1 Vector spaces (linear spaces)

1. Let us define in the set \mathbb{R}^+ addition \oplus and scalar multiplication \odot of elements of \mathbb{R}^+ by the real numbers by the following formulae

$$a \oplus b = ab$$
, $r \odot a = a^r$.

Verify that the set $(\mathbb{R}^+, \oplus, \odot)$ is a vector space over the field of real numbers.

- 2. Is the set $C^{1}[a, b]$ of real functions defined on the closed interval [a, b], having a continuous derivative in (a, b), with addition and scalar multiplication, a vector space over the field of real numbers?
- 3. Let $V = \{(x_1, x_2, x_3) \in \mathbb{F}^3; x_1 + 2x_2 + 2x_3 = 0\}$. Is V a vector space (over the field \mathbb{F})?
- 4. Check, if $(\mathbb{R}^2, +, \odot)$, where multiplication \odot of elements of the set \mathbb{R}^2 by real numbers is defined by the formula

$$a \odot (x_1, x_2) = (ax_1, x_2)$$

is a vector space over the field of real numbers.

2 Vector subspaces (linear subspaces)

- 1. Check, if the given subset of the vector space \mathbb{R}^{∞} is its subspace
 - (a) the set of constant sequences
 - (b) the set of convergent sequences
 - (c) the set of non-decreasing sequences
 - (d) the set of sequences with rational terms
 - (e) the set of sequences convergent to 0
- 2. Let V be a vector space over a filed \mathbb{F} , and let W_1 and W_2 be two subspaces of V. Show, that the intersection $W_1 \cap W_2$ is also a subspace of V.
- 3. Let $\mathbb{F}[z]$ denotes the vector space of all polynomials with coefficients in a field \mathbb{F} . Let U be the subspace of $\mathbb{F}[z]$ defined as $U = \{az^6 + bz^3; a, b \in \mathbb{F}\}$. Find the subspace W of the space $\mathbb{F}[z]$ such that $\mathbb{F}[z] = U \oplus W$.

3 Linear independence of vectors, spanning sets and bases

- 1. Check if in the vector space \mathbb{R}^4 the following statement are true
 - (a) $[4, 6, 4, 5] \in \text{span}([1, 4, 6, 5], [5, 6, 2, 4])$
 - (b) $[4,9,9,1] \in \text{span}([1,2,3,5], [3,7,9,8], [1,3,4,7])$
- 2. Check if the given vectors span the vector space \mathbb{R}^3
 - (a) [1,3,5], [1,4,7], [3,8,17]
 - (b) [1, 2, 4], [7, 6, 4], [9, 7, 3]
- 3. Check if the given vectors of the vector space \mathbb{R}^3 are linearly independent
 - (a) [3, -1, 2], [-9, 3, -6]
 - (b) [1,1,1], [1,0,1], [1,1,0]
 - (c) [1, 1-1], [3, 4, 1], [6, 7, 1], [2, 1, -5]
 - (d) [3,5,1], [4,-1,2], [8,9,4]
- 4. Show that the vectors $1, \cos x, \cos^2 x, \cos^3 x, \cos^4 x, \ldots$ of the vector space $C(-\infty, \infty)$ are linearly independent.
- 5. Check if the given vectors form the basis of the vector space \mathbb{R}^3
 - (a) [1, 0, -1], [1, 1, 3], [4, 1, 1]
 - (b) [1, 5, 0], [1, 2, 3], [1, 4, 1]
 - (c) [4,4,5], [8,7,9], [5,3,4]
- 6. Find the coordinates of the vector $[x, y] \in \mathbb{R}^2$ in the basis ([7, 5], [4, 3]) of the vector space \mathbb{R}^2
- 7. Verify for which numbers $x \in \mathbb{R}$ the given triple forms the basis of the vector space \mathbb{R}^3
 - (a) [1,3,4], [2,1,5], [1,8,x]
 - (b) [1, 2, 3], [3, 4, 9], [1, x, 3]