
W H AT C O M E S

AFTER REST?
Waldemar

Korłub

Mobile services on the Internet

KASK ETI Gdańsk University of Technology

IT industry evolution
2

 Alternating periods of:

 (r)evolution

◼ Looking for new solutions

◼ …to the problems we encountered with the previous standard

◼ Period of creativity

◼ Multiple approaches are proposed

◼ Some of them may be standardized later on

◼ Many will be soon forgotten

 Standardization

◼ Allows widespread adoption

◼ Allows tooling support

◼ Period of productivity (established solutions + tools = productivity)

◼ Standards lock you into a particular solution

◼ They become outdated

Web Services evolution
3

 CORBA (199x)

 Standard for RPC

 XML (late 1990s, early 2000s)

 Ubiquitous data format

 Swamp of communication protocols

 SOAP (2002+)

 Standard for XML-based document exchange and RPC

Web Services evolution
4

 JSON+HTTP (2005+)

 Web developers have been using AJAX for quite a while

 No ubiquitous conventions for URIs structure, operation

semantics

 RESTful Web Services (2009+)

 Not really a proper standard

 …but a popular convention nonetheless

 Swagger, RAML, API Blueprints (2013+)

 “standards” for REST API description

 No love for WADL?

◼ Submitted in 2009 to W3C, but never standardized

Web Services evolution
5

 GraphQL, Falcor (2015)

 Solutions for consumer-driven contract definition

 HTTP as a transport layer

◼ Driving away from REST

 What comes next?

REST is not the end of the road!6

Criticism of REST APIs
7

 Fetching of complicated object graphs require multiple

HTTP requests

 Responsive data capabilities are coarse-grained and

often does not offer adequate flexibility

 Data contract usually driven by server-side application

 New data fields added to reflect new functionalities of

the REST API

 Payloads grow over time

◼ Even if clients do not require additional data

 API versioning could solve this issue

◼ …but introduces a lot of other problems at the same time

Criticism of REST APIs
8

 Usually weakly-typed

 Not designed for tooling support

 Client’s behaviours based on documentation (often

outdated) instead of strongly-typed contracts reflecting

current server-side endpoints

 But what about Open API (Swagger), RAML, API

Blueprints?

Consumer-driven contract
9

 Single version of data will not suit all clients

 Required denormalized representations traversing different
complex sub-resources

 Let clients decide what representation of data they need

 Responsive data – analogy to responsive websites

 Different views of the same website depending on the
characteristics of the client device

 Multiple clients of the API

 Different apps for different mobile OSes

◼ Separate apps for smartphones/tablets

 Different versions of the same mobile app

 3rd party clients (e.g. websites)

Responsive data

 Getting a representation of data useful for the

client (simple approach):

 http://example.com/users/1234?
expand=group,private-messages,friends

 http://example.com/users/1234?
expand=group,messages,private-count

 Might be just-enough-expressive for all clients

 Many APIs do it this way!

 A common approach

 …but not a standard

◼ Think SQL – a standard for querying different databases

10

GraphQL
11

 API query language

 Developed by Facebook

 Utilized in Facebook mobile apps

 Publicly available since 2015

 Focus on types and fields not endpoints

 Allows to obtain many resources in a single request

 Especially import for mobile clients

 Product-centric

GraphQL
12

 Encourages API evolution instead of versioning

 Facebook releases apps on a two week fixed cycle

 Each release supported for at least 2 years

 At least 52 versions per platform of client app needs to

be supported

 Not limited to a specific storage engine

 Uniform interface for many databases

 Invokes arbitrary server-side code to fetch data from

storage engines

GraphQL
13

 Application-layer protocol

 Does not require any specific transport layer

 Strongly typed

 Well standardized

 Formalized client-server contract

 Allows for tooling support

GraphQL: Data types
14

type Car {

id: ID!

brand: String!

model: String!

engineCapacity: Float

regNumber: String!

}

enum Faculty {

ETI

ZIE

FTIMS

}

type Employee {

id: ID!

name: String!

principal: Employee

employedAt: Faculty!

cars: [Car]

issuedEntryCards: Int

}

GraphQL: Entry point
15

schema {

query: Query //entry point

}

type Query {

employee(id: ID!): Employee

}

GraphQL: Queries
16

Query:

query {
employee(id: 123) {

name

employedAt

cars {
regNumber

}
}

}

Response:

{
data: {

employee: {
name: "Waldemar Korłub",
employedAt: "ETI",
cars: [
{

regNumber: "ABC 1234"

}
]

}
}
}

Tooling for GraphQL
17

 Server-side libraries for:

 JavaScript

 Ruby

 Python

 Scala

 Java

 Client-side libraries for:

 JavaScript

◼ Including environments like React, React Native, Angular 2

and plain JavaScript

 Swift / iOS

REST Issues: Lack of verbs
18

 When you only know 4 verbs it is hard to communicate

 GET, POST, PUT, DELETE

 Imagine talking to another person while only using 4 verbs

◼ e.g. to have, to want, to eat, to sleep

 Some business domains can be mapped to HTTP verbs

and resources quite easily

 …for others this kind of mapping is counter-intuitive

Easy example: products in your fridge
19

 Create new product

 POST /products

 Read information about product

 GET /products/17

 Update information about product

 PUT /products/17

 Delete product from the fridge

 DELETE /products/17

 CRUD!

REST as CRUD
20

 It is easy to use REST when you just need a CRUD:

 Create → POST

 Read → GET

 Update → PUT

 Delete → DELETE

 Many business requirements go beyond simple

CRUD capabilities

 Otherwise we would be out of jobs for devs

◼ CRUD can be easily generated by automated tools

REST Architectural Constraints
21

 client-server

 stateless

 cacheable

 layered

 uniform interface:

 identification of resources

 manipulation through representations

 self-descriptive messages, e.g. format, cacheability

 HATEOAS

Case study: Change the amount
22

 Requirement: change the amount of a product though

operations like:

 Increase by x

 Decrease by x

 Can we PUT request?

 PUT /products/17/amount

◼ delta: -3

 We are not providing a representation of the amount

resource

 Against the PUT semantics – PUT should be idempotent

Case study: Change the amount
23

 How about PATCH (WebDAV)?

 PATCH /products/17/amount

◼ delta: -3

 We are trying to fix REST by introducing additional verbs

◼ …which only reaffirms that 4 verbs if not enough

 How about POST?

 POST /products/17/amount/deltas

◼ delta: +6

 Seems RESTful

 But we are introducing a new sub-resource to make up for

the lack of verbs

Case study: RESTful authentication
24

 Requirement: design a RESTful endpoint for client

authentication

 Assume access control scheme involving Access Tokens

 User credentials (login, password) are exchanged for an

Access Token

 Endpoint should follow verbs semantics defined in the

HTTP protocol specification

Case study: RESTful authentication
25

 POST /login

{"login": "stawrul", "password": "p@ssw0rd"}

 Are we creating a new resource here?

 /login is not even a real resource, it is an operation

 In a RESTfull service a URI should identify resources (nouns)

and not operations (verbs)

Case study: RESTful authentication
26

 If we want to obtain an access token than how about:

GET /users/stawrul/token

{"password": "p@ssw0rd"}

 GET operation should be safe and idempotent

 Server needs to crate an AT, so it is not safe

 There might be multiple tokens for a single user

◼ Single URI should represent a single resource

Case study: RESTful authentication
27

 If we want an AT to be create than why don’t we use

POST?

POST /users/stawrul/tokens

{"password": "p@ssw0rd"}

 The Body of the request obviously does not represent

a token

◼ Against manipulation by representations principal

 It is not the client who creates the token – the server

creates the token on client’s request

Case study: RESTful authentication
28

 So lets create a request for an AT:

POST /token_requests

{ "login": "stawrul",

"password": "p@ssw0rd",

"token_type": "access_token" }

 The response could look like this:

201 Created

{"access_token": "br4k2ew43reobx723"}

 Is this RESTful?

Case study: RESTful authentication
29

 POST /token_requests

 Is this RESTfull?

 Is /token_requests an actual resource in our application?

◼ It seems like a superfluous entity created only to conform to

RESTful conventions

◼ We create additional resources to make up for the lack of

verbs

RESTful vs RPC
30

 Those use cases can be easily expressed using RPC

model:
AccessToken t = authService.login(login, pass);

 Is there anything wrong with RPC model?

 CORBA was based on RPC model

 Remote EJBs are based on RPC

 .NET Remoting is based on RPC

 SOAP has both RPC and document exchange models

 These are all outdated…

 …but there is nothing wrong with RPC model itself

RESTful vs RPC
31

 When you write code you think about method

invocations

 Complex business domains can be express through objects

and their methods

◼ …and interactions between them

 If we use RPC we don’t have to translate our internal

business logic based on method invocations to the

resources model of RESTful web services

◼ …and than back again to the method invocation model on the

other side of the service

 We just need a modern ubiquitous standard for RPC

RESTful vs RPC
32

 So why do we use REST?

 Lack of modern ubiquitous tools for RPC

 It might not be the best standard but it is still a standard

◼ Easier consumption by client applications

◼ Easier interoperability

 Little to no requirements regarding tooling support

◼ HTTP client is just enough

 …so we constrain ourselves to the resources model of REST

REST Issues: Performance with REST
33

 JSON is better than XML in terms of:

 Processing power required to parse data

 Time required to parse data

 Data size on-the-wire

 …but it is still a text-based format

 Nowhere near the performance and conciseness of binary

data formats

Interoperability (is not an issue in REST)
34

 Text-based formats are good for interoperability

 Data decoupled from its binary representation in any
particular programming language/platform/OS

 Text-based formats are good for humans

 Human-readable

◼ Easy debugging and inspection of data

 HTTP is good for interoperability

 Text-based, ubiquitous

 REST is good for interoperability

 Easy consumption of services

◼ …even without dedicated tooling

◼ Possible in every popular programming language

Interoperability
35

 Do we always need that level of interoperability?

 Yes, we do for:

 Publicly available APIs

 APIs meant for consumption by 3rd party developers

 But if we have control over the server and the client

we might not need that level of interoperability

 So we can optimize our services!

◼ Make them more efficient

◼ …at the cost of being harder to consume for outsiders

The need for performance
36

 Why would we need better performance?

 Isn’t REST just fast enough for most use cases?

 It is fine from the point of view of a single mobile device

 Servers handling millions of mobile clients

 Reduction of cost and time of computations

The need for performance
37

 Microservices architecture

 Microservices can allow for better scaling of applications

 But the gain from scaling can be lost on communication

overhead

◼ Data serialization/deserialization between microservices

 An advent of binary protocols

 There is a lot of hype around microservices

 Solutions proposed for microservices can quickly became

industry standards

◼ Leading to fast adoption also in other areas

Questions?38

