Teoria płyt cienkich sprężystych

Płyta – dźwigar powierzchniowy, powierzchnia środkowa (równooddalona od powierzchni ograniczających) jest płaszczyzną, obciążenie prostopadłe do powierzchni środkowej

Ogólne obciążenie dźwigara płaskiego:

* składniki w płaszczyźnie - stan tarczowy (PSN, rozkład naprężeń równomierny na grubości)

* składniki prostopadłe do płaszczyzny – **stan płytowy**.

Płyta cienka – iloraz grubości *h* i wymiaru charakterystycznego w planie (mniejszego) $L: \frac{h}{L} \le \frac{1}{5}$ (granica umowna) Założenie małych przemieszczeń: $|u_i(x_1, x_2, x_3)| \ll h, i = 1, 2, 3,$ zwykle w problemach inżynierii lądowej spełnione. Założenia w teorii płyt cienkich sprężystych:

1) punkty leżące na prostej prostopadłej do powierzchni środkowej (przed obciążeniem – płaszczyzny) po odkształceniu znajdą się na prostej prostopadłej do ugiętej powierzchni płyty (ściśle: do płaszczyzny stycznej do w.w. powierzchni), jest to **założenie kinematyczne Kirchhoffa**, odpowiednik założenia Bernoulliego płaskich przekrojów w teorii belek

2) w całym obszarze płyty przyjmuje się PSN: zachodzi $|\sigma_{i3}| \ll |\sigma_{\alpha\beta}|, i = 1, 2, 3, \alpha, \beta = 1, 2, zatem do obliczeń <math>\sigma_{i3} = 0.$

Oznaczenia przemieszczeń punktów powierzchni środkowej płyty:

$$\begin{array}{c} u_1(x_1, x_2, 0) \equiv u(x_1, x_2) \\ u_2(x_1, x_2, 0) \equiv v(x_1, x_2) \end{array} \right\} \text{ stan tarczowy}$$

 $u_3(x_1, x_2, 0) \equiv w(x_1, x_2)$ - **ugięcie** – podstawowa niewiadoma,

Zadanie: wyprowadzenie równania różniczkowego z niewiadomą funkcją $w(x_1, x_2)$, łączące komplet równań podstawowych TS.

Przemieszczenia $\mathbf{u} = \{u_1 \ u_2 \ u_3\}^T$ dowolnego punktu płyty (zgodnie z założeniem Kirchhoffa):

$$\begin{cases} u_1(x_1, x_2, x_3) = u(x_1, x_2) - x_3 \frac{\partial w}{\partial x_1}(x_1, x_2) \\ u_2(x_1, x_2, x_3) = v(x_1, x_2) - x_3 \frac{\partial w}{\partial x_2}(x_1, x_2) \\ u_3(x_1, x_2, x_3) = w(x_1, x_2) \end{cases}$$

Związki geometryczne w płaskim stanie naprężenia:

$$\begin{cases} \varepsilon_{11} = \frac{\partial u_1}{\partial x_1} = \frac{\partial u}{\partial x_1} - x_3 \frac{\partial^2 w}{\partial x_1^2} = u_{,1} - x_3 w_{,11} \cong -x_3 w_{,11} \\ \varepsilon_{22} = \frac{\partial u_2}{\partial x_2} = \frac{\partial v}{\partial x_2} - x_3 \frac{\partial^2 w}{\partial x_2^2} = v_{,2} - x_3 w_{,22} \cong -x_3 w_{,22} \\ \varepsilon_{12} = \frac{1}{2} \left(\frac{\partial u_1}{\partial x_2} + \frac{\partial u_2}{\partial x_1} \right) = \frac{1}{2} \left(u_{,2} + v_{,1} \right) - x_3 w_{,12} \cong -x_3 w_{,12} \end{cases}$$

$$u_{i} \cong 0, v_{i} \cong 0$$

gdyż *u* i *v* –
przemieszczenia stanu
tarczowego

Liniowosprężyste równania fizyczne - prawo Hooke'a w PSN

$$\sigma_{11} = \frac{E}{1 - v^2} (\varepsilon_{11} + v\varepsilon_{22}) = -\frac{E}{1 - v^2} x_3 (w_{,11} + vw_{,22})$$

$$\sigma_{22} = \frac{E}{1 - v^2} (\varepsilon_{22} + v\varepsilon_{11}) = -\frac{E}{1 - v^2} x_3 (w_{,22} + vw_{,11})$$

$$\sigma_{12} = \frac{E}{1 + v} \varepsilon_{12} = -\frac{E}{1 + v} x_3 w_{,12}$$

Równania równowagi: $\sigma_{ij,j} + f_i = 0$ - trzy formy, w stanie 3D - pomimo, iż składowe naprężenia w kierunku x_3 są znacznie mniejsze, niż składowe w płaszczyźnie Ox_1x_2 , pochodne wszystkich naprężeń są ze sobą porównywalne. Zestawienie wszystkich powyższych związków : równanie różniczkowe płyty, z niewiadomą funkcją $w(x_1, x_2)$:

$$\Delta(\Delta w) = \nabla^4 w = \frac{\partial^4 w}{\partial x_1^4} + \frac{\partial^4 w}{\partial x_2^4} + 2\frac{\partial^4 w}{\partial x_1^2 \partial x_2^2} = \frac{q(x_1, x_2)}{D} \operatorname{lub} w_{,1111} + w_{,2222} + 2w_{,1122} = \frac{q}{D}$$

Sztywność płytowa $D = \frac{Eh^3}{12(1-\nu^2)}$ - parametr geometryczny i materiałowy

J. Górski, M. Skowronek, K. Winkelmann • Teoria sprężystości i plastyczności • Wykład 10 2016 • KMB WILIŚ PG

Matematyczne definicje sił przekrojowych w płytach, jako wypadkowych naprężeń (analogia do definicji sił przekrojowych w elementach prętowych): * momenty płytowe:

$$M_{11} = \int_{-h/2}^{h/2} x_3 \,\sigma_{11} \,dx_3, \quad M_{22} = \int_{-h/2}^{h/2} x_3 \,\sigma_{22} \,dx_3, \quad M_{12} = M_{21} = \int_{-h/2}^{h/2} x_3 \,\sigma_{12} \,dx_3$$

* siły poprzeczne płytowe: $Q_1 = \int_{-h/2}^{h/2} \sigma_{13} dx_3, \ Q_2 = \int_{-h/2}^{h/2} \sigma_{23} dx_3$

* siły tarczowe:
$$N_{11} = \int_{-h/2}^{h/2} \sigma_{11} dx_3$$
, $N_{22} = \int_{-h/2}^{h/2} \sigma_{22} dx_3$, $N_{12} = N_{21} = \int_{-h/2}^{h/2} \sigma_{12} dx_3$

J. Górski, M. Skowronek, K. Winkelmann • Teoria sprężystości i plastyczności • Wykład 10 2016 • KMB WILIŚ PG

Obciążenie poprzeczne $q(x_1, x_2)$ można wyrazić względem naprężeń σ_{33} : $q = \sigma_{33}|_{x_3=0.5h} - \sigma_{33}|_{x_3=-0.5h}$

Naprężenia tworzące PSN - normalne σ_{11} i σ_{22} oraz styczne $\sigma_{12} = \sigma_{21}$ względem zmiennej x_3 rozłożone liniowo, ekstrema na krawędziach płyty.

Naprężenia styczne σ_{13} i σ_{23} - względem zmiennej x_3 rozkład paraboliczny, podobnie, jak w belkach naprężenia τ odpowiadające sile tnącej *T*,

ekstremalne – w powierzchni środkowej: $\sigma_{13}\Big|_{x_3=0} = \frac{3}{2}\frac{Q_1}{h}, \ \sigma_{23}\Big|_{x_3=0} = \frac{3}{2}\frac{Q_2}{h}.$

Paraboliczny rozkład naprężeń stycznych σ_{13} i σ_{23} wynika z równań równowagi, przykładowo, przy braku sił objętościowych pierwsze równanie równowagi $\sigma_{11,1} + \sigma_{21,2} + \sigma_{31,3} = 0$ daje $\sigma_{31,3} = -\sigma_{11,1} - \sigma_{21,2}$. Prawa strona jest funkcją liniową zmiennej x_3 , stąd funkcja σ_{31} jest względem x_3 kwadratowa.

Zachodzi wspomniana już zależność: $|\sigma_{i3}| \ll |\sigma_{\alpha\beta}|$, $i = 1, 2, 3, \alpha, \beta = 1, 2$

Warunki brzegowe elementu płytowego

Oznaczenia: s – oś styczna do brzegu płyty, n – oś normalna, obie w płaszczyźnie środkowej, t – oś prostopadła do płaszczyzny środkowej Brzegowe wartości sił przekrojowych płytowych:

 M_{nn} - moment zginający, M_{ns} - moment skręcający, Q_n - siła poprzeczna Brzegowe przemieszczenia uogólnione:

w- ugięcie, $\varphi_n = \frac{\partial w}{\partial n} = w_{,n}$ - kąt obrotu normalnej W płytach o płaszczyźnie środkowej Ox_1x_2 zachodzi $t \equiv x_3$. Przypadki: * kierunki $n \equiv x_1, s \equiv x_2$: momenty M_{11} i M_{12} , siła poprzeczna Q_1 , kąt φ_1 * kierunki $n \equiv x_2, s \equiv x_1$: momenty M_{22} i M_{21} , siła poprzeczna Q_2 , kąt φ_2 Równanie różniczkowe płyty, czwartego rzędu, wymaga warunków brzegowych obejmujących cztery wiel-

kości: dwie statyczne i dwie geometryczne.

Rysunki – pięć wielkości brzegowych (trzy statyczne, dwie geometryczne). Redukcja zbioru sił brzegowych do dwóch wielkości – wprowadzenie tzw.

zastępczej siły poprzecznej V na brzegu. Wzór: $V_n = Q_n + \frac{\partial M_{ns}}{\partial s}$.

Uzasadnienie, na brzegu prostoliniowym w płaszczyźnie Ox_1x_2

Siła poprzeczna, równoważna momentowi skręcającemu M_{12} , obliczona na jednostkę długości brzegu, wynosi $\frac{\partial M_{12}}{\partial x_2}$. Łączne działanie siły poprzecznej

 Q_1 i momentu skręcającego M_{12} - zastępcza siła poprzeczna $V_1 = Q_1 + \frac{\partial M_{12}}{\partial x_2}$.

Zalecenie w płytach żelbetowych krzyżowo zbrojonych – dodatkowe zbrojenie dwukierunkowe w narożach.

Typowe, proste **sposoby podparcia płyt** w układzie kartezjańskim

Warunki te są analogiczne do warunków belkowych:

- zerowy moment zginający na brzegu swobodnie podpartym oznacza zerową drugą pochodną funkcji ugięcia względem współrz. prostopadłej do brzegu
- brzeg swobodny – zerowy moment zginający w płaszczyźnie prostopadłej do brzegu oraz zerowa zastępcza sił poprzeczna

Przykład: PASMO PŁYTOWE

Równanie różniczkowe płyty:
$$\nabla^4 w = \frac{\partial^4 w}{\partial x_1^4} + \frac{\partial^4 w}{\partial x_2^4} + 2\frac{\partial^4 w}{\partial x_1^2 \partial x_2^2} = \frac{q(x_1, x_2)}{D}$$

Założenie **symetrii translacyjnej**: obciążenie, geometria i warunki brzegowe są jedynie funkcją współrzędnej x_1 , druga, nieaktywna współrzędna $x_2 \in \mathbf{R}$

Równanie pasma płytowego obejmuje jedną zmienną, w rozwiązaniu można zatem stosować symbol pochodnej zwyczajnej: $\frac{d^4w}{dx_1^4} = w^{IV}(x_1) = \frac{q(x_1)}{D}$.

Przykład: pasmo płytowe swobodnie podparte, pod obciążeniem q = constzakres $x_1 \in \langle 0, a \rangle$, dane: E, v, h. a = constRównanie: $Dw^{IV} = q$ h = constRozwiązanie: $Dw^{III} = q(x_1 + C_1)$, $Dw'' = q(x_1^2/2 + C_1x_1 + C_2), Dw' = q(x_1^3/6 + C_1x_1^2/2 + C_2x_1 + C_3),$ $Dw = q(x_1^4/24 + C_1 x_1^3/6 + C_2 x_1^2/2 + C_3 x_1 + C_4)$ Warunki brzegowe: w(0) = 0, w''(0) = 0, w(a) = 0, w''(a) = 0, z układu równań stałe całkowania: $C_2 = C_4 = 0, C_1 = -qa^2/2, C_3 = qa^4/24$. Rozwiązanie: $w(x_1) = \frac{q}{D} \left(\frac{x_1^4}{24} - \frac{ax_1^3}{12} + \frac{a^3x_1}{24} \right) = \frac{qa^4}{24D} \left| \left(\frac{x_1}{a} \right)^4 - 2\left(\frac{x_1}{a} \right)^3 + \frac{x_1}{a} \right|.$ Ugięcie maksymalne: $w_{\text{max}} = w \left(\frac{a}{2}\right) = \frac{5}{384} \frac{qa^2}{D}$.

$$M_{11} = -Dw''(x_1) = -0.5qx_1^2 + 0.5qx_1, \qquad M_{12} = -vDw''(x_1), \qquad M_{12} = 0$$

Rozwiązanie - linia ugięcia, wykres M_{11} ,
tak analitycznie jak i graficznie,
wykazuje podobieństwo z rozwiązaniem
belki swobodnie podpartej, różnice:
* sztywności belki *EI* odpowiada
sztywność płytowa *D*
* obecne w płycie momenty
zginające $M_{22} = vM_{11}$ -
zginanie dwukierunkowe
 $v \cdot \frac{qa^2}{8}$
 $M_{22}(x_1 = \frac{q}{2})$
 $M_{11}(x_2 = const)$

Momenty płytowe (podane także ogólne wzory w paśmie płytowym o $x_2 \in \mathbf{R}$)

Porównanie ugięcia pasma płytowego w_p z ugięciem belki w_b o tych samych parametrach E, v, h i szerokości przekroju b = 1[m]:

J. Górski, M. Skowronek, K. Winkelmann • Teoria sprężystości i plastyczności • Wykład 10 2016 • KMB WILIŚ PG

Przykład: PŁYTA PROSTOKĄTNA

Przypadek elementarny: obciążenie podwójnie sinusoidalne

Funkcja obciążenia - sinusoidalna "kopuła": $q(x_1, x_2) = q_0 \sin \frac{\pi x_1}{a} \sin \frac{\pi x_2}{b}$

Równanie płyty:
$$\nabla^4 w = \frac{q(x_1, x_2)}{D} = \frac{q_0}{D} \sin \frac{\pi x_1}{a} \sin \frac{\pi x_2}{b}$$

Warunki brzegowe: $\begin{cases} x_1 = 0 \text{ lub } x_1 = a : w = 0, w_{,11} = 0\\ x_2 = 0 \text{ lub } x_2 = b : w = 0, w_{,22} = 0 \end{cases}$

Przewidywane rozwiązanie $w(x_1, x_2) = w_0 \sin \frac{\pi x_1}{a} \sin \frac{\pi x_2}{b}$ - w.b. spełnione

Podstawienie do równania płyty:

$$w_0\left(\frac{\pi^4}{a^4} + 2\frac{\pi^4}{a^2b^2} + \frac{\pi^4}{b^4}\right) = w_0 \pi^4 \left(\frac{1}{a^2} + \frac{1}{b^2}\right)^2 = \frac{q_0}{D}, \text{ stad } w_0 = \frac{q_0}{\pi^4 D\left(\frac{1}{a^2} + \frac{1}{b^2}\right)^2},$$

tym samym
$$w = \frac{q_0}{\pi^4 D \left(\frac{1}{a^2} + \frac{1}{b^2}\right)^2} \sin \frac{\pi x_1}{a} \sin \frac{\pi x_2}{b}$$
. Momenty płytowe:

$$M_{11} = -D\left(w_{,11} + vw_{,22}\right) = \frac{q_0}{\pi^2 \left(\frac{1}{a^2} + \frac{1}{b^2}\right)^2} \left(\frac{1}{a^2} + \frac{v}{b^2}\right) \sin\frac{\pi x_1}{a} \sin\frac{\pi x_2}{b}$$

$$M_{22} = -D(w_{22} + vw_{11}) = \frac{q_0}{\pi^2 \left(\frac{1}{a^2} + \frac{1}{b^2}\right)^2} \left(\frac{1}{b^2} + \frac{v}{a^2}\right) \sin\frac{\pi x_1}{a} \sin\frac{\pi x_2}{b}$$
$$M_{12} = -D(1-v)w_{12} = -\frac{q_0(1-v)}{\pi^2 a b \left(\frac{1}{a^2} + \frac{1}{b^2}\right)^2} \cos\frac{\pi x_1}{a} \cos\frac{\pi x_2}{b}$$

Przypadek płyty kwadratowej (a = b)

Wartości maksymalne, w środku płyty ($x_1 = x_2 = \frac{a}{2}$): * ugięcie $w_{\text{max}} = \frac{q_0 a^4}{4\pi^2 D} \cong 0.00257 \frac{q_0 a^4}{D}$,

* momenty zginające $M_{11,\text{max}} = M_{22,\text{max}} = (1+\nu) \frac{q_0 a^2}{4\pi^2}$

Płyta prostokątna swobodnie podparta na wszystkich brzegach, obciążona dowolnie na całej powierzchni

Postać obciążenia – podwójny szereg trygonometryczny, obciążenie jednego znaku w obrębie płyty

Przykład: rozwinięcie w podwójny szereg obciążenia stałego $q(x_1, x_2) = q_0$. $a_{mn} = \frac{4q_0}{ab} \int_0^a \int_0^b \sin \frac{m\pi x_1}{a} \sin \frac{n\pi x_2}{b} dx_1 dx_2 = \frac{4q_0}{ab} \left(-\frac{a}{m\pi} \cos \frac{m\pi x_1}{a} \right) \Big|_0^a \left(-\frac{b}{n\pi} \cos \frac{n\pi x_2}{b} \right) \Big|_0^b$ stąd $a_{mn} = \frac{4q_0}{ab} \frac{2a}{m\pi} \frac{2b}{n\pi} = \frac{16q_0}{mn\pi^2}$ przy obu *m*, *n* nieparzystych, inaczej $a_{mn} = 0$. Przewidywane rozwiązanie w ogólnym przypadku obciążenia:

$$w(x_1, x_2) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} w_{mn} \sin \frac{m\pi x_1}{a} \sin \frac{n\pi x_2}{b} -$$

- funkcja spełniająca warunki brzegowe swobodnego podparcia.

Podstawienie do równania płyty $\nabla^4 w = q(x_1, x_2)/D$ i porównanie ogólnych

wyrazów dwóch równych szeregów daje
$$D\left[\left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2\right]^2 w_{mn} = a_{mn},$$

tym samym
$$w(x_1, x_2) = \frac{1}{D\pi^4} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{a_{mn}}{\left[\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2\right]^2} \sin\frac{m\pi x_1}{a} \sin\frac{n\pi x_2}{b}$$

W przypadku $q(x_1, x_2) = q_0 = const$ jest

$$w(x_{1}, x_{2}) = \frac{16q_{0}}{D\pi^{6}} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{mn \left[\left(\frac{m}{a}\right)^{2} + \left(\frac{n}{b}\right)^{2} \right]^{2}} \sin \frac{m\pi x_{1}}{a} \sin \frac{n\pi x_{2}}{b}$$

gdy oba m, n nieparzyste

$$q(x_1, x_2) = q_0 \Longrightarrow w(x_1, x_2) = \frac{16q_0}{D\pi^6} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{mn \left[\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2 \right]^2} \sin \frac{m\pi x_1}{a} \sin \frac{n\pi x_2}{b}$$

oba *m*, *n* nieparzyste. Ugięcie maksymalne w środku płyty, $x_1 = 0.5a$, $x_2 = 0.5b$

 $w_{\max} = \frac{16q_0}{D\pi^6} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{\left(-1\right)^{0.5(m+n)-1}}{mn \left[\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2\right]^2}.$ Jest to szereg szybkozbieżny, dobrym

przybliżeniem może być pierwszy wyraz (m = n = 1). 1) płyta kwadratowa (a = b), pierwszy wyraz (m = n = 1) – rezultat

 $w_{\text{max}} = \frac{4q_0 a^4}{D\pi^6} \cong 0.00416 \frac{q_0 a^4}{D}, \text{ większa liczba wyrazów: } w_{\text{max}} \cong 0.00406 \frac{q_0 a^4}{D}$

2) gdy b = 3a ugięcie, wzór z większą liczbą wyrazów $w_{\text{max}} \cong 0.0122 \frac{q_0 a^4}{D}$

3) gdy $b \to \infty$ - pasmo, $w_{\text{max}} \cong 0.0130 \frac{q_0 a^4}{D}$. Gdy obciążenie $q \cong const$ przybliżenie pasmem płytowym można stosować przy proporcjach b > 3a.

Płyta kwadratowa – momenty płytowe

(beton $\rightarrow \nu \cong 0.2$) pod obciążeniem stałym q_0 .

Funkcja ugięć, przy a = b:

$$w(x_1, x_2) = \frac{16q_0 a^4}{D\pi^6} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{mn(m^2 + n^2)^2} \sin \frac{m\pi x_1}{a} \sin \frac{n\pi x_2}{a}$$

Z symetrii wyrażenia wynika $w_{11} = w_{22}$, tym samym funkcje $M_{11} = M_{22}$.

Momenty zginające: $M_{11} = -D(w_{,11} + vw_{,22}) = -Dw_{,11}(1+v)$,

gdzie
$$w_{11} = -\frac{16q_0a^2}{D\pi^4} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{m}{n(m^2 + n^2)^2} \sin\frac{m\pi x_1}{a} \sin\frac{n\pi x_2}{a}$$

pierwszy wyraz (m = n = 1), moment w środku płyty $M_{11,\text{max}} = \frac{4q_0a^2}{\pi^4}(1+\nu) \cong 0.048q_0a^2$, na brzegach momenty M_{11} i M_{22} zerowe. **Momenty skręcające**: $M_{12} = -D(1-v)w_{,12}$,

gdzie
$$w_{12} = \frac{16q_0a^2}{D\pi^4} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{(m^2 + n^2)^2} \cos\frac{m\pi x_1}{a} \cos\frac{n\pi x_2}{a}$$

pierwszy wyraz (m = n = 1), moment w narożu płyty

 $M_{12,\text{extr}} = -\frac{4q_0a^2}{\pi^4} (1-\nu) \cong -0.032 q_0a^2$, w środku momenty M_{12} zerowe.

Momenty płytowe w układzie obróconym o kąt $\varphi = 45^{\circ}$:

Ze wzorów transformacyjnych naprężeń wynika transformacja ich wypadkowych – momentów (jednakowa reguła całkowania)

* moment zginający $M_{nn} = M_{11}\cos^2 \varphi + M_{22}\sin^2 \varphi + M_{12}\sin 2\varphi$ * moment skręcający $M_{ns} = 0.5(M_{22} - M_{11})\sin 2\varphi + M_{12}\cos 2\varphi$ Gdy $\varphi = 45^\circ$ jest

$$M_{nn} = M_{11} \left(\frac{\sqrt{2}}{2}\right)^2 + M_{22} \left(\frac{\sqrt{2}}{2}\right)^2 + M_{12} = \frac{1}{2} \left(M_{11} + M_{22}\right) + M_{12} = M_{11} + M_{12}$$

Wykres momentów zginających M_{nn} na przekątnej płyty

* wartość w środku płyty ($x_1 = x_2 = 0.5a$): $M_{nn} = 0.048 q_0 a^2$

* wartość w narożu płyty ($x_1 = x_2 = 0$): $M_{nn} = -0.032 q_0 a^2$

W narożu płyty, w kierunku przekątnej istnieje ujemny moment zginający – stąd w

płytach żelbetowych potrzeba zbrojenia w narożach górą w zasięgu ok. 0.2a.

Równowaga momentów zginających i skręcających w otoczeniu naroża płyty

Każdy z momentów płytowych jest momentem rozłożonym na długości – **równowaga** musi być dokonana **względem wypadkowych**, o jednostkach momentu, zebranych z odpowiednich odcinków

0

Płyta prostokątna swobodnie podparta, obciążona równomiernie na dowolnej części

u, v - wymiary strefy obciążenia, o środku (ξ, η) , wypadkowa obciążenia wynosi P = quv

Obciążenie:
$$q(x_1, x_2) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{mn} \sin \frac{m\pi x_1}{a} \sin \frac{n\pi x_2}{b}$$
,
gdzie $a_{mn} = \frac{4}{ab} \int_{\xi - \frac{u}{2}}^{\xi + \frac{u}{2}} \int_{\eta - \frac{v}{2}}^{\eta + \frac{v}{2}} q(x_1, x_2) \sin \frac{m\pi x_1}{a} \sin \frac{n\pi x_2}{b} dx_1 dx_2$.
Podstawiając $q = \frac{P}{uv}$ jest $a_{mn} = \frac{4P}{abuv} \int_{\xi - \frac{u}{2}}^{\xi + \frac{u}{2}} \int_{\eta - \frac{v}{2}}^{\eta + \frac{v}{2}} q(x_1, x_2) \sin \frac{m\pi x_1}{a} \sin \frac{n\pi x_2}{b} dx_1 dx_2$.

$$a_{mn} = \frac{4P}{abuv} \int_{\xi-\frac{u}{2}}^{\xi+\frac{u}{2}} \int_{\eta-\frac{v}{2}}^{\eta+\frac{v}{2}} q(x_1, x_2) \sin \frac{m\pi x_1}{a} \sin \frac{n\pi x_2}{b} dx_1 dx_2 =$$

$$= \frac{4P}{abuv} \frac{a}{m\pi} \frac{b}{n\pi} \left(\cos \frac{m\pi x_1}{a} \right) \Big|_{\xi-\frac{u}{2}}^{\xi+\frac{u}{2}} \left(\cos \frac{n\pi x_2}{b} \right) \Big|_{\eta-\frac{v}{2}}^{\eta+\frac{v}{2}}$$

$$a_{mn} = \frac{4P}{\pi^2 mnuv} \left(\cos \frac{m\pi \left(\xi+\frac{u}{2}\right)}{a} - \cos \frac{m\pi \left(\xi-\frac{u}{2}\right)}{a} \right) \left(\cos \frac{n\pi \left(\eta+\frac{v}{2}\right)}{b} - \cos \frac{n\pi \left(\eta-\frac{v}{2}\right)}{b} \right)$$
Wzór trygonometryczny: $\cos(\alpha-\beta) = -2\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2}$, przekształcenia:
 $\frac{1}{a} \left[m\pi \left(\xi+\frac{u}{2}\right) + m\pi \left(\xi-\frac{u}{2}\right) \right] = \frac{2m\pi\xi}{a}, \frac{1}{a} \left[m\pi \left(\xi+\frac{u}{2}\right) - m\pi \left(\xi-\frac{u}{2}\right) \right] = \frac{m\pi u}{a}$
i analogicznie w zestawie $\{n,\eta,v\}$,

tym samym

$$a_{mn} = \frac{16P}{\pi^2 m n u v} \sin \frac{m \pi \xi}{a} \sin \frac{n \pi \eta}{b} \sin \frac{m \pi u}{2a} \sin \frac{n \pi v}{2b}$$

J. Górski, M. Skowronek, K. Winkelmann • Teoria sprężystości i plastyczności • Wykład 10 2016 • KMB WILIŚ PG

Sprawdzenie: przypadek obciążenia równomiernego q na całej powierzchni

$$\xi = \frac{a}{2}, \eta = \frac{b}{2}, u = a, v = b, P = qab \implies a_{mn} = \frac{16q}{\pi^2 m nab} \sin^2 \frac{m\pi}{2} \sin^2 \frac{n\pi}{2} = \frac{16q}{\pi^2 m nab}$$

przy obu *m*, *n* nieparzystych, w pozostałych przypadkach $a_{mn} = 0$.

Funkcja ugięcia:
$$w(x_1, x_2) = \frac{1}{D\pi^4} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{a_{mn}}{\left[\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2\right]^2} \sin\frac{m\pi x_1}{a} \sin\frac{n\pi x_2}{b}$$

Płyta prostokątna swobodnie podparta, obciążona siłą skupioną P (ξ, η) – współrzędne punktu przyłożenia siły

Granice wyrażeń zawierających wymiary u i v, z poprzedniego rozwiązania:

$$\lim_{u \to 0} \frac{\sin \frac{m\pi u}{2a}}{u} = \lim_{u \to 0} \frac{m\pi}{2a} \cos \frac{m\pi u}{2a} = \frac{m\pi}{2a} \implies \qquad a_{mn} = \frac{4P}{ab} \sin \frac{m\pi\xi}{a} \sin \frac{n\pi\eta}{b}$$
$$\lim_{v \to 0} \frac{\sin \frac{n\pi v}{2b}}{v} = \lim_{v \to 0} \frac{n\pi}{2b} \cos \frac{n\pi v}{2b} = \frac{n\pi}{2b}$$

Funkcja ugięcia:
$$w(x_1, x_2) = \frac{4P}{\pi^4 a b D} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{\sin \frac{m x_2}{a} \sin \frac{m x_1}{b}}{\left[\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2\right]^2} \sin \frac{m \pi x_1}{a} \sin \frac{n \pi x_2}{b}$$

(szereg szybkozbieżny)

Ugięcie w środku płyty, wywołane siłą centryczną ($\xi = x_1 = \frac{a}{2}, \eta = x_2 = \frac{b}{2}$)

$$w_{\max} = \frac{4P}{\pi^4 a b D} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{\left[\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2\right]^2}$$

· · · · _ · · ·

przy obu m i n nieparzystych

Płyta kwadratowa (a = b): $w_{\text{max}} = \frac{4Pa^2}{\pi^4 D} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{\left[m^2 + n^2\right]^2}$, *m* i *n* nieparzyste

Obliczenie z udziałem jedynie czterech wyrazów rozwinięcia:

$$w_{\max} = \frac{4Pa^2}{\pi^4 D} \left[1 + \frac{1}{100} + \frac{1}{100} + \frac{1}{324} \right] \cong 0.01121 \frac{Pa^2}{D}$$

Przyjmując $P = qa^2$ powyższy wynik jest ok. trzykrotnie większy od rezultatu działania obciążenia q = const.

Dyskusja! Przypadek szczególny: ścianki działowe na stropie

WARTO UCZYĆ SIĘ SPRĘŻYN, BY WYBUDOWAĆ ŁADNY DOM!

J. Górski, M. Skowronek, K. Winkelmann • Teoria sprężystości i plastyczności • Wykład 10 2016 • KMB WILIŚ PG

Rozwinięcie w szereg obciążeń: Zbigniew Kączkowski - Płyty Obliczenia statyczne

Współczynniki rozwinięcia obciążenia q(x, y) w podwójny szereg sinusowy

 $q(x, y) = \sum_{m} \sum_{n} q_{mn} \sin \alpha_{m} x \sin \beta_{n} y$ Schemat Lp. qmn. m, n $\frac{4P}{ab}$ sin $\alpha_n x_0 \sin \beta_n y_0$ 1,2.3 1 dla $x_0 = \frac{a}{2}$, $y_0 = \frac{b}{2}$: $\frac{4P}{c^4}$ 1.3.5.... $q = P\delta(x - x_0)\delta(y - y_0)$ $\frac{4\sin\alpha_m x_0}{ab} \int_{ab}^{b} \tilde{q}(y) \sin\beta_n y d_y$ 1,2,3,... $\frac{8_{q_0}^-}{a} \frac{\sin \alpha_m x_0}{m}$ dla: a) $\bar{q}(y) = \bar{q}_0 = \text{const}$: m = 1, 2, 3, ...2 n == 1.3.5.... b) $\bar{q}(y) = \bar{q}_0 \frac{y}{b}$: $\frac{4\bar{q}_0}{a} (-1)^{n+1} \frac{\sin \alpha_m x_0}{n\pi}$ 1,2,3, $q = \bar{q}(q) \delta(x - x_0)$ c) $\bar{q}(y) = \frac{4\bar{q}_0}{b^2} y(b-y)$: $\frac{64\bar{q}_0}{a} \frac{\sin \alpha_m x_0}{(n\pi)^2}$ $m = 1, 2, 3, \dots$ $n = 1, 3, 5, \dots$ $4q_0 \frac{\cos \alpha_m x_1 - \cos \alpha_m x_2}{\cos \beta_n y_1 - \cos \beta_n y_2}$ 1,2,3,... $8q_6 - \frac{\cos \alpha_m x_1 - \cos \alpha_m x_2}{\cos \alpha_m x_1 - \cos \alpha_m x_2}$ dla: a) $y_1 = 0$, $y_2 = b$; $m = 1, 2, 3, \dots$ $n = 1, 3, 5, \dots$ 3 1.3.5.... $\cos \alpha_m x_1 \quad \cos \beta_n y_1$ b) $x_2 = a - x_1$, $y_2 = b - y_1$: 16 q_0 mπ nπ n/x-x,)//n/y-y.)-n/y-y.) 1690 c) $x_1 = y_1 = 0$, $x_2 = a$, $y_2 = b$; 1,3,5,... mit not

J. Górski, M. Skowronek, K. Winkelmann • Teoria sprężystości i plastyczności • Wykład 10 2016 • KMB WILIŚ PG

Tablice

Tablica III

420

