Karolina Tura-Gawron, Ph.D.

For discrete random variable X, $F(x) = P(X \le x)$. For discrete random variable X, $EX = \sum_{i} x_i p_i = m$. For discrete random variable X, $D^2(X) = \sum_{i} (x_i - m)^2 p_i \lor D^2(X) = E(X^2) - (EX)^2$ $P(X \le x) = \lim_{k \to x^+} F(k) = F(x+)$ P(X > x) = 1 - F(x+) P(X < x) = F(x) P(X = x) = F(x) - F(x) $P(a \le X < b) = F(b) - F(a)$ $P(a \le X \le b) = F(b) - F(a) + P(X = b) - P(X = a)$ $P(a \le X \le b) = F(b) - F(a) + P(X = b)$ $P(a < X \le b) = F(b) - F(a) - P(X = a)$

Task 1. A die is tossed. Let x be the number of spots observed on the upturned face of the die.

- a) Find the probability distribution of x and display it in the tabular and graphical form.
- b) Find the cumulative disribution function and display it in the tabular and graphical form.
- c) Find the expectation of *X* and the variance of *X*.
- d) Find $P(1 \le X < 4), P(X > 3), P(1 < X < 3), P(X = 4).$

Task 2. Three fair coins are tossed. Let *x* be the numer of heads.

- a) Find the probability distribution of x and display it in the tabular and graphical form.
- b) Find the cumulative distribution function and display it in the tabular and graphical form.
- c) Find the expectation of *X* and the variance of *X*.
- d) Find $P(1 \le X < 4), P(X > 3), P(1 < X < 3).$

Task 3. Probability distribution of accidents at work during one day is shown in the table.

- a) What is the variable X?
- b) Find the cumulative disribution function and display it in the tabular and graphical form.
- c) Find the expectation of *X* and the variance of *X*.
- d) Find $P(2 < X \le 4), P(X < 3), P(X \ge 1).$

х	0	1	2	3	4	5
р	0.02	0.18	0.28	0.25	0.2	0.07