1 Linear transformations

1. Is the following transformation linear?
(a) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, \quad T\left(\left[x_{1}, x_{2}, x_{3}\right]\right)=\left[4 x_{1}+3 x_{2}, x_{1}^{2}, x_{2}-4 x_{3}\right]$.
(b) $T: \mathbb{R}^{6} \rightarrow \mathbb{R}^{6}, \quad T\left(\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right]\right)=\left[0,2 x_{1}-x_{2}+3 x_{3},-x_{2}-4 x_{5}, 0, x_{1}+x_{3}, 0\right]$.
2. Which of the given transformations of the vector space of continuous real-valued functions is linear?
(a) $T: C(\mathbb{R}) \rightarrow C(\mathbb{R}), \quad[T(g)](x)=g(\sin x)$,
(b) $T: C(\mathbb{R}) \rightarrow C(\mathbb{R}), \quad[T(g)](x)=\sin (g(x))$,
where $g \in C(\mathbb{R}), x \in \mathbb{R}$
3. Linear transformation $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is given by the following mapping. Find $\varphi\left(\left[x_{1}, x_{2}\right]\right)$.
(a) $[3,4] \rightarrow[3,5,7], \quad[4,5] \rightarrow[4,7,9]$
(b) $[3,-1] \rightarrow[2,5,5], \quad[5,-2] \rightarrow[3,0,9]$
4. Linear transformation $\varphi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is given by the following mapping. Find $\varphi\left(\left[x_{1}, x_{2}, x_{3}\right]\right)$.
(a) $[1,0,0] \rightarrow[2,1,1], \quad[1,1,0] \rightarrow[7,4,2], \quad[1,1,1] \rightarrow[4,0,3]$
(b) $[3,1,1] \rightarrow[4,3,3], \quad[4,1,4] \rightarrow[5,9,1], \quad[5,1,3] \rightarrow[6,7,3]$
5. Check if there exists linear transformation $\varphi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ such that:
(a) $[2,4,3] \rightarrow[1,3], \quad[1,5,4] \rightarrow[0,3], \quad[9,3,1] \rightarrow[7,6]$
(b) $[3,2,1] \rightarrow[3,1]$,
$[4,1,5] \rightarrow[7,2]$,
$[7,8,-5] \rightarrow[1,1]$
6. Show that every linear transformation maps linearly dependent set of vectors onto linearly dependent set. Is the similarly formulated theorem for the linearly independent set true?

2 Kernel and image of a linear transformation

1. Find the kernel and the image and the rank of the linear transformation $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ given by the formula $T\left(\left[x_{1}, x_{2}, x_{3}, x_{4}\right]\right)=\left[x_{1}+2 x_{3}+x_{4},-2 x_{1}+x_{2}-3 x_{3}-5 x_{4}, x_{1}-x_{2}+x_{3}+4 x_{4}\right]$
2. Find two different bases of the image of the linear transformation $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{4}$ given by the formula wzorem $T\left(\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right]\right)=\left[x_{1}+x_{2}-x_{3},-x_{1}+2 x_{2}+3 x_{3}-x_{4}, 3 x_{2}+2 x_{3}-x_{4}-x_{5}, 2 x_{4}\right]$
3. Write down the formula of the linear transformation $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ such that $T([-1,1,-1,1])=[0,2,1], T([1,0,1,0])=$ $[1,1,2]$ and $\operatorname{ker}(T)=\{[x, 0,0, t] ; x, t \in \mathbb{R}\}$.

3 Matrix representation of a linear transformation

1. Linear transformation $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is given by the formula $\left.\varphi\left[x_{1}, x_{2}\right]\right)=\left[4 x_{1}-x_{2}, 7 x_{1}-3 x_{2}\right]$ Find its matrix $M_{\mathcal{B C}}(\varphi)$, if the bases \mathcal{B} i \mathcal{C} are:
(a) $([1,0],[0,1]), \quad([1,0],[0,1])$
(b) $([1,-1],[0,-1]), \quad([1,2],[1,3])$
(c) $([1,1],[1,2]), \quad([2,1],[3,1])$
2. Linear transformation $\varphi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ is given by the formula $\left.\varphi\left[x_{1}, x_{2}, x_{3}\right]\right)=\left[x_{1}+x_{2}, x_{1}+2 x_{2}-x_{3}\right]$ Find the matrix $M_{\mathcal{B C}}(\varphi)$, if bases \mathcal{B} i \mathcal{C} are equal to:
(a) $([2,-1,0],[1,3,2],[0,4,1]), \quad([1,0],[0,1])$
(b) $([3,1,1],[5,1,6],[4,-1,2]), \quad([-1,1],[1,0])$
3. Linear transformation $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is given by the matrix $M_{\mathcal{B C}}(\varphi)$. Calculate $\varphi\left(\left[x_{1}, x_{2}\right]\right)$ if
(a) $\mathcal{B}=\mathcal{C}=([1,0],[0,1]), M_{\mathcal{B C}}(\varphi)=\left[\begin{array}{cc}1 & -3 \\ 8 & -5\end{array}\right]$
(b) $\mathcal{B}=([8,2],[7,1]), \mathcal{C}=([6,7],[4,5]), M_{\mathcal{B C}}(\varphi)=\left[\begin{array}{cc}1 & 2 \\ 1 & -1\end{array}\right]$

4 Change of basis matrix

1. Using the definition find the change of basis matrix from the basis \mathcal{B} to the basis \mathcal{B}^{\prime} of the vector space \mathbb{R}^{2}, if
(a) $\mathcal{B}=([1,1],[3,2]), \quad \mathcal{B}^{\prime}=([3,4],[9,8])$
(b) $\mathcal{B}=([7,3],[9,4]), \quad \mathcal{B}^{\prime}=([1,0],[6,7])$
2. Find the change of basis matrix from the basis \mathcal{B} to the basis \mathcal{B}^{\prime} of the vector space \mathbb{R}^{2}, if
(a) $\mathcal{B}=([4,5],[7,8]), \quad \mathcal{B}^{\prime}=([7,11],[1,5])$
(b) $\mathcal{B}=([8,3],[3,5]), \quad \mathcal{B}^{\prime}=([1,0],[4,1])$
3. Change of basis matrices \mathcal{B} from the basis \mathcal{B}^{\prime} and from the basis \mathcal{B} to the basis $\mathcal{B}^{\prime \prime}$ are equal to $\left[\begin{array}{cc}1 & 1 \\ 2 & -1\end{array}\right]$ i $\left[\begin{array}{ll}8 & 5 \\ 1 & 7\end{array}\right]$. Find the change of basis matrix from the basis \mathcal{B}^{\prime} to the basis $\mathcal{B}^{\prime \prime}$.
4. Change of basis matrices from \mathcal{B} to $\mathcal{B}^{\prime \prime}$ and from \mathcal{B}^{\prime} to $\mathcal{B}^{\prime \prime}$ are equal to $\left[\begin{array}{cc}3 & 9 \\ 7 & 11\end{array}\right]$ i $\left[\begin{array}{cc}5 & 1 \\ -1 & 1\end{array}\right]$. Find the change of basis matrix from \mathcal{B} to $\mathcal{B}^{\prime \prime}$.

5 Matrix of linear transformation in different bases

1. Linear transformation $\varphi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ is given by the matrix $M_{\mathcal{B C}}(\varphi)=\left[\begin{array}{ccc}4 & 3 & 5 \\ 1 & 1 & -1\end{array}\right]$ Find the matrix $M_{\mathcal{B}^{\prime} \mathcal{C}^{\prime}}(\varphi)$, if
(a) $\mathcal{B}=([4,5,1],[1,1,1],[3,0,5]), \quad \mathcal{C}=([4,4],[-4,-5]) \mathcal{B}^{\prime}=([6,4,5],[4,1,6],[5,2,7]), \quad \mathcal{C}^{\prime}=([0,1],[4,3])$
(b) $\mathcal{B}=([4,4,1],[3,0,1],[4,3,1]), \quad \mathcal{C}=([1,2],[2,-1]) \mathcal{B}^{\prime}=([4,4,1],[5,8,1],[3,1,1]), \quad \mathcal{C}^{\prime}=([3,1],[-5,0])$
2. Linear transformation $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is given by the following mapping. Find $\varphi\left(\left[x_{1}, x_{2}\right]\right)$
(a) $[4,5] \rightarrow[-1,2,5], \quad[5,7] \rightarrow[-2,1,4]$
(b) $[1,-2] \rightarrow[1,3,1], \quad[3,-5] \rightarrow[6,10,4]$
