13)

with equality if and only if one of u and v is a scalar multiple of the other.
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Theorem

© Forallu,v,xeV
lu = vl < Ju = x][ + |[x = v||

Q Forallu,veV
| el =1IvI[ | < [lu—v|

@ (The parallelogram law) For all u,v € V

[l + V|2 + [lu = vII? = 2[u]|? + 2[|v|?

(14)

(15)

(16)
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Any vector space V/, together with function || - ||: V — R that satisfies properties 1), 2) and 4)
of the previous theorem is called a normed linear space and the function || - || is called a norm.
Thus, any inner product space is a normed linear space, under norm given by (11)
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Let V be an inner product space. The distance d(u, v) between any two vectors v and v in V is

d(u,v) = |lu—v| (17)

Q d(u,v) >0 and d(u,v) =0 ifand only if u=v
Q (Symmetry)
d(u,v) =d(v,u) (18)

O (The triangle inequality)
d(u,v) < d(u, w) + d(w, v) (19)
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Any nonempty set V/, together with a function d: V x V — R that satisfies the properties of
the above theorem is called a metric space and the function d is called a metric on V. Thus,
any inner product space is a metric space under the metric (17)
The presence of an inner product, and hence a metric, permits the definition of a topology on
V, and in particular, convergence of infinite sequences. a sequence (v,) of vectors in V
converges to v € V if
lim ||v,—v||=0 20
Tim [[vo — v] (20)
Some of more important concepts related to convergence are closedness and closures,
completeness and the continuity of linear operators and linear functionals.
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Let M be a metric space with metric d

Definition
A sequence (x,) in a metric space M is a Cauchy sequence if for any £ > 0, there exists an
N > 0 for which

n,m> N = d(xp,xm) < e (21)

v

Definition

Let M be a metric space
O M is said to be complete if every Cauchy sequence in M converges in M

© A subspace S of M is complete if it is complete as a metric space. Thus S is complete if
every Cauchy sequence (s,) in S converges to an element in S.
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Definition
Let f: M — M’ be a function from the metric space (M, d) to the metric space (M, d’). we
say that f is continuous at xg € M if for any € > 0 there exists a § > 0 such that

d(x,x) <= d'(f(x),f(x)) <e (22)

A function is continuous if it is continuous at every xp € M.

Theorem

| A\

A function f: M — M’ is continuous if and only if whenever (x,) is a sequence in M that
converges to xg € M, then sequence (f(x,)) converges to f(xp), in short

(xn) = x0 = (f(xn)) = f(x0) (23)

4
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An inner product space that is complete under the metric induced by the inner product is said
to be a Hilbert space.

Example

| \

The space ¢? is a Hilbert space. The inner product is defined by
o
(x,y) = anyn
n=1

The metric induced by this inner product is

o 1/2
d(x,y) = IIx —ylla = (Z |0 — yn|2>

n=1

The space £? is a prototype of all Hilbert spaces, introduced by David Hilbert in 1912, even

before the axiomatic definition of Hilbert spaces was given by John von Neumann in 1927
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In the finite-dimensional case, the situation is very straightforward:

@ All subspaces are closed,
o all linear product spaces are complete

@ and all linear operators and functionals are continuous.

However, in the infinite-dimensional case, things are not as simple.
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Let V be an inner product space
© Two vectors u,v € V are orthogonal, written u L v, if

(u,v) =0 (24)

© Two subspaces X, Y C V are orthogonal, written X L Y, if (X, Y) = {0}, that is, if
x L yforall xe X and y € Y. We write v L X in place of {v} L X.

© The orthogonal complement of a subspace X C V is the set

Xt={veVv, vl1X} (25)
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Definition

A nonempty set O = {u;; i € K} of vectors in an inner product space is said to be an
orthonormal set if u; L uj for all / # j € K. If, in addition, each vector u; is a unit vector, then
O is an orthonormal set. Thus, a set is orthonormal if

<U,', Uj> = (5,"]' (26)

for all i,j € K, where §; j is Kronecker delta function.

Any orthonormal set of nonzero vectors in V is linearly independent.
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Definition
A maximal orthonormal set in an inner product space V is called a Hilbert basis for V

Example
Let V = ¢2 and let M be the set of all vectors of the form

e =(0,...,0,1,0,...)

where e; has 1 in the ith coordinate and 0’s elsewhere. Clearly, M is an orthonormal set.
Moreover, it is maximal. For if v = (x,) € £? has the property that v | M, then

xi=(v,e)=0

for all i and so v = 0. Hence, no nonzero vector v & M is orthogonal to M. This shows that
M is a Hilbert basis for the inner product space (2.

M.W. (CNMiKnO PG Gdansk) Lecture 2012-2016 20 / 39



Theorem

Let O = {uw1,...,ux} be an orthonormal subset of an inner product space V and let S = (O).
The Fourier expansion with respect to O of a vector v € V is

V= (v,u)u + ...+ (v, ux)ug (27)

Each coefficient (v, u;) is called Fourier coefficient of v with respect to O. The vector vV can be
characterized as follows:
Q V is the unique vector s € S for which (v —s) L S

© V is the best approximation to v from within S, that is, V is the unique vector s € S that
is closest to v, in the sense that

v =vI[ <[]v—sl| (28)

for alls € S\ {v}
© Bessel’s inequality holds for all v € V, that is

~
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© Show, that in any Euclidean space equality ||u|| = ||v|| holds if and only if u+ v L u—v
@ In vector space R? define inner product, such that the following conditions hold
[1,0] L [1,1], [0,1] L [2,1] i ||[1,0]]| =2
© Check if the given vectors form an orthonormal basis of Euclidean space R3:
vi = 1[4,3,0],v1 = £[3,-4,0],vs =[0,0,1]
Q@ Applying Gram-Schmidt orthogonalization process, construct orthonormal basis of the
given subspace of the Euclidean space R*: span([1,1,1,1],[3,3,1,1],[7,5,3,1])
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Let V and W be finite-dimensional inner product spaces over F and let 7 € L(V, W). Then
there is a unique function 7*: W — V, defined by the condition

(tv,w) = (v,7"w) (30)

for all v € V and w € W. This function is in (W, V) and is called the adjoint of 7.
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Theorem

Let V. and W be finite-dimensional inner product spaces. For every o,7 € L(V, W) and r € F

QO (o+7)'=0"+7*
Q (rr) =7r"
Q 7™ =1 and so
(T*v,w) = (v, Tw)
Q If 7 is invertible, then (771)* = (7*)71
Q IfV =W and p[x]| € R[x], then p(7)* = p(7*)
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Moreover, if T € L(V) and S is a subspace of V, then
@ S is T-invariant if and only if St is 7*-invariant.

Q (S,S%1) reduces T if and only if S is both T-invariant and T*-invariant, in which case

(ts)* = (")ls
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Let V be inner product space
©Q 7 € L(V) is self-adjoint (also called Hermitian in the complex case and symmetric in the
real case) if
=1 (31)
Q 7 € L(V) is skew self-adjoint (also called skew-Hermitian in the complex case and

skew-symmetric in the real case) if
m =0 (32)

© 7 € L(V) is unitary in the complex case and orthogonal in the real case if 7 is invertible
and

=71 (33)

4
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Let 7: Hy — H> be a linear transformation from H; to H>. Then 7 is said to be bounded if

ol
up

x7#0 HXH

< 00 (34)

If the supremum on the left is finite, we denote it by ||7|| and call it the norm of 7.
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Locally integrable functions

A function f defined on R is called locally integrable, if the integral

b

/f

a

exists for —oco < a < b < oo

v
Theorem

Let f, g be locally integrable functions. If g is bounded on [a, b] for every —oco < a < b < o0,
then the product f - g is a locally integrable function.
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A complex-valued function f is integrable if and only if its real part Ref and its imaginary part
Imf are integrable. Moreover, if f is integrable, then

/f:/Ref+i/lmf (35)

A complex-valued function f: R — C is called locally integrable if its real part and imaginary
part are locally integrable.

Definition
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The set of all functions f: R — R satisfying [ f < co we denote L!(R)
R

| \

Definition
Functional
I|-1I: L'(R) = R

Il = [ 17

defined as

is a norm of L!(R)

L1(R) is complete.
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Definition

For a real p > 1 by LP(R) we denote the space of all complex-valued locally integrable

functions f such that
|f|P € L'(R)

17l = </|f|")1/p

Moreover

is a norm.

| \

Theorem
O LP(R) is a vector space.

Q@ LP(R) is complete for every 1 < p < o0
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eI

@ The space L?(R) with an inner product defined as
/ f(x)g(x)dx

is an inner product space.
@ The spaces L%(R) and L?([a, b]) are Hilbert spaces.
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Definition
A sequence (x,) of vectors in an inner product space E is called weakly convergent to a vector

x in E if for every y € E
{Xn,y) = (x,y), n— o0

Notation

X

1=

x
A\

Theorem
A strongly convergent sequence is weakly convergent (to the same limit)

Xp = X = Xp — X

N

Weakly convergent sequences in a Hilbert space are bounded.
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Example
Let

inx
e

SDH(X) = \/%7

The set {¢,; n € Z} is an orthonormal set in L?([—, 7])
For m # n we have

neZz

™

1 . ewi(m—n) _ e—wi(m—n)
_ i(m—n)x 4., _ _
<90m’90n> o /e dx 27”'(m_ n) 0

—T

On the other hand

T

1 .
{@ns Pn) = o / e (m=mx gy =1

—T

Thus (©m, ©n) = Omn

v
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Definition

An orthonormal sequence (x,) in an inner product space E is said to be complete if for every
x € E we have

X = Z(x,x,,)x,, (36)
n=1
Let H = L2([—,7]) and let x,(t) = ﬁ sinnt for n=1,2,.... The sequence (x,) is an

orthonormal set in H. The sequence however is not complete. Let us take x(t) = cos(t) then
we have

[e.9]

t
Z(X,Xn>x,,(t)— /costsmntdt sin ZO sinnt =0 =
(VT

n=1 n=

# cost

V.
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An orthonormal sequence (x,) in a Hilbert space H is complete if and only if for all n € N
(x,%n) = 0 implies x =0

The orthonormal system

wn(x) = n=0,+1,42,...

is complete in L?([—7,7])
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The sequence of functions
1 cosx sinx cos2x sin2x
/27-‘-’ ﬁ b ﬁ b ﬁ ) ﬁ AR

is a complete orthonormal system in L2([—,7]).
The orthogonality follows from the following identities by simple integration:

@ 2cos nx cos mx = cos(n + m)x + cos n — m)x
@ 2sin nxsin mx = cos(n — m)x — cos(n + m)x
@ 2cos nxsin mx = sin(n + m)x — sin(n — m)x
i ™
Since [ cos? xdx = f sin? xdx = 7 the sequence is also orthonormal.
—T —Tr
Completeness follows from completeness of previous example in view of the following identities
e® =1 and ™ = (cos nx + i sin nx)
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Definition

A Hilbert space is called separable if it contains a complete orthonormal sequence.

Finite dimensional Hilbert spaces are considered separable.

Space L2([—m,n]) is separable.

Space /2 is separable.

Every separable Hilbert space contains a countable dense subset.

Every orthogonal set in a separable Hilbert space is countable.
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In applied mathematics equations can be often written as operator equations of the form
Tx = x (37)

where T is an operator in a Hilbert space and x unknown.
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