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Lyapunov stability

Let the following system of di�erential equations be given

dxi

dt
= fi(x1, x2, . . . , xn, t), i = 1, 2, . . . , n. (1)

A solution ϕi (t), i = 1, 2, . . . , n of system (1) satisfying the initial 
onditions

ϕi (t0) = ϕi0, i = 1, 2, . . . , n

is said to be a Lyapunov stable solution as t → ∞ if for any ε > 0 there exists δ > 0 su
h that

for ea
h solution xi (t), i = 1, 2, . . . , n of system (1) whose initial values satisfy the 
onditions

|xi(t0)− ϕi0| < δ, i = 1, 2, . . . , n (2)

the inequalities

|xi (t)− ϕi (t)| < ε, i = 1, 2, . . . , n (3)

hold for all t ≥ t
0

.
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If for an arbitrarily small δ > 0 inequalities (3) fail to hold, then the solution ϕi (t),
i = 1, 2, . . . , n is said to be unstable.

If under 
ondition (2) besides inequalities (3) the 
ondition

lim

t→∞

|xi (t)− ϕi (t)| = 0, i = 1, 2, . . . , n.

also holds, then the solution

ϕi (t), i = 1, 2, . . . , n

is said to be asymptoti
ally stable.
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Investigating a solution

ϕi (t), i = 1, 2, . . . , n

of system (1) for stability 
an be redu
ed to investigating for stability the zero solution

xi ≡ 0, i = 1, 2, . . . , n of some system similar to system (1)

dxi

dt
= Fi(x1, x2, . . . , xn, t), i = 1, 2, . . . , n. (4)

where

Fi(0, 0, . . . , 0, t) ≡ 0, i = 1, 2, . . . , n.

A point xi = 0, i = 1, 2, . . . , n is said to be a stationary point of system (4)
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The de�nitions of stability and instability 
an be reformulated as follows

A stationary point xi = 0, i = 1, 2, . . . , n is stable a

ording to Lyapunov if whatever ε > 0

there exists δ > 0 su
h that for any solution xi(t), i = 1, 2, . . . , n whose initial data

xi0 = xi(t0), i = 1, 2, . . . , n satisfy the 
ondition

|xi0| < δ, i = 1, 2, . . . , n, (5)

the inequalities

|xi (t)| < ε, i = 1, 2, . . . , n, (6)

hold for all t ≥ t
0
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If besides inequalities (3) the 
onditions

lim

t→+∞

|xi (t)| = 0, i = 1, 2, . . . , n (7)

also holds, then the stability is asymptoti
.

A stationary point is unstable if for an arbitrarily small δ > 0 
ondition (6) does not hold for at

least one solution xi(t), i = 1, 2, . . . , n.
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Examples

Example

Investigate for stability the solution of the equation

dx

dt
= 1+ t − x

satisfying the initial 
onditions

x(0) = 0.

Example

dx

dt
= sin

2 x
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Example

Show that the solution of the systems

{

dx
dt

= −y ,
dy
dt

= x

satisfying the initial 
onditions

x(0) = 0, y(0) = 0

is stable.
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Theorem

Solutions of a system of linear di�erential equations

dxi

dt
=

n
∑

j=1

aij(t)xj + fi(t), i = 1, 2, . . . , n (8)

are all either simultaneously stable or unstable.
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Exer
ises

1

dx
dt

= x + t, x(0) = 1,

2

dx
dt

= 2t(x + 1), x(0) = 0,

3

{

dx
dt

= x − 13y ,
dy
dt

= 1

4

x − 2y
x(0) = y(0) = 0,
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Stationary points - the simplest 
ase

Consider a system of two homogeneous linear di�erential equations with 
onstant 
oe�
ients

{

dx
dt

= a
11

x + a
12

y ,
dy
dt

= a
21

x + a
22

y
(9)

with

∆ =

∣

∣

∣

∣

a
11

a
12

a
21

a
22

∣

∣

∣

∣

6= 0.

A point x = 0, y = 0 in whi
h the right-hand side of the equations of system (9) vanish is


alled a stationary point of system (9)
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In order for a stationary point of system (9) to be investigated it is ne
essary to set up the


hara
teristi
 equation

∣

∣

∣

∣

a
11

− λ a
12

a
21

a
22

− λ

∣

∣

∣

∣

= 0 (10)

and �nd its roots λ
1

and λ
2
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Case I

The roots λ
1

, λ
2

of the 
hara
teristi
 equation (10) are real and distin
t

a. λ
1

< 0, λ
2

< 0. The stationary point is asymptoti
ally stable (a stable node)

Figure: Stable node
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b. λ
1

> 0, λ
2

> 0. The stationary point is unstable (an unstable node)

Figure: Unstable node

M.W. (CNMiKnO PG Gda«sk) Le
ture 2011-2017 15 / 43




. λ
1

> 0, λ
2

< 0. The stationary point is unstable (a saddle point)

Figure: Saddle point

M.W. (CNMiKnO PG Gda«sk) Le
ture 2011-2017 16 / 43



Case II

The roots of the 
hara
teristi
 equation (10) are 
omplex

λ
1

= α+ iβ, λ
2

= α− iβ

a. α < 0, β 6= 0. The stationary point is asymptoti
ally stable (a stable fo
us)

Figure: Stable fo
us
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b. α > 0, β 6= 0. The stationary point is unstable stable (an unstable fo
us)

Figure: Unstable fo
us
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. α = 0, β 6= 0. The stationary point is stable stable (a midpoint)

Figure: Midpoint
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Case III

The roots λ
1

= λ
2

are multiple

a. λ
1

= λ
2

< 0. The stationary point is asymptoti
ally stable (a stable node)

Figure: Stable node
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b. λ
1

= λ
2

> 0. The stationary point is unstable (an unstable node)

Figure: Unstable node
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Example

Example

Determine the 
hara
ter of stationary point (0, 0) of the system

{

dx
dt

= 5x − y ,
dy
dt

= 2x + y
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Exer
ises

1

{

dx
dt

= 3x + y ,
dy
dt

= −2x + y

2

{

dx
dt

= −x + 2y ,
dy
dt

= x + 2y

3

{

dx
dt

= −x + 3y ,
dy
dt

= −x + y

M.W. (CNMiKnO PG Gda«sk) Le
ture 2011-2017 23 / 43



Consider the system of homogeneous linear di�erential equations with 
onstant 
oe�
ients

dxi

dt
=

n
∑

j=1

aijxj , i = 1, 2, . . . , n (n ≥ 2) (11)

Theorem

If all roots of the 
hara
teristi
 equation for system (11) have a negative real part, then the

stationary point of system (11) xi = 0, i = 1, 2, . . . , n is asymptoti
ally stable. If at least one

root of the 
hara
teristi
 equation has a positive real part, then the stationary point is unstable.

M.W. (CNMiKnO PG Gda«sk) Le
ture 2011-2017 24 / 43



Example

Is the stationary point (0, 0, 0) of the system







dx
dt

= −x + z ,
dy
dt

= −2y − z ,
dz
dt

= y − z

stable?

M.W. (CNMiKnO PG Gda«sk) Le
ture 2011-2017 25 / 43



The method of Lyapunov fun
tions is to investigate dire
tly the stability of the equilibrium

position of the system

dxi

dt
= fi(x1, x2, . . . , xn, t), i = 1, 2, . . . , n. (12)

with the help of a suitably sele
ted fun
tion V (t, x
1

, . . . , xn), the Lyapunov fun
tion , this

being done without �nding beforehand any solutions of this system.
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Let us 
onsider an autonomous system

dxi

dt
= fi(x1, x2, . . . , xn), i = 1, 2, . . . , n. (13)

for whi
h xi ≡ 0, i = 1, 2, . . . , n is a stationary point. The fun
tion V (x
1

, x
2

, . . . , xn) de�ned in

some neighbourhood of the origin of 
oordinates is said to be of �xed sign if in the domain

|xi | ≤ h, i = 1, 2, . . . , n

h being a su�
iently small positive number, it 
an take values of only one de�nite sign and

vanish only when x
1

= x
2

= . . . = xn = 0

Example

n = 3

V = x2
1

+ x2
2

+ x2
3

V = x2
1

+ 2x
1

x
2

+ 2x2
2

+ x2
3

are positive de�nite.
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The fun
tion V (x
1

, x
2

, . . . , xn) is said to be of 
onstant signs if in domain (10) it 
an take

values of only one de�nite sign but 
an also vanish when x2
1

+ x2
2

+ . . .+ x2n 6= 0

Example

V (x
1

, x
2

, x
3

) = x2
1

+ x2
2

+ 2x
1

x
2

+ x2
3
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Let V (x
1

, x
2

, . . . , xn) be a di�erentiable fun
tion of its variables and let x
1

, x
2

, . . . , xn be some

fun
tions of time satisfying the system of di�erential equations (9). Then the total derivative of

V with respe
t to time t is of the form

dV

dt
=

n
∑

i=1

∂V

∂xi
·
dxi

dt
=

n
∑

i=1

∂V

xi
fi(x1, x2, . . . , xn). (14)

The quantity

dV
dt

de�ned by formula (14) is 
alled the total derivative of the fun
tion V with

respe
t to time 
omposed by virtue of the system of equations (9).
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Theorem (Lyapunov's stability theorem)

If for a system of di�erential equations (9) there exists a fun
tion of �xed sign V (x
1

, x
2

, . . . , xn)
(a Lyapunov fun
tion) whose total derivative

dV
dt

with respe
t to time 
omposed by virtue of

system (9) is a fun
tion of 
onstant sign, of sign opposite to that of V or identi
ally equal to

zero, then the stationary point xi = 0, i = 1, 2, . . . .n of system (9) is stable.
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Theorem (Lyapunov's asymptoti
-stability theorem)

If for a system of di�erential equations (9) there exists a fun
tion of �xed sign V (x
1

, x
2

, . . . , xn)
whose total derivative

dV
dt

with respe
t to time 
omposed by virtue of system (9) is also a

fun
tion of �xed sign, of sign opposite to that of V , then the stationary point xi = 0,

i = 1, 2, . . . .n of system (9) is asymptoti
ally stable.
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Example

{

dx
dt

= y ,
dy
dt

= −x

V = x2 + y2

Example

{

dx
dt

= y − x3,
dy
dt

= −x − 3y3

V = x2 + y2
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Example

Investigate for stability the trivial solution x ≡ 0, y ≡ 0

{

dx
dt

= −x − 2y + x2y2,
dy
dt

= x − y
2

− x3y
2
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Theorem (Lyapunov's instability theorem)

Let there exist for the system of di�erential equations (9) a fun
tion di�erentiable in the

neighbourhood of the origin of 
oordinates, V (x
1

, x
2

, . . . , xn), su
h that V (0, 0, . . . , 0) = 0. If

its total derivative

dV
dt


omposed by virtue of system (9) is a positive de�nite fun
tion and

arbitrarily 
lose to the origin of 
oordinates there are points in whi
h the fun
tion

V (x
1

, x
2

, . . . , xn) takes positive values, then the stationary point xi = 0, i = 1, 2, . . . , n is

unstable.
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Theorem (Chetayev's instability theorem)

Let for the system of di�erential equations (9) there exists a fun
tion v(x
1

, x
2

, . . .) 
ontinuously

di�erentiable in some neighbourhood of a stationary point xi = 0, i = 1, 2, . . . , n satisfying the

following 
onditions in some 
losed neighbourhood of the stationary point

1

in an arbitrarily small neighbourhood Ω of the stationary point xi = 0, i = 1, 2, . . . , n there

exists a domain Ω
1

in whi
h v(x
1

, x
2

, . . . , xn > 0, with v = 0 in the boundary points of Ω
1

that are interior for Ω

2

the stationary point O(0, 0, . . . , 0) is a boundary point of the domain Ω
1

3

the derivative

dv
dt


omposed by virtue of system (9) is positive de�nite in the domain Ω
1

Then the stationary point xi = 0, i = 1, 2, . . . , n of system (9) is unstable.
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Example

Investigate the stationary point x = 0, y = 0 of the system

{

dx
dt

= x ,
dy
dt

= −y

for stability

Example

Investigate the stationary point x = 0, y = 0 of the system

{

dx
dt

= y3 + x5,
dy
dt

= x3 + y5

for stability
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Exer
ises

1

Investigate the stationary point x = 0, y = 0 of the system

{

dx
dt

= −3y − 2x3,
dy
dt

= 2x − 3y3

for stability.

2

Investigate the stationary point x = 0, y = 0 of the system

{

dx
dt

= −xy4,
dy
dt

= x4y

for stability.
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Let the following system of di�erential equations be given

dxi

dt
= fi (x1, x2, . . . , xn), i = 1, 2, . . . , n (15)

and let xi ≡ 0, ß = 1, 2, . . . , n be a stationary point of the system (15 i.e.

fi(0, 0, . . . , 0) = 0, i = 1, 2, . . . , n. We shall assume that fun
tions fi(x1, x2, . . . , xn) 
an be

di�erentiated a su�
iently large number of times at the origin of 
oordinates.
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We expand the fun
tions fi in the Taylor series of x in the neighbourhood of the origin of


oordinates

fi (x1, x2, . . . , xn) =

n
∑

j=1

aijxj + Ri (x1, x2, . . . , xn), (16)

where aij =
∂fi (0,0,...,0)

∂xj
and Ri are terms of se
ond order smallness with respe
t to

x
1

, x
2

, . . . , xn. The original system (15) will be written as

dxi

dt
=

n
∑

j=1

aijxj + Ri(x1, x2, . . . , xn), i = 1, 2, . . . , n (17)

Instead of system (17) we shall 
onsider the system

dxi

dt
=

n
∑

j=1

aijxj , i = 1, 2, . . . , n, aij = const (18)


alled the system of equations of the �rst approximation for system (15).
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The following proposition hold

1

If all roots of the 
hara
teristi
 equation

∣

∣

∣

∣

∣

∣

∣

∣

∣

a
11

− λ a
12

. . . a
1n

a
21

a
22

− λ . . . a
2n

.

.

.

.

.

.

.

.

.

.

.

.

an1 an2 . . . ann − λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

(19)

have negative real parts, then zero solution xi ≡ 0, i = 1, 2, . . . , n of system (18) and

system (17) are asymptoti
ally stable.
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2

If at least one root of the 
hara
teristi
 equation (19) has a positive real part, then zero

solution of system (18) and system (17) are unstable. It is said that the investigation for

stability in the �rst approximation is possible on 
ases 1 and 2.

In 
riti
al 
ases when real parts of all roots of the 
hara
teristi
 equation (19) are nonpositive,

with the real part of at least one root being zero, investigating for stability in the �rst

approximation is in general impossible (nonlinear terms Ri starting to exert in�uen
e).
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Example

Investigate the stationary point x = 0, y = 0 of the system

{

dx
dt

= 2x + y − 5y2,
dy
dt

= 3x + y + x3

2

for stability in the �rst approximation.
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Exer
ises

Investigate the zero solution x = 0, y = 0 of the following system for stability in the �rst

approximation

1

{

dx
dt

= x + 2y − sin y2

dy
dt

= −x − 3y + x(e
x2

2 − 1)

2

{

dx
dt

= −x + 3y + x2 sin y
dy
dt

= −x − 4y + 1− 
os y2

3

{

dx
dt

= 7x + 2 sin y − y4

dy
dt

= ex − 3y − 1+ 5

2

x2
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