1 Linear independence of vectors, spanning sets and bases

- 1. Which of the following sets of vectors in \mathbb{R}^4 are linearly independent, (a generating set, a basis)?
 - (a) (1,1,1,1), (1,0,0,0), (0,1,0,0), (0,0,0,1)
 - (b) (1, 0, 0, 0), (2, 0, 0, 0)
 - (c) (17, 39, 25, 10), (13, 12, 99, 4), (16, 1, 0, 0)
 - (d) $(1, \frac{1}{2}, 0, 0), (0, 0, 1, 1), (0, \frac{1}{2}, \frac{1}{2}, 1), (\frac{1}{4}, 0, 0, \frac{1}{4})$

Extend the linearly independent sets to bases.

- 2. Are the vectors $x_1 = (1, 0, 1)$; $x_2 = (i, 1, 0)$; $x_3 = (i, 2, 1 + i)$ linearly independent in \mathbb{C}^3 ? Express x = (1, 2, 3) and y = (i, i, i) as linear combinations of x_1, x_2, x_3 .
- 3. Let S be any set and consider the set of maps

$$f\colon S\to \mathbb{F}^n$$

such that f(x) = 0 for all but finitely many $x \in S$. Make this set into vector space (denoted by $C(S, \mathbb{F}^n)$). Construct a basis for this vector space.

4. Consider the set of polynomial functions $f \colon \mathbb{R} \to \mathbb{R}$,

$$f(x) = \sum_{i=0}^{n} \alpha_i x^i.$$

Make this set into a vector space, and construct a natural basis.

- 5. Let (ξ^1, ξ^2, ξ^3) be an arbitrary vector in \mathbb{F}^3 . Which of the following subsets are subspaces?
 - (a) all vectors with $\xi^1 = \xi^2 = \xi^3$
 - (b) all vectors with $\xi^3 = 0$
 - (c) all vectors with $\xi^1 = \xi^2 \xi^3$
 - (d) all vectors with $\xi^1 = 1$

6. Find subspaces F_a , F_b , F_c , F_d generated by the sets of previous exercise, and construct bases for these subspaces.

- 7. Find complementary spaces for subspaces of previous problem and construct bases for these complementary spaces. Show that there exists more then one complementary space for each given subspace.
- 8. Show that
 - (a) $\mathbb{F}^3 = F_a + F_b$
 - (b) $\mathbb{F}^3 = F_b + F_c$
 - (c) $\mathbb{F}^3 = F_a + F_c$

Find the intersections $F_a \cap F_b$, $F_b \cap F_c$, $F_a \cap F_c$ and decide in which cases the sums above are direct.

9. Let (x_1, x_2) be a basis of a 2-dimensional vector space. Show that the vectors

 $\widetilde{x_1} = x_1 + x_2, \quad \widetilde{x_2} = x_1 - x_2$

again form a basis. Let (ξ^1, ξ^2) and $(\tilde{\xi}^1, \tilde{\xi}^2)$ be the components of a vector x relative to the bases (x_1, x_2) and $(\tilde{x}_1, \tilde{x}_2)$ respectively. Express the components $(\tilde{\xi}^1, \tilde{\xi}^2)$ in terms of the components (ξ^1, ξ^2) .

10. Consider an *n*-dimensional complex vector space *E*. Since the multiplication with real coefficients in particular is defined in *E*, this space may also be considered as a real vector space. Let (z_1, \ldots, z_n) be a basis of *E*. Show that the vectors $z_1, \ldots, z_n, iz_1, \ldots, iz_n$ form a basis of *E* if *E* considered as a real vector space.