WHAT COMES
AFTER REST?




IT industry evolution

Alternating periods of:

(r)evolution

Looking for new solutions

...to the problems we encountered with the previous standard
Period of creativity
Multiple approaches are proposed
Some of them may be standardized later on
Many will be soon forgotten
Standardization
Allows widespread adoption
Allows tooling support
Period of productivity (established solutions + tools = productivity)
Standards lock you into a particular solution
They become outdated



Web Services evolution

CORBA (199x)
Standard for RPC

XML (late 1990s, early 2000s)

Ubiquitous data format

Swamp of communication protocols

SOAP (2002+)
Standard for XML-based document exchange and RPC



Web Services evolution

JSON-+HTTP (2005+)
Web developers have been using AJAX for quite a while

No ubiquitous conventions for URIs structure, operation
semantics

RESTful Web Services (2009+)

Not really a proper standard

...but a popular convention nonetheless

Swagger, RAML, API Blueprints (2013+)
“standards” for REST API description

No love for WADL?
Submitted in 2009 to W3C, but never standardized



Web Services evolution

GraphQL, Falcor (2015)

Solutions for consumer-driven contract definition
HTTP as a transport layer
Driving away from REST

What comes next?



- REST is not the end of the road!



Criticism of REST APIs

Fetching of complicated object graphs require multiple
HTTP requests
Responsive data capabilities are coarse-grained and
often does not offer adequate flexibility
Data contract usually driven by server-side application

New data fields added to reflect new functionalities of
the REST API

Payloads grow over time

Even if clients do not require additional data

API| versioning could solve this issue

...but intfroduces a lot of other problems at the same time



Criticism of REST APIs

Usually weakly-typed
Not designed for tooling support

Client’s behaviours based on documentation (often
outdated) instead of strongly-typed contracts reflecting
current server-side endpoints

But what about Open APl (Swagger), RAML, API
Blueprints?



Consumer-driven contract

Single version of data will not suit all clients

Required denormalized representations traversing different
complex sub-resources

Let clients decide what representation of data they need

Responsive data — analogy to responsive websites

Different views of the same website depending on the
characteristics of the client device

Multiple clients of the API
Different apps for different mobile OSes

Separate apps for smartphones/tablets

Different versions of the same mobile app

3 party clients (e.g. websites)



Responsive data

Getting a representation of data useful for the
client (simple approach):
http://example.com/users/12347
expand=group, private—-messages, friends
http://example.com/users/12347
expand=group,messages,private-count

Might be just-enough-expressive for all clients

Many APIs do it this way!
A common approach

...but not a standard

Think SQL — a standard for querying different databases



GraphQL

APl query language
Developed by Facebook

Utilized in Facebook mobile apps

Publicly available since 2015
Focus on types and fields not endpoints

Allows to obtain many resources in a single request

Especially import for mobile clients

Product-centric



GraphQL

Encourages API evolution instead of versioning
Facebook releases apps on a two week fixed cycle
Each release supported for at least 2 years

At least 52 versions per platform of client app needs to
be supported

Not limited to a specific storage engine
Uniform interface for many databases

Invokes arbitrary server-side code to fetch data from
storage engines



GraphQL

Application-layer protocol

Does not require any specific transport layer
Strongly typed

Well standardized

Formalized client-server contract

Allows for tooling support



GraphQL: Data types

14

type Car { type Employee {
id: ID! id: ID!
brand: String! name: String!
model: String! principal: Employee
engineCapacity: Float employedAt: Faculty!
regNumber: String! cars: [Car]

} issuedEntryCards: Int

}

enum Faculty {
ETI
ZIE
FTIMS



GraphQL: Entry point
N

schema {
query: Query //entry point

}

type Query {
employee(id: ID!): Employee

}



GraphQL: Queries

Query: Response:
query { {
employee(id: 123) { data: {
name employee: {
employedAt name. "Waldemar Kortub”,
cars { employedAt: "ETI",
regNumber cars. |
} {
} regNumber: "ABC 1234"
} }
]
}
}
}




Tooling for GraphQL

Server-side libraries for:
JavaScript
Ruby
Python
Scala

Java

Client-side libraries for:

JavaScript

Including environments like React, React Native, Angular 2
and plain JavaScript

Swift /iOS



REST Issues: Lack of verbs

When you only know 4 verbs it is hard to communicate
GET, POST, PUT, DELETE

Imagine talking to another person while only using 4 verbs

e.g. to have, to want, to eat, to sleep

Some business domains can be mapped to HTTP verbs
and resources quite easily

...for others this kind of mapping is counter-intuitive



Easy example: products in your fridge

Create new product
POST /products

Read information about product
GET /products /17

Update information about product
PUT /products/17

Delete product from the fridge
DELETE /products/17

CRUD!



REST as CRUD

It is easy to use REST when you just need a CRUD:
Create =2 POST
Read 2 GET
Update = PUT
Delete > DELETE

Many business requirements go beyond simple
CRUD capabilities

Otherwise we would be out of jobs for devs

CRUD can be easily generated by automated tools



REST Architectural Constraints

client-server
stateless
cacheable
layered

uniform interface:
identification of resources
manipulation through representations

self-descriptive messages, e.g. format, cacheability
HATEOAS



Case study: Change the amount

Requirement: change the amount of a product though
operations like:

Increase by x

Decrease by x

Can we PUT request?

PUT /products/17 /amount
delta: -3

We are not providing a representation of the amount
resource

Against the PUT semantics — PUT should be idempotent



Case study: Change the amount

How about PATCH (WebDAV)?¢
PATCH /products/17 /amount
delta: -3
We are trying to fix REST by introducing additional verbs

...which only reaffirms that 4 verbs if not enough

How about POST?¢

POST /products/17 /amount /deltas
delta: +6

Seems RESTful

But we are introducing a new sub-resource to make up for
the lack of verbs



Case study: RESTful authentication

Requirement: design a RESTful endpoint for client
authentication
Assume access control scheme involving Access Tokens

User credentials (login, password) are exchanged for an
Access Token

Endpoint should follow verbs semantics defined in the
HTTP protocol specification



Case study: RESTful authentication

0 POST /login
{"login": "stawrul", "password": "p@sswOrd"}
Are we creating a new resource here?
/login is not even a real resource, it is an operation

In a RESTfull service a URI should identify resources (nouns)
and not operations (verbs)



Case study: RESTful authentication
i

o If we want to obtain an access token than how about:
GET /users/stawrul /token
{"password": "p@sswOrd"}
GET operation should be safe and idempotent
Server needs to crate an AT, so it is not safe

There might be multiple tokens for a single user

m Single URI should represent a single resource



Case study: RESTful authentication

o If we want an AT to be create than why don’t we use
POST?
POST /users/stawrul /tokens
{"password": "p@sswOrd"}
The Body of the request obviously does not represent

a token

m Against manipulation by representations principal

It is not the client who creates the token — the server
creates the token on client’s request



Case study: RESTful authentication
B

1 So lets create a request for an AT:
POST /token_requests
{ "login™: "stawrul”,
"password": "p@sswOrd",
"token_type": "access_token" }

71 The response could look like this:
201 Created
{"access_token": "br4k2ew43reobx723"}

0 s this RESTful?



Case study: RESTful authentication

2]
1 POST /token_requests

1 Is this RESTfull?

Is /token_requests an actual resource in our application?

u It seems like a superfluous entity created only to conform to
RESTful conventions

® We create additional resources to make up for the lack of
verbs



RESTful vs RPC

Those use cases can be easily expressed using RPC
model:
AccessToken t = authService. login(login, pass);

Is there anything wrong with RPC model?
CORBA was based on RPC model
Remote EJBs are based on RPC
.NET Remoting is based on RPC
SOAP has both RPC and document exchange models

These are all outdated...

...but there is nothing wrong with RPC model itself



RESTful vs RPC

When you write code you think about method
invocations
Complex business domains can be express through objects
and their methods
...and interactions between them
If we use RPC we don’t have to translate our internal

business logic based on method invocations to the
resources model of RESTful web services

...and than back again to the method invocation model on the
other side of the service

We just need a modern ubiquitous standard for RPC



RESTful vs RPC

So why do we use REST?

Lack of modern ubiquitous tools for RPC

It might not be the best standard but it is still a standard
Easier consumption by client applications

Easier interoperability
Little to no requirements regarding tooling support
HTTP client is just enough

...SO we constrain ourselves to the resources model of REST



REST Issues: Performance with REST

JSON is better than XML in terms of:
Processing power required to parse data
Time required to parse data
Data size on-the-wire

..but it is still a text-based format

Nowhere near the performance and conciseness of binary
data formats



Interoperability (is not an issue in REST)

Text-based formats are good for interoperability

Data decoupled from its binary representation in any
particular programming language /platform/OS

Text-based formats are good for humans

Human-readable
Easy debugging and inspection of data

HTTP is good for interoperability
Text-based, ubiquitous
REST is good for interoperability

Easy consumption of services
...even without dedicated tooling

Possible in every popular programming language



Interoperability

Do we always need that level of interoperability?

Yes, we do for:

Publicly available APIs

APls meant for consumption by 3™ party developers
But if we have control over the server and the client
we might not need that level of interoperability

So we can optimize our services!

Make them more efficient

...at the cost of being harder to consume for outsiders



The need for performance

Why would we need better performance?

Isn’t REST just fast enough for most use cases?

It is fine from the point of view of a single mobile device
Servers handling millions of mobile clients

Reduction of cost and time of computations



The need for performance

Microservices architecture
Microservices can allow for better scaling of applications

But the gain from scaling can be lost on communication
overhead

Data serialization/deserialization between microservices

An advent of binary protocols

There is a lot of hype around microservices

Solutions proposed for microservices can quickly became
industry standards

Leading to fast adoption also in other areas



"o



