1 Vector spaces (linear spaces)

1. Let us define in the set \mathbb{R}^{+}addition \oplus and scalar multiplication \odot of elements of \mathbb{R}^{+}by the real numbers by the following formulae

$$
a \oplus b=a b, \quad r \odot a=a^{r} .
$$

Verify that the set $\left(\mathbb{R}^{+}, \oplus, \odot\right)$ is a vector space over the field of real numbers.
2. Is the set $C^{1}[a, b]$ of real functions defined on the closed interval $[a, b]$, having a continuous derivative in (a, b), with addition and scalar multiplication, a vector space over the field of real numbers?
3. Let $V=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{F}^{3} ; \quad x_{1}+2 x_{2}+2 x_{3}=0\right\}$. Is V a vector space (over the field \mathbb{F})?
4. Check, if $\left(\mathbb{R}^{2},+, \odot\right)$, where multiplication \odot of elements of the set \mathbb{R}^{2} by real numbers is defined by the formula

$$
a \odot\left(x_{1}, x_{2}\right)=\left(a x_{1}, x_{2}\right)
$$

is a vector space over the field of real numbers.

2 Vector subspaces (linear subspaces)

1. Check, if the given subset of the vector space \mathbb{R}^{∞} is its subspace
(a) the set of constant sequences
(b) the set of convergent sequences
(c) the set of non-decreasing sequences
(d) the set of sequences with rational terms
(e) the set of sequences convergent to 0
2. Let V be a vector space over a filed \mathbb{F}, and let W_{1} and W_{2} be two subspaces of V. Show, that the intersection $W_{1} \cap W_{2}$ is also a subspace of V.
3. Let $\mathbb{F}[z]$ denotes the vector space of all polynomials with coefficients in a field \mathbb{F}. Let U be the subspace of $\mathbb{F}[z]$ defined as $U=\left\{a z^{6}+b z^{3} ; \quad a, b \in \mathbb{F}\right\}$. Find the subspace W of the space $\mathbb{F}[z]$ such that $\mathbb{F}[z]=U \oplus W$.

3 Linear independence of vectors, spanning sets and bases

1. Check if in the vector space \mathbb{R}^{4} the following statement are true
(a) $[4,6,4,5] \in \operatorname{span}([1,4,6,5],[5,6,2,4])$
(b) $[4,9,9,1] \in \operatorname{span}([1,2,3,5],[3,7,9,8],[1,3,4,7])$
2. Check if the given vectors span the vector space \mathbb{R}^{3}
(a) $[1,3,5],[1,4,7],[3,8,17]$
(b) $[1,2,4],[7,6,4],[9,7,3]$
3. Check if the given vectors of the vector space \mathbb{R}^{3} are linearly independent
(a) $[3,-1,2],[-9,3,-6]$
(b) $[1,1,1],[1,0,1],[1,1,0]$
(c) $[1,1-1],[3,4,1],[6,7,1],[2,1,-5]$
(d) $[3,5,1],[4,-1,2],[8,9,4]$
4. Show that the vectors $1, \cos x, \cos ^{2} x, \cos ^{3} x, \cos ^{4} x, \ldots$ of the vector space $C(-\infty, \infty)$ are linearly independent.

5 . Check if the given vectors form the basis of the vector space \mathbb{R}^{3}
(a) $[1,0,-1],[1,1,3],[4,1,1]$
(b) $[1,5,0],[1,2,3],[1,4,1]$
(c) $[4,4,5],[8,7,9],[5,3,4]$
6. Find the coordinates of the vector $[x, y] \in \mathbb{R}^{2}$ in the basis $([7,5],[4,3])$ of the vector space \mathbb{R}^{2}
7. Verify for which numbers $x \in \mathbb{R}$ the given triple forms the basis of the vector space \mathbb{R}^{3}
(a) $[1,3,4],[2,1,5],[1,8, x]$
(b) $[1,2,3],[3,4,9],[1, x, 3]$

