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@ Integral equations

© Classification of integral equations

© Volterra Integral Equations and Linear Differential Equations
@ Integral equations

© Solution by the Method of Successive Approximations
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Definition

Relation
b

(x, F(x), / Flx,, F(y))dy) = 0 (1)

between an independent variable x, unknown function f(x) and (Lebesgue’s) integral, under
which this unknown functions appears we call integral equation.
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The classification of an integral equations centres on three basic characteristics which together
describe their overall structure.
@ The kind of an equation refers to the location of the unknown function

@ First kind equations have unknown function present under the integral sign only
@ Second and third kind equations also have unknown function outside the integral

@ The historical descriptions Fredholm and Volterra are concerned with the integration
interval

© In a Fredholm equation the integral is over a finite interval with fixed end-points.
@ In a Volterra equation the integral is indefinite.

M.W. (CNMiKnO PG Gdafisk) Lecture 2014-2017 4 /35



Classification of integral equations

@ Volterra equation of the first kind

X

/ N(x, y)F(y)dy = g(x) )

a

@ Volterra equation of the second kind

X

F(x) - / N(x. y)F(y)dy = g(x) 3)

a

Functions N(x,y), g are given, f - unknown function. We call the function N(x,y) the
Kernel of Volterra equation.
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Classification of integral equations

© Fredholm equation of the first kind

b

[ Koy =g (4)

a

Q@ Fredholm equation of the second kind

b
mn—/Kmnanw:an (5)

Functions K(x,y), g are given, f - unknown function. We call the function K(x, y) the
Kernel of Fredholm equation.
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SEIE

Show that the function
o) = (1+2)72
is a solution of Volterra integral equations

X

1 t
o) =1 [ Tsara
0
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SEIE

Show that the function
p(x) = 77_\/}

is a solution of Volterra integral equations

[t
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SEIE

Show that the function

¢(x) = cos(2x)
is a solution of Fredholm integral equations

™

o(x) — 3 / K (x, £)p(t)dt = cos x
0

K(x,t) = sinxcost for 0<x<t
7] sintcosx for t<x<m
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SEIE

Show that the function

is a solution of integral equations
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There exists a fundamental relationship between Volterra integral equations and ordinary linear
differential equations.
Let us consider second order linear differential equation

d2y

el —l—al(X) +az(x)y F(x)

with initial condition
y(0) =G, y'(0)=G

We set
d? 3%
dx?

= ¢(x).
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Taking into account initial condition we observe that

X

dy

— = t)dt + C

™ /@() + G
0

X

y = /(x — t)p(t)dt + Gx + G

o

Thus

X

o0) = [ KX thp(0)d + F(x),
0
where —K(x,t) = ai1(x) + ax(x)(x — t), f(x) = F(x)— Gai(x) — Coaz(x)
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DEIES

o
Y'+xy'+y=0, y(0)=1, y'(0)=0
o
Y +y=0, y(0)=0
o
y'+y =cosx, y(0)=y'(0)=0 )
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In applied mathematics equations can be often written as operator equations of the form
Tx = x (6)

where T is an operator in a Hilbert space and x unknown.
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Definition
A mapping f from a subset A of a normed space E into E is called a contraction mapping (or
simply a contraction) if there exists a positive number o < 1 such that

() = FWII < allx = ] (7)

forall x,y € A
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Theorem

Let S be a closed subset of a Banach space, and let T: S — S be a contraction mapping.
Then

@ the equation Tx = x has one and only one solution in S, and

@ the unique solution x can be obtained as the limit of the sequence (x,) of elements of S

defined by

Xp= Txp-1, n=1273,... (8)
where xg is an arbitrary element of S:
Then
x= lim T"xg 9)
n—o0
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Let E be a Banach space, and let T: E — E. If T™ is a contraction for some m € N, then T
has a unique fixed point xo € E and xg = lim,_.o T"x for any x € E.

Theorem

If A is a bounded linear operator on a Banach space E, and ¢ is an arbitrary element of E,
then the operator defined by
Tf = aAf + ¢

has a unique fixed point for any sufficiently small ||. More precisely, if k is a positive constant

such that
[|A[] < kI f]]

for all f € E, then Tf = f has a unique solution whenever |a|k < 1.

(10)
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Let A be a bounded linear operator in a Banach space. Then the equation
X = xp + aAx

has a unique solution given by

o0
X = E a"Axg
n=0
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Theorem

Consider the initial value problem for the ordinary differential equation

& ) (11)

with the initial condition
y(x0) = yo (12)
where f is a continuous function in some closed domain
R={(x,y); a<x<b, c<y<d} (13)

containing the point (xo, yo) in its interior. If f satisfies the Lipschitz condition

[f(x,y1) = F(x, y2)| < Ly = yo (14)

for some L € R and all (x, y1),(x,y2) € R, then there exists a unique solution y = ¢(x)of the
problem (11)-(12) defined in some neighbourhood of xg .
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We have already shown that (11)-(12) is equivalent to the integral equation

X

ﬂn:m+/aummm (15)

X0
Consider the operator T defined on C([a, b]) by

X

U@M=m+/ﬂtﬂmﬁ (16)

X0

Let
M =sup{lf(x,¥)l; (x,y) € R},
and select £ > 0 such that Le <1 and [xg — &,x0 + €] C [a, b].
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S={p(x) €Clxo—e,x0+el)i lp(x) = yo| < Me
for all x € [xg — &,x0 + €]}

then S is a closed subset of the Banach space C([xo — €, x0 + €]) with the norm

el = sup Jo(x)].

[x0—¢,x0+¢]

Furthermore, if ¢ € S and x € [xg — &, % + €], then

X

(TO)x) — yol = / (2. o(t))dt| < M,

X0

and thus T maps S onto itself.
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Finally, for any 1, € S, we have

| Tor — Ta|| = sup /(f(t, @1(t)) — f(t,p2(t))) dt| < Lel|pr — w2l
[xo—e,x0+¢] o

Thus, since Le < 1, T is a contraction. Therefore, in view of previous Theorem there is a
unique solution ¢ of the equation T = ¢, that is, y = ¢ is a unique solution of (15).
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Volterra equations — examples

X

° p(x) =1+ Ofcp(t)dt, po(x) =0

X

o o(x) = x — [(x— p(t)dt, po(x) =0
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Consider the integral equation

First we set fo(x) = x. Then

1 1
fl(x):x+2/(t—x)tdt:x—i—3

-1

Substituting fi back into the original equation, we find

1
1 1 1 1
fg(x)—x+2/(t—x)(t+3)dt—x+3—3x
-1
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Continuing this process, we obtain

1 x 1
B=xt3 373
1 x 1 X
ﬁl(X):X+§—§—§+37’

fon(x) = x + Zn:(—l)m*%*m —x Y (-1)mt3m
m=1

By letting n — oo we get

f(X):ZX+Z
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Theorem

The equation
b

f(x) = a / K(x, y)F(y)dy + p(x) (17)

a

has a unique solution f € L2([a, b]) provided the kernel K is continuous in [a, b] x [a, b],

¢ € L%([a, b]) and |a|k < 1, where
b b
//|K x,y)[2dxdy.
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Consider the operator
b
(1) = o [ KCen)f )y + ()

Since p € L?([a, b]), Tf € L%([a, b)) if

b
/kummmWeB@ﬂ) (18)
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By Schwarz's inequality, we find

b

[ K

(/b (x, )l dy) : (a/bf(y)2dy)

a
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Therefore,

b 2 b b

/ K(xy)f(y)dy| < ( / K(x,y)%/y) ( / f<y>2dy)

2 b / b b

dx < / ( / K (x,y) 2dy / f(y)zdy) dx

b b b
< / / 1K (x, y) Pdydx / 1£(y) ey

and
b

/

a

b
K(x,y)f(y)dy

a
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Since
b

b b
//|K(X,y)|2dydx < 0o and /|f(y)|2dy < 00
a a

a

(18) is satisfied and thus T maps L?([a, b]) into itself. The above shows also that the operator

defined by
b

(AF)(x) = / K(x, y)F(y)dy

is bounded. Therefore, by appropriate Theorem, the equation Tf = f has a unique solution
whenever |a|k < 1.
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SEIE

Consider the integral equation

b
f(x) = a / N 2E(y)dy + o(x) (19)

where ¢ is a given function. Since

b b
b a\2
(x—y)/2)2 _ e =)
//(e V) dxdy = g

elath)/2

Equation (19) has a unique solution whenever |a| < €7—

W
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Consider an operator equation
f=p+aTf (20)

If T is an integral operator with a kernel K, that is,

b
F(x) = o(x) + o / K(x, ) (t)dt (22)
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In such a case, we have

b b

_ / / K(x, 2)K(z, t)dz | F(t)dt

a a

Therefore T2 is an integral operator whose kernel is
b
/K(X,Z)K(z, t)dz
a
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Similarly

b
T"f(x) = / Kn(x, t)f(t)dt, dla n> 2
a

where the kernel K, of T" is given by

b
Ko(x, ) = / K(x, €)Kn1(€, £)d¢, dla n > 2

The kernel can be also written as
b b
Ka(x, t) = / . / K% én 1 )K(En1 En_2) . .. K(1, 1)dEn1dEn_s ... dé1
a a

Applying appropriate Theorem we conclude about solvability of (20) and hence also the integral
equation (22)
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If ||| T|| < 1, then Equation (20) has a unique solution given by the Neumann series

f:go+2a”T”g0 (23)
n=1

Hence, the integral equation (22) has a unique solution f given by

b o0
f(x) = p(x) + a/ [Z ™ K, (x, t)] o(t)dt. (24)
n=1

a

If we adopt the notation

M(x,t; ) Za”let

then the solution can be written in the form
b
f(x) = —I—Q/F x, t,a)p(t)dt. (25)

The function I is often called the resolvent kernel
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