
W H AT C O M E S

AFTER REST?
Waldemar

Korłub

Mobile services on the Internet

KASK ETI Gdańsk University of Technology

IT industry evolution
2

 Alternating periods of:

 (r)evolution

◼ Looking for new solutions

◼ …to the problems we encountered with the previous standard

◼ Period of creativity

◼ Multiple approaches are proposed

◼ Some of them may be standardized later on

◼ Many will be soon forgotten

 Standardization

◼ Allows widespread adoption

◼ Allows tooling support

◼ Period of productivity (established solutions + tools = productivity)

◼ Standards lock you into a particular solution

◼ They become outdated

Web Services evolution
3

 CORBA (199x)

 Standard for RPC

 XML (late 1990s, early 2000s)

 Ubiquitous data format

 Swamp of communication protocols

 SOAP (2002+)

 Standard for XML-based document exchange and RPC

Web Services evolution
4

 JSON+HTTP (2005+)

 Web developers have been using AJAX for quite a while

 No ubiquitous conventions for URIs structure, operation

semantics

 RESTful Web Services (2009+)

 Not really a proper standard

 …but a popular convention nonetheless

 Swagger, RAML, API Blueprints (2013+)

 “standards” for REST API description

 No love for WADL?

◼ Submitted in 2009 to W3C, but never standardized

Web Services evolution
5

 GraphQL, Falcor (2015)

 Solutions for consumer-driven contract definition

 HTTP as a transport layer

◼ Driving away from REST

 What comes next?

REST is not the end of the road!6

Criticism of REST APIs
7

 Fetching of complicated object graphs require multiple

HTTP requests

 Responsive data capabilities are coarse-grained and

often does not offer adequate flexibility

 Data contract usually driven by server-side application

 New data fields added to reflect new functionalities of

the REST API

 Payloads grow over time

◼ Even if clients do not require additional data

 API versioning could solve this issue

◼ …but introduces a lot of other problems at the same time

Criticism of REST APIs
8

 Usually weakly-typed

 Not designed for tooling support

 Client’s behaviours based on documentation (often

outdated) instead of strongly-typed contracts reflecting

current server-side endpoints

 But what about Open API (Swagger), RAML, API

Blueprints?

Consumer-driven contract
9

 Single version of data will not suit all clients

 Required denormalized representations traversing different
complex sub-resources

 Let clients decide what representation of data they need

 Responsive data – analogy to responsive websites

 Different views of the same website depending on the
characteristics of the client device

 Multiple clients of the API

 Different apps for different mobile OSes

◼ Separate apps for smartphones/tablets

 Different versions of the same mobile app

 3rd party clients (e.g. websites)

Responsive data

 Getting a representation of data useful for the

client (simple approach):

 http://example.com/users/1234?
expand=group,private-messages,friends

 http://example.com/users/1234?
expand=group,messages,private-count

 Might be just-enough-expressive for all clients

 Many APIs do it this way!

 A common approach

 …but not a standard

◼ Think SQL – a standard for querying different databases

10

GraphQL
11

 API query language

 Developed by Facebook

 Utilized in Facebook mobile apps

 Publicly available since 2015

 Focus on types and fields not endpoints

 Allows to obtain many resources in a single request

 Especially import for mobile clients

 Product-centric

GraphQL
12

 Encourages API evolution instead of versioning

 Facebook releases apps on a two week fixed cycle

 Each release supported for at least 2 years

 At least 52 versions per platform of client app needs to

be supported

 Not limited to a specific storage engine

 Uniform interface for many databases

 Invokes arbitrary server-side code to fetch data from

storage engines

GraphQL
13

 Application-layer protocol

 Does not require any specific transport layer

 Strongly typed

 Well standardized

 Formalized client-server contract

 Allows for tooling support

GraphQL: Data types
14

type Car {

id: ID!

brand: String!

model: String!

engineCapacity: Float

regNumber: String!

}

enum Faculty {

ETI

ZIE

FTIMS

}

type Employee {

id: ID!

name: String!

principal: Employee

employedAt: Faculty!

cars: [Car]

issuedEntryCards: Int

}

GraphQL: Entry point
15

schema {

query: Query //entry point

}

type Query {

employee(id: ID!): Employee

}

GraphQL: Queries
16

Query:

query {
employee(id: 123) {

name

employedAt

cars {
regNumber

}
}

}

Response:

{
data: {

employee: {
name: "Waldemar Korłub",
employedAt: "ETI",
cars: [
{

regNumber: "ABC 1234"

}
]

}
}
}

Tooling for GraphQL
17

 Server-side libraries for:

 JavaScript

 Ruby

 Python

 Scala

 Java

 Client-side libraries for:

 JavaScript

◼ Including environments like React, React Native, Angular 2

and plain JavaScript

 Swift / iOS

REST Issues: Lack of verbs
18

 When you only know 4 verbs it is hard to communicate

 GET, POST, PUT, DELETE

 Imagine talking to another person while only using 4 verbs

◼ e.g. to have, to want, to eat, to sleep

 Some business domains can be mapped to HTTP verbs

and resources quite easily

 …for others this kind of mapping is counter-intuitive

Easy example: products in your fridge
19

 Create new product

 POST /products

 Read information about product

 GET /products/17

 Update information about product

 PUT /products/17

 Delete product from the fridge

 DELETE /products/17

 CRUD!

REST as CRUD
20

 It is easy to use REST when you just need a CRUD:

 Create → POST

 Read → GET

 Update → PUT

 Delete → DELETE

 Many business requirements go beyond simple

CRUD capabilities

 Otherwise we would be out of jobs for devs

◼ CRUD can be easily generated by automated tools

REST Architectural Constraints
21

 client-server

 stateless

 cacheable

 layered

 uniform interface:

 identification of resources

 manipulation through representations

 self-descriptive messages, e.g. format, cacheability

 HATEOAS

Case study: Change the amount
22

 Requirement: change the amount of a product though

operations like:

 Increase by x

 Decrease by x

 Can we PUT request?

 PUT /products/17/amount

◼ delta: -3

 We are not providing a representation of the amount

resource

 Against the PUT semantics – PUT should be idempotent

Case study: Change the amount
23

 How about PATCH (WebDAV)?

 PATCH /products/17/amount

◼ delta: -3

 We are trying to fix REST by introducing additional verbs

◼ …which only reaffirms that 4 verbs if not enough

 How about POST?

 POST /products/17/amount/deltas

◼ delta: +6

 Seems RESTful

 But we are introducing a new sub-resource to make up for

the lack of verbs

Case study: RESTful authentication
24

 Requirement: design a RESTful endpoint for client

authentication

 Assume access control scheme involving Access Tokens

 User credentials (login, password) are exchanged for an

Access Token

 Endpoint should follow verbs semantics defined in the

HTTP protocol specification

Case study: RESTful authentication
25

 POST /login

{"login": "stawrul", "password": "p@ssw0rd"}

 Are we creating a new resource here?

 /login is not even a real resource, it is an operation

 In a RESTfull service a URI should identify resources (nouns)

and not operations (verbs)

Case study: RESTful authentication
26

 If we want to obtain an access token than how about:

GET /users/stawrul/token

{"password": "p@ssw0rd"}

 GET operation should be safe and idempotent

 Server needs to crate an AT, so it is not safe

 There might be multiple tokens for a single user

◼ Single URI should represent a single resource

Case study: RESTful authentication
27

 If we want an AT to be create than why don’t we use

POST?

POST /users/stawrul/tokens

{"password": "p@ssw0rd"}

 The Body of the request obviously does not represent

a token

◼ Against manipulation by representations principal

 It is not the client who creates the token – the server

creates the token on client’s request

Case study: RESTful authentication
28

 So lets create a request for an AT:

POST /token_requests

{ "login": "stawrul",

"password": "p@ssw0rd",

"token_type": "access_token" }

 The response could look like this:

201 Created

{"access_token": "br4k2ew43reobx723"}

 Is this RESTful?

Case study: RESTful authentication
29

 POST /token_requests

 Is this RESTfull?

 Is /token_requests an actual resource in our application?

◼ It seems like a superfluous entity created only to conform to

RESTful conventions

◼ We create additional resources to make up for the lack of

verbs

RESTful vs RPC
30

 Those use cases can be easily expressed using RPC

model:
AccessToken t = authService.login(login, pass);

 Is there anything wrong with RPC model?

 CORBA was based on RPC model

 Remote EJBs are based on RPC

 .NET Remoting is based on RPC

 SOAP has both RPC and document exchange models

 These are all outdated…

 …but there is nothing wrong with RPC model itself

RESTful vs RPC
31

 When you write code you think about method

invocations

 Complex business domains can be express through objects

and their methods

◼ …and interactions between them

 If we use RPC we don’t have to translate our internal

business logic based on method invocations to the

resources model of RESTful web services

◼ …and than back again to the method invocation model on the

other side of the service

 We just need a modern ubiquitous standard for RPC

RESTful vs RPC
32

 So why do we use REST?

 Lack of modern ubiquitous tools for RPC

 It might not be the best standard but it is still a standard

◼ Easier consumption by client applications

◼ Easier interoperability

 Little to no requirements regarding tooling support

◼ HTTP client is just enough

 …so we constrain ourselves to the resources model of REST

REST Issues: Performance with REST
33

 JSON is better than XML in terms of:

 Processing power required to parse data

 Time required to parse data

 Data size on-the-wire

 …but it is still a text-based format

 Nowhere near the performance and conciseness of binary

data formats

Interoperability (is not an issue in REST)
34

 Text-based formats are good for interoperability

 Data decoupled from its binary representation in any
particular programming language/platform/OS

 Text-based formats are good for humans

 Human-readable

◼ Easy debugging and inspection of data

 HTTP is good for interoperability

 Text-based, ubiquitous

 REST is good for interoperability

 Easy consumption of services

◼ …even without dedicated tooling

◼ Possible in every popular programming language

Interoperability
35

 Do we always need that level of interoperability?

 Yes, we do for:

 Publicly available APIs

 APIs meant for consumption by 3rd party developers

 But if we have control over the server and the client

we might not need that level of interoperability

 So we can optimize our services!

◼ Make them more efficient

◼ …at the cost of being harder to consume for outsiders

The need for performance
36

 Why would we need better performance?

 Isn’t REST just fast enough for most use cases?

 It is fine from the point of view of a single mobile device

 Servers handling millions of mobile clients

 Reduction of cost and time of computations

The need for performance
37

 Microservices architecture

 Microservices can allow for better scaling of applications

 But the gain from scaling can be lost on communication

overhead

◼ Data serialization/deserialization between microservices

 An advent of binary protocols

 There is a lot of hype around microservices

 Solutions proposed for microservices can quickly became

industry standards

◼ Leading to fast adoption also in other areas

Questions?38

